1
|
Lin M, Zhou J, Xiao J, Li C, Mo Y, Liu Y, Xiao Y, Huang J, Feng X. Integrating multi-omics data of Triple-Negative Breast Cancer to explore the role of Kynurenine pathway and KYNU as a therapeutic target. Biochem Biophys Res Commun 2025; 756:151569. [PMID: 40081237 DOI: 10.1016/j.bbrc.2025.151569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer with poor prognosis. TNBC currently lacks effective therapeutic options, and its molecular mechanisms are still unclear. Thus, identifying novel molecular targets may offer insights to enhance treatment strategies. Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of tumor diseases. The KP is the primary route of tryptophan metabolism, accounting for over 95 % of tryptophan catabolism. Genes within the KP have been implicated in tumor promotion, although their functional mechanisms remain to be elucidated. METHODS Bioinformatics approaches were employed to analyze the expression and function of all genes within the KP in TNBC. RESULTS Genes of the KP were found to be upregulated in TNBC and associated with adverse outcomes. These genes were predominantly involved in various biosynthetic functions. Correlation analyses revealed a close association between KP genes and markers of inflammatory pathways, as well as with chemoresistance in tumors. Immunofluorescence revealed that KYNU accumulated in the nucleus and at sites of nuclear chromatin in TNBC cells. CONCLUSION Genes of the KP are correlated with the progression and drug resistance of TNBC, but further research is needed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - JingMei Zhou
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha, 410008, China
| | - Jinxin Xiao
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Chengmin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yingzhe Liu
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yongzhi Xiao
- Department of Ultrasound Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, China.
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Xueping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
2
|
Sapienza J, Agostoni G, Repaci F, Spangaro M, Comai S, Bosia M. Metabolic Syndrome and Schizophrenia: Adding a Piece to the Interplay Between the Kynurenine Pathway and Inflammation. Metabolites 2025; 15:176. [PMID: 40137141 PMCID: PMC11944102 DOI: 10.3390/metabo15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
The biology of schizophrenia is highly complex and multifaceted. Numerous efforts have been made over the years to disentangle the heterogeneity of the disease, gradually leading to a more detailed understanding of its underlying pathogenic mechanisms. Two cardinal elements in the pathophysiology of schizophrenia are neuroinflammation and alterations of neurotransmission. The kynurenine (KYN) pathway (KP) is of particular importance because it is inducted by systemic low-grade inflammation in peripheral tissues, producing metabolites that are neuroactive (i.e., modulating glutamatergic and cholinergic neurotransmission), neuroprotective, or neurotoxic. Consequently, the KP is at the crossroads between two primary systems involved in the pathogenesis of schizophrenia. It bridges the central nervous system (CNS) and the periphery, as KP metabolites can cross the blood-brain barrier and modulate neuronal activity. Metabolic syndrome plays a crucial role in this context, as it frequently co-occurs with schizophrenia, contributing to a sub-inflammatory state able to activate the KP. This narrative review provides valuable insights into these complex interactions, offering a framework for developing targeted therapeutic interventions or precision psychiatry approaches of the disorder.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Giulia Agostoni
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Federica Repaci
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Marco Spangaro
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35123 Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biomedical Sciences, University of Padua, 35123 Padua, Italy
| | - Marta Bosia
- Schizophrenia Research and Clinical Unit, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy; (J.S.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
3
|
Wang R, Fu J, He J, Wang X, Xing W, Liu X, Yao J, Ye Q, He Y. Apoptotic mesenchymal stem cells and their secreted apoptotic extracellular vesicles: therapeutic applications and mechanisms. Stem Cell Res Ther 2025; 16:78. [PMID: 39985021 PMCID: PMC11846181 DOI: 10.1186/s13287-025-04211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs), an accessible and less ethically controversial class of adult stem cells, have demonstrated significant efficacy in treating a wide range of diseases in both the preclinical and clinical phases. However, we do not yet have a clear understanding of the mechanisms by which MSCs exert their therapeutic effects in vivo. We found that the transplanted MSCs go an apoptotic fate within 24 h in vivo irrespective of the route of administration. Still, the short-term survival of MSCs do not affect their long-term therapeutic efficacy. An increasing number of studies have demonstrated that transplantation of apoptotic MSCs (ApoMSCs) show similar or even better efficacy than viable MSCs, including a variety of preclinical disease models such as inflammatory diseases, skin damage, bone damage, organ damage, etc. Although the exact mechanism has yet to be explored, recent studies have shown that transplanted MSCs undergo apoptosis in vivo and are phagocytosed by phagocytes, thereby exerting immunomodulatory effects. The apoptotic extracellular vesicles secreted by ApoMSCs (MSC-ApoEVs) play a significant role in promoting immunomodulation, endogenous stem cell regeneration, and angiogenesis due to their apoptotic properties and inheritance of molecular characteristics from their parental MSCs. On this basis, this review aims to deeply explore the therapeutic applications and mechanisms of ApoMSCs and their secretion of MSC-ApoEVs, as well as the challenges they face.
Collapse
Affiliation(s)
- Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jihui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Juming Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China.
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Yin Z, Sun B, Wang S, Xu X, Cheng L, Gao Y, Jin E. Investigating the role of IDO1 in tumors: correlating IDO1 expression with clinical pathological features and prognosis in lung adenocarcinoma patients. PeerJ 2025; 13:e18776. [PMID: 39989741 PMCID: PMC11846502 DOI: 10.7717/peerj.18776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 02/25/2025] Open
Abstract
Purpose This study aimed to investigate the role and expression patterns of IDO1 in various tumors, focusing on its correlation with clinical pathological characteristics and prognosis in patients specifically diagnosed with lung adenocarcinoma. Methods Pan-cancer analysis assessed IDO1 function across different tumor types. Bioinformatics tools, immunohistochemistry techniques, and statistical analyses were employed to evaluate IDO1 expression levels and their association with clinical pathological features and prognosis in patients with lung adenocarcinoma. Results IDO1 was found to be significantly overexpressed in various types of tumors, with higher levels correlating with poorer progression-free survival (PFS) and overall survival (OS). In lung adenocarcinoma patients, IDO1 protein was predominantly localized to the cytoplasm and cell membrane of tumor cells, with higher expression observed in tumor cells closer to normal lung tissue. Statistical analysis revealed no significant differences in IDO1 expression based on the patient's clinical data, including gender, age, tumor location, allergy history, hypertension history, cardiovascular disease history, tumor history, diabetes (both type 1 and type 2), body mass index, smoking history, family history, alcohol history, and tumor maximum diameter (P > 0.05). However, IDO1 expression positively correlated with lymph node metastasis, pleural invasion, tumor recurrence, lower tumor differentiation, solid tumor components, preoperative chemotherapy, and clinical tumor, node, metastasis (TNM) staging (*P < 0.05), while negatively correlating with prior surgical history (*P < 0.05). Patients exhibiting high IDO1 expression levels demonstrated significantly worse PFS and OS (***P < 0.001 and **P = 0.003, respectively). Conclusion High IDO1 expression in lung adenocarcinoma correlates with increased tumor invasiveness, metastatic potential, advanced clinical stage, and poorer prognosis.
