1
|
Bourachdi SE, Ayub AR, Rakcho Y, Amri AE, Moussaoui F, Ouadrhiri FE, Adachi A, Jghaoui M, Salmani TEH, Lahkimi A. Optimization of the degree of deacetylation of chitosan beads for efficient anionic dye adsorption: kinetics, thermodynamics, mechanistic insights via DFT analysis, and regeneration performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7950-7975. [PMID: 40048061 DOI: 10.1007/s11356-025-36163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Congo red, a persistent dye widely used in the textile industry, poses significant environmental hazards if not properly treated. In this study, the effectiveness of chitosan beads for removing Congo red from textile wastewater was investigated. A Box-Behnken design was utilized to optimize the degree of deacetylation (DDA) of the chitosan beads, achieving a maximum DDA of 95.79% under the optimal conditions of 100 °C, 300 min reaction time, and 45.91% NaOH concentration. Comprehensive characterization of the synthesized adsorbent was performed using FT-IR, XRD, SEM, and BET analysis, with a BET surface area of 11.5180 m2/g, indicating a substantial surface area for effective adsorption. The adsorption process followed pseudo-second-order kinetics and was best described by the Langmuir model. At pH 6, an adsorbent dose of 0.06 g, and an optimal reaction time of 80 min, a maximum adsorption capacity of 110.37 mg/g was achieved, surpassing the performance of magnetic chitosan (40.12 mg/g) and powdered chitosan (42.48 mg/g). Thermodynamic parameters (ΔH° = 10.91 kJ/mol and ΔG° < 0) indicate that the adsorption process was endothermic and spontaneous. DFT calculations were conducted to elucidate the adsorption mechanism, focusing on the role of benzene rings and oxygen atoms in Congo red as electron donors. These findings demonstrate that chitosan beads are a promising material for the removal of Congo red from contaminated wastewater.
Collapse
Affiliation(s)
- Soukaina El Bourachdi
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ali Raza Ayub
- Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yassine Rakcho
- Laboratory Materials, Environment and Quality, National School of Applied Sciences, Cadi Ayyad University (UCA), Route Sidi Bouzid BP 63, 46000, Safi, Morocco.
| | - Abdelhay El Amri
- Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Sciences, Ibn Tofaïl University, B.P. 133, 14000, Kenitra, Morocco
| | - Fatima Moussaoui
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Faiçal El Ouadrhiri
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abderrazzak Adachi
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohamed Jghaoui
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Tarik El Houari Salmani
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Amal Lahkimi
- Laboratory of Engineering, Faculty of Sciences Dhar El Mehraz, Electrochemistry, Modelling and Environment, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Mamand DM, Muhammad DS, Muheddin DQ, Abdalkarim KA, Tahir DA, Muhammad HA, Aziz SB, Hussen SA, Hassan J. Optical band gap modulation in functionalized chitosan biopolymer hybrids using absorption and derivative spectrum fitting methods: A spectroscopic analysis. Sci Rep 2025; 15:3162. [PMID: 39863689 PMCID: PMC11762305 DOI: 10.1038/s41598-025-87353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn2+-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.21 eV. The refractive index and optical dielectric constant measurements show that the doped CS films have more charge carriers and traps than those in pure CS films. The Lorentz-Drude model was used to derive several significant optical parameters, and the W-D model was utilized to calculate the optical moments M-1 changing from 0.35 to 2.13 and M-3 changing from 0.005 to 0.4. It was shown that the doped samples have larger Urbach energy than pure film, increased from 0.29 to 0.55 eV. Tauc and ASF model was also used to calculate the electronic transitions, band structure, and optical characteristics. Bandgap energy based on Tauc model at m = 2, 1/3, 1/2, and 2/3 are 1.77, 1.54, 1.47, and 1.37 eV, based on ASF model are 1.52, 1.42, 1.69, and 1.47 eV, respectively. As a result of changes in the optical diffraction parameters the optical mobility ([Formula: see text]) changed from 1.67 to 1.27 and optical resistivity [Formula: see text] from 9.36 × 10-27 to 4.0 × 10-29. The dopped samples show an increase in their linear optical susceptibility, third-order nonlinear optical susceptibility and nonlinear refractive indices, changing from 3.165 × 10-15 to 2.831 × 10-12 esu. Finally, light propagation velocities, surface resistance, and thermal emissivity were also examined.
Collapse
Affiliation(s)
- Dyari M Mamand
- Department of Physics, College of Science, University of Raparin, Sulaymaniyah, Kurdistan, Iraq
| | - Dana S Muhammad
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani, 46001, Kurdistan, Iraq
| | - Daron Q Muheddin
- Department of Physics, College of Science, Charmo University, Peshawa Street, Chamchamal, Sulaimani, Kurdistan, Iraq
| | - Karzan A Abdalkarim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, 46002, Kurdistan, Iraq
- Pharmacy Department, College of Medicine, Komar University of Science and Technology, Qularaise, Sulaimani, 46002, Kurdistan, Iraq
| | - Dana A Tahir
- Department of Physics, College of Science, University of Halabja, Halabja, 46006, Kurdistan, Iraq
| | - Hawkar A Muhammad
- Department of Physics, College of Science, Charmo University, Peshawa Street, Chamchamal, Sulaimani, Kurdistan, Iraq
| | - Shujahadeen B Aziz
- Turning Trash to Treasure (TTT) Laboratory, Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaimani, 46001, Kurdistan, Iraq.