Collapse
Affiliation(s)
- Zhidong Yin
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Respiratory Medicine, Affiliated Hangzhou First People’s Hospital, Westlake University, School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Sisi Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xi Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Westlake University, School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Major Chronic Disease in the Elderly, Hangzhou, Zhejiang Province, China
| | - Er Jin
- Department of Respiratory Medicine, Affiliated Hangzhou First People’s Hospital, Westlake University, School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Li B, Usai R, Campbell J, Wang Y. Elucidating ligand interactions and small-molecule activation in the pyrrolnitrin biosynthetic enzyme PrnB. J Biol Chem 2025; 301:108123. [PMID: 39725034 PMCID: PMC11791213 DOI: 10.1016/j.jbc.2024.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase and its classification within the histidine-ligated heme-dependent aromatic oxygenase superfamily, PrnB has remained relatively unexplored due to the challenges in reconstituting its in vitro activity. In this work, we investigated the interactions of PrnB from different strains with its substrates, substrate analogs, and small molecules using various biophysical and biochemical techniques. Our spectroscopic data reveal that the substrate amino group directly coordinates with the heme in both oxidized and reduced enzyme forms. This binding conformation was further confirmed by X-ray crystallography of enzyme-ligand binary complexes. The amine ligation inhibits H2O2 and CN- from interacting with the ferric heme but does not notably impact •NO binding or O2 activation by the ferrous heme. Stopped-flow spectroscopy showed the formation of heme-based oxidants similar to those reported in indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase when PrnB was exposed to H2O2 or O2. However, these intermediates lacked catalytic activity, and PrnB was inactive when coupled with common redox systems under various conditions. This suggests that PrnB operates through a catalytic mechanism distinct from other heme-dependent aromatic oxygenases and most heme enzymes. Our study provides new insights into ligand binding and small-molecule activation mechanisms of PrnB, highlighting its unique functionality and distinguishing it from existing paradigms in heme catalysis.
Collapse
Affiliation(s)
- Bingnan Li
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Remigio Usai
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Jackson Campbell
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Paranthaman P, Veerappapillai S. Identification of putative Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) dual inhibitors for triple-negative breast cancer therapy. J Biomol Struct Dyn 2025:1-19. [PMID: 39861977 DOI: 10.1080/07391102.2024.2332509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 01/27/2025]
Abstract
Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis. To date, there are no clinically available small-molecule inhibitors that target these enzymes. Navoximod, a reliable dual-specific inhibitor, resulted in poor bioavailability and modest efficacy in clinical trials restricts its utility. This situation urges the development of a potent drug-like candidate against these key enzymes. A total of 1574 natural compounds were proclaimed and subjected to ADME screening. Subsequently, the resultant compounds were attributed to hierarchical molecular docking and MM-GBSA validation. Ultimately, re-scoring with the aid of combined machine learning algorithms resulted six lead compounds. Captivatingly, NPACT00380 exhibited maximum interaction among the lead compounds. In addition, the scaffold analysis also highlighted that the chromanone moiety of the hit compound boasts anti-cancer activity against breast cancer cell lines. The reliability of the results was corroborated through a rigorous 100 ns molecular dynamics simulation using the parameters including RMSD, PCA and FEL analysis. In light of these findings, it is presumed that the proposed compound exhibits significant inhibitory activity. As a result, we speculate that further optimisation of NPACT00380 could be beneficial for the treatment and management of TNBC.
Collapse
Affiliation(s)
- Priyanga Paranthaman
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
10
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|
11
|
Maitre M, Taleb O, Jeltsch-David H, Klein C, Mensah-Nyagan AG. Xanthurenic acid: A role in brain intercellular signaling. J Neurochem 2024; 168:2303-2315. [PMID: 38481090 DOI: 10.1111/jnc.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 10/04/2024]
Abstract
Xanthurenic acid (XA) raises a growing multidisciplinary interest based upon its oxidizing properties, its ability to complex certain metal ions, and its detoxifier capacity of 3-hydroxykynurenine (3-HK), its brain precursor. However, little is still known about the role and mechanisms of action of XA in the central nervous system (CNS). Therefore, many research groups have recently investigated XA and its central functions extensively. The present paper critically reviews and discusses all major data related to XA properties and neuronal activities to contribute to the improvement of the current knowledge on XA's central roles and mechanisms of action. In particular, our data showed the existence of a specific G-protein-coupled receptor (GPCR) for XA localized exclusively in brain neurons exhibiting Ca2+-dependent dendritic release and specific electrophysiological responses. XA properties and central activities suggest a role for this compound in brain intercellular signaling. Indeed, XA stimulates cerebral dopamine (DA) release contrary to its structural analog, kynurenic acid (KYNA). Thus, KYNA/XA ratio could be fundamental in the regulation of brain glutamate and DA release. Cerebral XA may also represent an homeostatic signal between the periphery and several brain regions where XA accumulates easily after peripheral administration. Therefore, XA status in certain psychoses or neurodegenerative diseases seems to be reinforced by its brain-specific properties in balance with its formation and peripheral inputs.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Omar Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS/Université de Strasbourg, Illkirch Cedex, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, Strasbourg, France
| |
Collapse
|
12
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
13
|
Wang Y, Jia S, Chen Y, Liao X, Jie R, Jiang L, Wang T, Wen H, Gan W, Cui H. Taking advantage of the interaction between the sulfoxide and heme cofactor to develop indoleamine 2, 3-dioxygenase 1 inhibitors. Bioorg Chem 2024; 148:107426. [PMID: 38733750 DOI: 10.1016/j.bioorg.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shumi Jia
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ru Jie
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Lei Jiang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Wenqiang Gan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
14
|
Mirgaux M, Leherte L, Wouters J. Human indoleamine-2,3-dioxygenase 2 cofactor lability and low substrate affinity explained by homology modeling, molecular dynamics and molecular docking. J Biomol Struct Dyn 2024; 42:4475-4488. [PMID: 37301605 DOI: 10.1080/07391102.2023.2220830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manon Mirgaux
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Laurence Leherte
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
15
|
Sadek M, Stover KR, Liu X, Reed MA, Weaver DF, Reid AY. IDO-1 inhibition improves outcome after fluid percussion injury in adult male rats. J Neurosci Res 2024; 102:e25338. [PMID: 38706427 DOI: 10.1002/jnr.25338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
The enzyme indoleamine 2,3 dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway (KP) which produces both neuroprotective and neurotoxic metabolites. Neuroinflammatory signals produced as a result of pathological conditions can increase production of IDO1 and boost its enzymatic capacity. IDO1 and the KP have been implicated in behavioral recovery after human traumatic brain injury (TBI), but their roles in experimental models of TBI are for the most part unknown. We hypothesized there is an increase in KP activity in the fluid percussion injury (FPI) model of TBI, and that administration of an IDO1 inhibitor will improve neurological recovery. In this study, adult male Sprague Dawley rats were subjected to FPI or sham injury and received twice-daily oral administration of the IDO1 inhibitor PF-06840003 (100 mg/kg) or vehicle control. FPI resulted in a significant increase in KP activity, as demonstrated by an increased ratio of kynurenine: tryptophan, in the perilesional neocortex and ipsilateral hippocampus 3 days postinjury (DPI), which normalized by 7 DPI. The increase in KP activity was prevented by PF-06840003. IDO1 inhibition also improved memory performance as assessed in the Barnes maze and anxiety behaviors as assessed in open field testing in the first 28 DPI. These results suggest increased KP activity after FPI may mediate neurological dysfunction, and IDO1 inhibition should be further investigated as a potential therapeutic target to improve recovery.
Collapse
Affiliation(s)
- Marawan Sadek
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xiaojing Liu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Aboomar NM, Essam O, Hassan A, Bassiouny AR, Arafa RK. Exploring a repurposed candidate with dual hIDO1/hTDO2 inhibitory potential for anticancer efficacy identified through pharmacophore-based virtual screening and in vitro evaluation. Sci Rep 2024; 14:9386. [PMID: 38653790 PMCID: PMC11039737 DOI: 10.1038/s41598-024-59353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.
Collapse
Affiliation(s)
- Nourhan M Aboomar
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Omar Essam
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
- Euro-Mediterranean Master in Neuroscience and Biotechnology Program, Alexandria University, Alexandria, 21511, Egypt
| | - Ahmad R Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo, 12578, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| |
Collapse
|
17
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
18
|
Magliocca A, Perego C, Motta F, Merigo G, Micotti E, Olivari D, Fumagalli F, Lucchetti J, Gobbi M, Mandelli A, Furlan R, Skrifvars MB, Latini R, Bellani G, Ichinose F, Ristagno G. Indoleamine 2,3-Dioxygenase Deletion to Modulate Kynurenine Pathway and to Prevent Brain Injury after Cardiac Arrest in Mice. Anesthesiology 2023; 139:628-645. [PMID: 37487175 PMCID: PMC10566599 DOI: 10.1097/aln.0000000000004713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, μm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Aurora Magliocca
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy; and Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Perego
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Motta
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Merigo
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Olivari
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology–INSpe, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology–INSpe, San Raffaele Scientific Institute, Milan, Italy
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences−CISMed, University of Trento, Italy; and Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; and Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Ristagno
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy; and Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda−Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
19
|
Yang S, Mu C, Liu T, Pei P, Shen W, Zhang Y, Wang G, Chen L, Yang K. Radionuclide-Labeled Microspheres for Radio-Immunotherapy of Hepatocellular Carcinoma. Adv Healthc Mater 2023; 12:e2300944. [PMID: 37235739 DOI: 10.1002/adhm.202300944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Brachytherapy, including radioactive seed implantation (RSI) and transarterial radiation therapy embolization (TARE), is an important treatment modality for advanced hepatocellular carcinoma (HCC), but the inability of RSI and TARE to treat tumor metastasis and recurrence limits their benefits for patients in the clinic. Herein, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors-loaded alginate microspheres (IMs) are developed as radionuclide carriers with immunomodulatory functions to achieve effective radio-immunotherapy. The size and swelling properties of IMs can be facilely tailored by adjusting the calcium source during emulsification. Small/large IMs(SIMs/LIMs) are biocompatible and available for RSI and TARE, respectively, after 177 Lu labeling. Among them, 177 Lu-SIMs completely eliminated subcutaneous HCC in mice after intratumoral RSI. Moreover, in combination with anti-PD-L1, 177 Lu-SIMs not only eradicate primary tumors by RSI but also effectively inhibit the growth of distant tumors, wherein the potent abscopal effect can be ascribed to the immune stimulation of RSI and the modulation of the tumor immune microenvironment (TIME) by IDO1 inhibitors. In parallel, LIMs demonstrate excellent embolization efficiency, resulting in visible necrotic lesions in the central auricular artery of rabbits, which are promising for TARE in future studies. Collectively, a versatile therapeutic agent is provided to synchronously modulate the TIME during brachytherapy for efficient radio-immunotherapy of advanced HCC.
Collapse
Affiliation(s)
- Sai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Chongjing Mu
- Invasive Technology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, Suzhou, 215101, P. R. China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Wenhao Shen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Chen
- Invasive Technology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Jiangsu, Suzhou, 215101, P. R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
20
|
Yang P, Zhang J. Indoleamine 2,3-Dioxygenase (IDO) Activity: A Perspective Biomarker for Laboratory Determination in Tumor Immunotherapy. Biomedicines 2023; 11:1988. [PMID: 37509627 PMCID: PMC10377333 DOI: 10.3390/biomedicines11071988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme involved in catalyzing the conversion of tryptophan (Trp) into kynurenine (Kyn) at the first rate-limiting step in the kynurenine pathway of L-tryptophan metabolism. It has been found to be involved in several biological functions such as aging, immune microorganism, neurodegenerative and infectious diseases, and cancer. IDO1 plays an important role in immune tolerance by depleting tryptophan in the tumor microenvironment and inhibiting the proliferation of effector T cells, which makes it an important emerging biomarker for cancer immunotherapy. Therefore, the research and development of IDO1 inhibitors are of great importance for tumor therapy. Of interest, IDO activity assays are of great value in the screening and evaluation of inhibitors. Herein, we mainly review the biological functions of IDO1, immune regulation, key signaling molecules in the response pathway, and the development of IDO1 inhibitors in clinical trials. Furthermore, this review provides a comprehensive overview and, in particular, a discussion of currently available IDO activity assays for use in the evaluation of IDO inhibitors in human blood. We believe that the IDO activity is a promising biomarker for the immune escape and laboratory evaluation of tumor immunotherapy.
Collapse
Affiliation(s)
- Pengbo Yang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
21
|
Dehhaghi M, Heng B, Guillemin GJ. The kynurenine pathway in traumatic brain injuries and concussion. Front Neurol 2023; 14:1210453. [PMID: 37360356 PMCID: PMC10289013 DOI: 10.3389/fneur.2023.1210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Up to 10 million people per annum experience traumatic brain injury (TBI), 80-90% of which are categorized as mild. A hit to the brain can cause TBI, which can lead to secondary brain injuries within minutes to weeks after the initial injury through unknown mechanisms. However, it is assumed that neurochemical changes due to inflammation, excitotoxicity, reactive oxygen species, etc., that are triggered by TBI are associated with the emergence of secondary brain injuries. The kynurenine pathway (KP) is an important pathway that gets significantly overactivated during inflammation. Some KP metabolites such as QUIN have neurotoxic effects suggesting a possible mechanism through which TBI can cause secondary brain injury. That said, this review scrutinizes the potential association between KP and TBI. A more detailed understanding of the changes in KP metabolites during TBI is essential to prevent the onset or at least attenuate the severity of secondary brain injuries. Moreover, this information is crucial for the development of biomarker/s to probe the severity of TBI and predict the risk of secondary brain injuries. Overall, this review tries to fill the knowledge gap about the role of the KP in TBI and highlights the areas that need to be studied.
Collapse
|
22
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
23
|
Xiang D, Han X, Li J, Zhang J, Xiao H, Li T, Zhao X, Xiong H, Xu M, Bi W. Combination of IDO inhibitors and platinum(IV) prodrugs reverses low immune responses to enhance cancer chemotherapy and immunotherapy for osteosarcoma. Mater Today Bio 2023; 20:100675. [PMID: 37304579 PMCID: PMC10250924 DOI: 10.1016/j.mtbio.2023.100675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, immune checkpoint blockades (ICBs) have made great progress in the treatment of cancer. However, most ICBs have not yet been observed to be satisfactory in the treatment of osteosarcoma. Herein, we designed composite nanoparticles (NP-Pt-IDOi) from a reactive oxygen species (ROS) sensitive amphiphilic polymer (PHPM) with thiol-ketal bonds in the main chain to encapsulate a Pt(IV) prodrug (Pt(IV)-C12) and an indoleamine-(2/3)-dioxygenase (IDO) inhibitor (IDOi, NLG919). Once NP-Pt-IDOi enter the cancer cells, the polymeric nanoparticles could dissociate due to the intracellular ROS, and release Pt(IV)-C12 and NLG919. Pt(IV)-C12 induces DNA damage and activates the cGAS-STING pathway, increasing infiltration of CD8+ T cells in the tumor microenvironment. In addition, NLG919 inhibits tryptophan metabolism and enhances CD8+ T cell activity, ultimately activating anti-tumor immunity and enhancing the anti-tumor effects of platinum-based drugs. NP-Pt-IDOi were shown to have superior anti-cancer activity in vitro and in vivo in mouse models of osteosarcoma, providing a new clinical paradigm for combining chemotherapy with immunotherapy for osteosarcoma.
Collapse
Affiliation(s)
- Dongquan Xiang
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xinli Han
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Medicine, Nankai University, Tianjin, 300074, PR China
| | - Jianxiong Li
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiabing Zhang
- Xidian University, Xi'an, 710071, PR China
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, 100853, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ting Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Xuelin Zhao
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Meng Xu
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Wenzhi Bi
- Senior Department of Orthopedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| |
Collapse
|
24
|
Tian Y, Younis MR, Zhao Y, Guo K, Wu J, Zhang L, Huang P, Wang Z. Precision Delivery of Dual Immune Inhibitors Loaded Nanomodulator to Reverse Immune Suppression for Combinational Photothermal-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206441. [PMID: 36799196 DOI: 10.1002/smll.202206441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Indexed: 05/25/2023]
Abstract
Although photothermal therapy (PTT) can noninvasively kill tumor cells and exert synergistic immunological effects, the immune responses are usually harmed due to the lack of cytotoxic T cells (CTLs) pre-infiltration and co-existing of intricate immunosuppressive tumor microenvironment (TME), including the programmed cell death ligand 1 (PD-L1)/cluster of differentiation 47 (CD47)/regulatory T cells (Tregs)/M2-macrophages overexpression. Indoleamine 2, 3-dioxygenase inhibitor (NLG919) or bromodomain extra-terminal inhibitor (OTX015) holds great promise to reprogram suppressive TME through different pathways, but their collaborative application remains a formidable challenge because of the poor water solubility and low tumor targeting. To address this challenge, a desirable nanomodulator based on dual immune inhibitors loaded mesoporous polydopamine nanoparticles is designed. This nanomodulator exhibits excellent biocompatibility and water solubility, PTT, and bimodal magnetic resonance/photoacoustic imaging abilities. Owing to enhanced permeability and retention effect and tumor acidic pH-responsiveness, both inhibitors are precisely delivered and locally released at tumor sites. Such a nanomodulator significantly reverses the immune suppression of PD-L1/CD47/Tregs, promotes the activation of CTLs, regulates M2-macrophages polarization, and further boosts combined therapeutic efficacy, inducing a strong immunological memory. Taken together, the nanomodulator provides a practical approach for combinational photothermal-immunotherapy, which may be further broadened to other "immune cold" tumors.
Collapse
Affiliation(s)
- Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, P. R. China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, P. R. China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, P. R. China
| | - Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, P. R. China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, P. R. China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, P. R. China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, P. R. China
| |
Collapse
|
25
|
Shen H, Xu X, Bai Y, Wang X, Wu Y, Zhong J, Wu Q, Luo Y, Shang T, Shen R, Xi M, Sun H. Therapeutic potential of targeting kynurenine pathway in neurodegenerative diseases. Eur J Med Chem 2023; 251:115258. [PMID: 36917881 DOI: 10.1016/j.ejmech.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Kynurenine pathway (KP), the primary pathway of L-tryptophan (Trp) metabolism in mammals, contains several neuroactive metabolites such as kynurenic acid (KA) and quinolinic acid (QA). Its imbalance involved in aging and neurodegenerative diseases (NDs) has attracted much interest in therapeutically targeting KP enzymes and KP metabolite-associated receptors, especially kynurenine monooxygenase (KMO). Currently, many agents have been discovered with significant improvement in animal models but only one aryl hydrocarbon receptor (AHR) agonist 30 (laquinimod) has entered clinical trials for treating Huntington's disease (HD). In this review, we describe neuroactive KP metabolites, discuss the dysregulation of KP in aging and NDs and summarize the development of KP regulators in preclinical and clinical studies, offering an outlook of targeting KP for NDs treatment in future.
Collapse
Affiliation(s)
- Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xinde Xu
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | - Yalong Bai
- Zhejiang Medicine Co. Ltd., Shaoxing, 312500, China
| | | | - Yibin Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jia Zhong
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Qiyi Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tianbo Shang
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Chen J, Li J, Qiao H, Hu R, Li C. Disruption of IDO signaling pathway alleviates chronic unpredictable mild stress-induced depression-like behaviors and tumor progression in mice with breast cancer. Cytokine 2023; 162:156115. [PMID: 36599202 DOI: 10.1016/j.cyto.2022.156115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Women with breast cancer (BC) are often combined with psychological disorder such as depression and anxiety. Depression is associated or correlated with increased toxicity and severity of physical symptoms. However, the mechanism of BC progression related to the regulation of emotion-related circuitry remains to be further explored. The study aims to investigate indoleamine 2,3-dioxygenase (IDO) pathway mechanism underlying stress-induced progression of BC. BC cell line 4T1 was subcutaneously inoculated into BALB/c mice, and they then received daily chronic unpredictable mild stressors (CUMS) for 12 weeks. Depression-like behavior tests were conducted, including sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and novelty suppressed feeding test (NSF). The levels of 5-Hydroxytryptamine (5-HT) and inflammatory factors, IL-6, CXCL1, IL-10 and IL-4 were measured by enzyme linked immunosorbent assay (ELISA) of mouse serum. Immunohistochemical staining was performed to detect Ki67- or FOXP3-positive tumor cells. The status of IDO signaling pathway was assessed by immunoblotting analysis. CUMS induced depression-like behaviors, decreased the level of 5-HT, promoted tumor progression, enhanced the immunohistochemical staining of Ki-67, and promoted the activation of IDO signaling pathway in BC mice. The IDO signaling pathway was disrupted in mice by lentiviral transduction of shRAN-IDO. Lentivirus-mediated IDO knockdown attenuated CUMS-induced depression-like behaviors, increased the level of 5-HT, inhibited tumor progression, and reduced the immunohistochemical staining of Ki-67 in BC mice. The present study suggests that disruption of IDO signaling pathway alleviates CUMS-induced depression-like behaviors and inhibits tumor progression in BC mice.
Collapse
Affiliation(s)
- Jun Chen
- Department of Acupuncture and Massage, Shaanxi University of Chinese Medicine, 1 Middle Section of Century Avenue, Qindu District, Xianyang 712046, China
| | - Jing Li
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Haifa Qiao
- Department of Acupuncture and Massage, Shaanxi University of Chinese Medicine, 1 Middle Section of Century Avenue, Qindu District, Xianyang 712046, China
| | - Rong Hu
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China
| | - Chaoqun Li
- Department of Chinese Medicine, The Sixth Medical Center of PLA Hospital, 6 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
27
|
Tan Y, Liu M, Li M, Chen Y, Ren M. Indoleamine 2, 3-dioxygenase 1 inhibitory compounds from natural sources. Front Pharmacol 2022; 13:1046818. [PMID: 36408235 PMCID: PMC9672321 DOI: 10.3389/fphar.2022.1046818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
L-tryptophan metabolism is involved in the regulation of many important physiological processes, such as, immune response, inflammation, and neuronal function. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a key enzyme that catalyzes the first rate-limiting step of tryptophan conversion to kynurenine. Thus, inhibiting IDO1 may have therapeutic benefits for various diseases, such as, cancer, autoimmune disease, and depression. In the search for potent IDO1 inhibitors, natural quinones were the first reported IDO1 inhibitors with potent inhibitory activity. Subsequently, natural compounds with diverse structures have been found to have anti-IDO1 inhibitory activity. In this review, we provide a summary of these natural IDO1 inhibitors, which are classified as quinones, polyphenols, alkaloids and others. The overview of in vitro IDO1 inhibitory activity of natural compounds will help medicinal chemists to understand the mode of action and medical benefits of them. The scaffolds of these natural compounds can also be used for further optimization of potent IDO1 inhibitors.
Collapse
Affiliation(s)
- Ying Tan
- Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming Li
- Office of Academic Affairs, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujuan Chen
- Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Ren
- United Front Work Department, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Meng Ren,
| |
Collapse
|
28
|
Hu Y, Liu Z, Tang H. Tryptophan 2,3-dioxygenase may be a potential prognostic biomarker and immunotherapy target in cancer: A meta-analysis and bioinformatics analysis. Front Oncol 2022; 12:977640. [PMID: 36263228 PMCID: PMC9574363 DOI: 10.3389/fonc.2022.977640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tryptophan 2,3-dioxygenase (TDO2) is one of the emerging immune checkpoints. Meanwhile, TDO2 is also a key enzyme in the tryptophan (Trp)–kynurenine (Kyn) signaling pathway. Many studies have evaluated that TDO2 is highly expressed in various malignant tumor patients and plays a prognostic role. However, the sample size of a single prognostic study was small, and the results were still controversial. Methods We used Stata software and referenced the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement to conduct a meta-analysis on TDO2 and its clinical features and prognosis. We searched the PubMed, Cochrane Library, and Web of Science databases to find publications concerning TDO2 expression in malignant tumor patients up to June 2021. We used the Newcastle–Ottawa Scale (NOS) to evaluate the bias risk of the included literature. Risk ratios (RRs) and hazard ratios (HRs) were used for clinical outcomes, specifically overall survival (OS) and progression-free survival (PFS). In addition, we used data from The Cancer Genome Atlas (TCGA) to verify our conclusions. Results Nine studies including 667 patients with malignant tumors were identified. Our results suggested that overexpression of TDO2 was statistically correlated with poor OS and poor PFS (HR = 2.58, 95% CI = 1.52–4.40, p = 0.0005; HR = 2.38, 95% CI = 0.99–5.73, p = 0.05). In terms of clinicopathological characteristics, the overexpression level of TDO2 was statistically correlated with TNM (tumor–node–metastasis) stage (RR = 0.65, 95% CI = 0.48–0.89, p = 0.002) and regional lymph node metastasis (RR = 0.76, 95% CI = 0.59–0.99, p = 0.04). Subgroup analysis revealed the potential sources of heterogeneity. In addition, bioinformatics studies suggested that the level of TDO2 was high in malignant tumors and higher in cancer tissue than in matched paracarcinoma tissue. Gene enrichment analysis showed that TDO2 was closely related to immune response. Conclusion Overall, TDO2 may be a biomarker for the survival and prognosis of patients with malignant tumors and a potential therapeutic target in the future. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=260442, identifier (CRD42021260442)
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Hui Tang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Hui Tang,
| |
Collapse
|
29
|
Qian M, Xia Y, Zhang G, Yu H, Cui Y. Research progress on microRNA-1258 in the development of human cancer. Front Oncol 2022; 12:1024234. [PMID: 36249037 PMCID: PMC9556982 DOI: 10.3389/fonc.2022.1024234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
microRNAs (miRNAs) are small endogenous RNAs composed of 20-22 nucleotides that do not encode proteins, which regulate the expression of downstream genes by targeting the 3' untranslated region of mRNA. Plentiful research has demonstrated that miRNAs participate in the initiation and development of diverse diseases and malignant tumors. miR-1258 exerts great influence on tumors, including tumor growth, distant metastasis, migration, invasion, chemosensitivity, cell glycolysis, apoptosis, and stemness. Interestingly, miR-1258 is a miRNA with explicit functions and has been investigated to act as a tumor suppressor in studies on various types of tumors. With accumulating research on miR-1258, it has been found to be used as a biomarker in the early diagnosis and prognosis prediction of tumor patients. In this review, we outline the development of miR-1258 research, describe its regulatory network, and discuss its roles in cancer. Additionally, we generalize the potential clinical applications of miR-1258. This review offers emerging perspectives and orientations for further comprehending the function of miR-1258 as a diagnostic and prognostic biomarker and potent therapeutic target in cancer.
Collapse
|
30
|
Kynurenine Pathway of Tryptophan Metabolism Is Associated with Hospital Mortality in Patients with Acute Respiratory Distress Syndrome: A Prospective Cohort Study. Antioxidants (Basel) 2022; 11:antiox11101884. [PMID: 36290606 PMCID: PMC9598717 DOI: 10.3390/antiox11101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves dysregulated immune-inflammatory responses, characterized by severe oxidative stress and high mortality. Metabolites modulating the inflammatory and immune responses may play a central role in the pathogenesis of ARDS. Most biogenic amines may induce the production of reactive oxygen species, oxidative stress, mitochondrial dysfunction, and programmed cell death. We conducted a prospective study on metabolic profiling specific to the amino acids and biogenic amines of 69 patients with ARDS. Overall, hospital mortality was 52.2%. Between day 1 and day 7 after ARDS onset, plasma kynurenine levels and the kynurenine/tryptophan ratio were significantly higher among non-survivors than in survivors (all p < 0.05). Urine metabolic profiling revealed a significantly higher prevalence of tryptophan degradation and higher concentrations of metabolites downstream of the kynurenine pathway among non-survivors than among survivors upon ARDS onset. Cox regression models revealed that plasma kynurenine levels and the plasma kynurenine/tryptophan ratio on day 1 were independently associated with hospital mortality. The activation of the kynurenine pathway was associated with mortality in patients with ARDS. Metabolic phenotypes and modulating metabolic perturbations of the kynurenine pathway could perhaps serve as prognostic markers or as a target for therapeutic interventions aimed at reducing oxidative stress and mortality in ARDS.
Collapse
|
31
|
The role of Platinum(IV)-based antitumor drugs and the anticancer immune response in medicinal inorganic chemistry. A systematic review from 2017 to 2022. Eur J Med Chem 2022; 243:114680. [PMID: 36152386 DOI: 10.1016/j.ejmech.2022.114680] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
Platinum-based antitumor drugs have been used in many types of tumors due to its broad antitumor spectrum in clinic. Encouraged by the cisplatin's (CDDP) worldwide success in cancer chemotherapy, the research in platinum-based antitumor drugs has evolved from traditional platinum drug to multi-ligand and multifunctional platinum prodrugs over half a century. With the rapid development of metal drugs and the anticancer immune response, challenges and opportunities in platinum drug research have been shifted from traditional platinum-based drugs to platinum-based hybrids and the direction of development is tending toward photodynamic therapy, nano-delivery therapy, drug combination, targeted therapy, diagnostic therapy, immune-combination therapy and tumor stem cell therapy. In this review, we first exhaustively overviewed the role of platinum-based antitumor prodrugs and the anticancer immune response in medicinal inorganic chemistry based on the special nanomaterials, the modification of specific ligands, and the multiple functions obtained that are beneficial for tumor therapy in the last five years. We also categorized them according to drug potency and function. There hasn't been a comprehensive evaluation of precursor platinum drugs in prior articles. And a multifarious approach to distinguish and detail the variety of alterations of platinum-based precursors in various valence states also hasn't been summarized. In addition, this review points out the main problems at the interface of chemistry, biology, and medicine from their action mechanisms for current platinum drug development, and provides up-to-date potential strategies from drug design perspectives to circumvent those drawbacks. And a promising idea is also enlightened for researchers in the development and discovery of platinum prodrugs.
Collapse
|
32
|
Zhang Y, Li Y, Chen X, Chen X, Chen C, Wang L, Dong X, Wang G, Gu R, Li F, Han F, Chen D. Discovery of 1-(Hetero)aryl-β-carboline Derivatives as IDO1/TDO Dual Inhibitors with Antidepressant Activity. J Med Chem 2022; 65:11214-11228. [PMID: 35938398 DOI: 10.1021/acs.jmedchem.2c00677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Depression is the leading cause of global burden of disease and disability. Abnormalities in the kynurenine pathway of tryptophan degradation have been closely linked to the pathogenesis of depression. An integrative bioinformatics analysis demonstrated that indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are potential targets for the development of antidepressants. A series of 1-(hetero)aryl-β-carboline derivatives were designed, synthesized, and evaluated as novel IDO1/TDO dual inhibitors. Among them, compound 28 displayed potent inhibition of both IDO1 (IC50 = 3.53 μM) and TDO (IC50 = 1.15 μM) and had an acceptable safety profile and pharmacokinetic properties. Compound 28 also rescued lipopolysaccharide-induced depressive-like behavior in mice. Further studies revealed that 28 likely had unique antidepressant mechanisms involving suppressing microglial activation, lowering IDO1 expression, and reducing proinflammatory cytokine and kynurenine levels in the mouse brain. Overall, this work provides practical guidance for the development of IDO1/TDO dual inhibitors to treat inflammation-induced depression.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingchun Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Dong
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Guoli Wang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ruxin Gu
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China
| | - Dongyin Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
33
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
34
|
Dual-target inhibitors of indoleamine 2, 3 dioxygenase 1 (Ido1): A promising direction in cancer immunotherapy. Eur J Med Chem 2022; 238:114524. [PMID: 35696861 DOI: 10.1016/j.ejmech.2022.114524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that catalyzes the kynurenine (Kyn) pathway of tryptophan metabolism in the first step, and the kynurenine pathway plays a fundamental role in immunosuppression in the tumor microenvironment. Therefore, researchers are vigorously developing IDO1 inhibitors, hoping to apply them to cancer immunotherapy. Nowadays, there have been 11 kinds of IDO1 inhibitors entering clinical trials, among which many inhibitors have shown good tumor inhibitory effect in phase I/II clinical trials. But the phase III study of the most promising IDO1 inhibitor compound 29 (Epacadostat) failed in 2018, which may be caused by the compensation effect offered by tryptophan 2,3-dioxygenase (TDO), the mismatched drug combination strategies, or other reasons. Luckily, dual-target inhibitors show great potential and advantages in solving these problems. In recent years, many studies have linked IDO1 to popular targets and selected many IDO1 dual-target inhibitors through pharmacophore fusion strategy and library construction, which enhance the tumor inhibitory effect and reduce side effects. Currently, three kinds of IDO1/TDO dual-target inhibitors have entered clinical trials, and extensive studies have been developing on IDO1 dual-target inhibitors. In this review, we summarize the IDO1 dual-target inhibitors developed in recent years and focus on the structure optimization process, structure-activity relationship, and the efficacy of in vitro and in vivo experiments, shedding a light on the pivotal significance of IDO1 dual-target inhibitors in the treatment of cancer, providing inspiration for the development of new IDO1 dual-target inhibitors.
Collapse
|
35
|
Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, Sun T. Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review. Int Immunopharmacol 2022; 110:108900. [PMID: 35753122 DOI: 10.1016/j.intimp.2022.108900] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
The prognosis for advanced clear cell renal cell carcinoma (ccRCC) is not satisfactory, even though its treatment has evolved rapidly over the past 20 years. Systemic ccRCC treatment options mainly involve antiangiogenic therapy, immune checkpoint blockade, or a combination of these therapies, and as more clinical evidence becomes available, immune checkpoint inhibitors (ICIs) are increasingly dominant. Conventional ICIs lead to the restoration of T-cell activation and a reduction in T-cell depletion by specifically blocking programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), ultimately enhancing the antitumor immune response. There is no doubt that these therapies have achieved some clinical efficacy in the overall ccRCC population, but response rates and durability remain a great challenge. Therefore, novel immune checkpoints or new combination therapeutic strategies based on ICIs continue to be sought and developed. This review will provide a comprehensive overview of ICI-based therapeutic strategies in advanced ccRCC, including their mechanisms of action and the latest clinical evidence.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Si-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
36
|
Konc J, Lešnik S, Škrlj B, Sova M, Proj M, Knez D, Gobec S, Janežič D. ProBiS-Dock: A Hybrid Multitemplate Homology Flexible Docking Algorithm Enabled by Protein Binding Site Comparison. J Chem Inf Model 2022; 62:1573-1584. [PMID: 35289616 DOI: 10.1021/acs.jcim.1c01176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The protein data bank (PDB) is a rich source of protein ligand structures, but ligands are not explicitly used in current docking algorithms. We have developed ProBiS-Dock, a docking algorithm complementary to the ProBiS-Dock Database (J. Chem. Inf. Model. 2021, 61, 4097-4107) that treats small molecules and proteins as fully flexible entities and allows conformational changes in both after ligand binding. A new scoring function is described that consists of a binding site-specific scoring function (ProBiS-Score) and a general statistical scoring function. ProBiS-Dock enables rapid docking of small molecules to proteins and has been successfully validated in silico against standard benchmarks. It enables rapid search for new active ligands by leveraging existing knowledge in the PDB. The potential of the software for drug development has been confirmed in vitro by the discovery of new inhibitors of human indoleamine 2,3-dioxygenase 1, an enzyme that is an attractive target for cancer therapy and catalyzes the first rate-determining step of l-tryptophan metabolism via the kynurenine pathway. The software is freely available to academic users at http://insilab.org/probisdock.
Collapse
Affiliation(s)
- Janez Konc
- National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Samo Lešnik
- National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Blaž Škrlj
- National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matej Sova
- Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
| |
Collapse
|
37
|
Decoding the Complex Crossroad of Tryptophan Metabolic Pathways. Int J Mol Sci 2022; 23:ijms23020787. [PMID: 35054973 PMCID: PMC8776215 DOI: 10.3390/ijms23020787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
|
38
|
Sabnis RW. Novel Substituted Piperazine Amide Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1639-1640. [PMID: 34795851 DOI: 10.1021/acsmedchemlett.1c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
39
|
Li F, Zhao Z, Zhang Z, Zhang Y, Guan W. Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner. BMC Cancer 2021; 21:1112. [PMID: 34657603 PMCID: PMC8520630 DOI: 10.1186/s12885-021-08855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tumor cells exhibit enhanced metabolism of nutrients to satisfy the demand of sustained proliferation in vivo. Seminal reports have presented evidence that tryptophan (Trp) metabolic reprogramming induced by aberrant indoleamine 2,3-dioxygenases could promote tumor development in several cancer types. However, the underlying mechanism of Trp metabolism associated tumor progression is not fully understood. MATERIALS AND METHODS Prostatic cell lines LNCaP and VCaP were purchased from the Cell Bank of the Chinese Academy of Sciences (China). Human prostatic tumor tissue samples were obtained from the Tongji Hospital. Female NOD-SCID mice (6 ~ 8 weeks) were purchased from Huafukang Co. (China) and raised in SPF room. Commercial kits and instruments were used for cell apoptosis analysis, real-time PCR, western blotting, ELISA analysis and other experiments. RESULT Comparing the tumor tissues from prostatic cancer patients, we found elevated expression of tryptophan 2, 3-dioxygenase 2 (TDO2), and elevated Trp metabolism in chemo-resistant tumor tissues. In vitro, overexpression of TDO2 significantly promoted the Trp metabolism in prostatic cancer cell lines LNCaP and VCap, resulting in the multidrug resistance development. Mechanistically, we demonstrated that Trp metabolite kynurenine (Kyn) promoted the upregulation and nuclear translocation of transcription factor aryl hydrocarbon receptor (AhR). Subsequently, AhR collaborated with NF-κB to facilitate the activation of c-Myc. In turn, c-Myc promoted the up-regulation of ATP-binding cassette (ABC) transporters and Trp transporters, thereby contributing to chemoresistance and strengthened Trp metabolism in prostatic cancer. Interrupt of Trp/TDO2/Kyn/AhR/c-Myc loop with c-Myc inhibitor Mycro-3 efficiently suppressed the chemoresistance and improved the outcome of chemotherapy, which described a new strategy in clinical prostatic cancer treatment. CONCLUSION Our study demonstrates that elevated TOD2 expression promoted Trp metabolism and metabolite Kyn production, thus resulting in the activation of AhR/c-Myc/ABC-SLC transporters signaling pathway. Interrupt of Trp metabolism/c-Myc loop efficiently suppressed the drugs resistance induced by TDO2, which represented potential target to improve the outcome in drug-resistant prostatic cancer treatment.
Collapse
Affiliation(s)
- Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Sabnis RW. Novel Substituted Tetrahydroquinoline Compounds as Indoleamine-2,3-dioxygenase (IDO) Inhibitors. ACS Med Chem Lett 2021; 12:1524-1525. [PMID: 34676029 DOI: 10.1021/acsmedchemlett.1c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
41
|
Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021; 22:ijms22168738. [PMID: 34445444 PMCID: PMC8395761 DOI: 10.3390/ijms22168738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ludovica Di Martino
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
| | - Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Edoardo Peroni
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita’ di Padova, 35122 Padova, Italy;
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV—IRCCS, 35128 Padova, Italy; (V.T.); (E.P.)
- Correspondence: ; Tel.: +39-049-8215895
| |
Collapse
|
42
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
43
|
Dolšak A, Bratkovič T, Mlinarič L, Ogorevc E, Švajger U, Gobec S, Sova M. Novel Selective IDO1 Inhibitors with Isoxazolo[5,4- d]pyrimidin-4(5 H)-one Scaffold. Pharmaceuticals (Basel) 2021; 14:ph14030265. [PMID: 33804161 PMCID: PMC8001472 DOI: 10.3390/ph14030265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising target in immunomodulation of several pathological conditions, especially cancers. Here we present the synthesis of a series of IDO1 inhibitors with the novel isoxazolo[5,4-d]pyrimidin-4(5H)-one scaffold. A focused library was prepared using a 6- or 7-step synthetic procedure to allow a systematic investigation of the structure-activity relationships of the described scaffold. Chemistry-driven modifications lead us to the discovery of our best-in-class inhibitors possessing p-trifluoromethyl (23), p-cyclohexyl (32), or p-methoxycarbonyl (20, 39) substituted aniline moieties with IC50 values in the low micromolar range. In addition to hIDO1, compounds were tested for their inhibition of indoleamine 2,3-dioxygenase 2 and tryptophan dioxygenase, and found to be selective for hIDO1. Our results thus demonstrate a successful study on IDO1-selective isoxazolo[5,4-d]pyrimidin-4(5H)-one inhibitors, defining promising chemical probes with a novel scaffold for further development of potent small-molecule immunomodulators.
Collapse
Affiliation(s)
- Ana Dolšak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Larisa Mlinarič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Eva Ogorevc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Urban Švajger
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
- Correspondence: ; Tel.: +386-1-476-9577
| |
Collapse
|
44
|
Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol 2021; 12:636081. [PMID: 33708223 PMCID: PMC7940516 DOI: 10.3389/fimmu.2021.636081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.
Collapse
Affiliation(s)
- Minah Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|