| | - Sarkawt A Hussen
- Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Jamal Hassan
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Filipkowska U, Jóźwiak T. Dye Sorption from Mixtures on Chitosan Sorbents. Molecules 2024; 29:3602. [PMID: 39125007 PMCID: PMC11313689 DOI: 10.3390/molecules29153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This article presents studies on the sorption of the anionic dyes Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) from solutions of single dyes and from dye mixtures onto three chitosan sorbents-chitin, chitosan DD75% and chitosan DD95%. In this work, the influence of pH on sorption efficiency, the sorption equilibrium time for the tested anionic dyes and the sorption capacity in relation to the individual dyes and their mixtures were determined. It has been found that the sorption process for both dyes was most effective at pH 3 for chitin and chitosan DD75 and at pH 4 for chitosan DD95%. The obtained results were described by the double Langmuir equation (Langmuir 2). The obtained constants made it possible to determine the affinity of the tested dyes for the three sorbents and the sorption capacity of the sorbents. For RB5, the highest sorption capacity for chitosan DD95% was achieved with sorption from a single solution-of 742 mg/g DM and with sorption from mixed dyes-of 528 mg/g DM. For RY84, the highest efficiency was also achieved for chitosan DD95% and was 760 mg/g DM for a single dye solution and 437 mg/g DM for a mixture of dyes.
Collapse
Affiliation(s)
- Urszula Filipkowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska St. 117a, 10-957 Olsztyn, Poland;
| | | |
Collapse
|
4
|
Guerrero JD, Arias ER, Gutierrez LB. Enhancing copper and lead adsorption in water by in-situ generation of calcium carbonate on alginate/chitosan biocomposite surfaces. Int J Biol Macromol 2024; 266:131110. [PMID: 38522694 DOI: 10.1016/j.ijbiomac.2024.131110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Chitosan (CS) and sodium alginate (SA)-based biocomposites (CSA) were prepared with the in-situ generation of Calcium Carbonate (CSAX_Ca) through a simple, straightforward, economical, and eco-friendly procedure. Different drying conditions (X) were tested to achieve suitable structural and surface characteristics to enhance adsorption capacity: freeze-dried (L), vacuum-dried with methanol (M), and freeze-dried + vacuum-dried with methanol (LM). Temperature and adsorbent dosage effects on the adsorption capacity of Cu2+ or Pb2+ were examined. Results showed that the higher-yielding biocomposite (CSALM_Ca) exhibited rapid adsorption and good diffusion properties, achieving removal above 90 % within contaminant initial concentration ranges of 10-100 mg/L. At 35 °C, a pseudo-second-order kinetic and the Langmuir model effectively described kinetics and isotherms, revealing maximum adsorption (qe, max) of 429 mgCu2+/L and 1742 mgPb2+/g. Characterization through FTIR, XRD, and SEM of the as-prepared adsorbents confirmed the presence of CaCO3 in vaterite and calcite forms and the influence of drying conditions on the material morphology. Post-adsorption material characterization, in combination with adsorption findings, revealed chemisorption processes involving Ca2+ ion exchange for Cu2+ or Pb2+, resulting in surface-insoluble compounds. The best-performing material showed that after three reuse cycles, the removal of Cu2+ and Pb2+ decreased to 75 % and 62 %, respectively.
Collapse
Affiliation(s)
- Jhonnys D Guerrero
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Eduardo Rada Arias
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina
| | - Laura B Gutierrez
- Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE, (FIQ, UNL-CONICET), Santiago del Estero 2829, S3000 Santa Fe, Argentina.
| |
Collapse
|
5
|
Cuvillier L, Passaretti A, Guilminot E, Joseph E. Agar and Chitosan Hydrogels' Design for Metal-Uptaking Treatments. Gels 2024; 10:55. [PMID: 38247779 PMCID: PMC10815442 DOI: 10.3390/gels10010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
In the field of cultural heritage, the use of natural gels is rising for the application of active agents. Here, two natural polymers are assessed: agar, a pioneer hydrogel for conservation treatments, and chitosan, a rather novel and metal-binding gel. For chitosan, a state-of-the-art based formulation (CS-ItA-LCys) is evaluated as it was reported for silver-complexing properties. It is evaluated whether these polymers can withstand the addition of the chelating compound deferoxamine, which is a bacterial siderophore. This allows for the obtainment of completely bio-sourced gel systems. A Fourier-transformed (FT) infrared spectroscopy characterization is performed, completed with rheological measurements and Cryo-Scanning Electron Microscopy (cryo-SEM) to investigate the physico-chemical properties of the gels, as well as their interaction with deferoxamine. Both polymers are also tested for their inherent complexing ability on silver ions using FT-Raman spectroscopy. A multi-analytical comparison shows different microstructures, in particular, the presence of a thick membrane for chitosan and different mechanical behaviors, with agar being more brittle. Neither hydrogel seems affected by the addition of deferoxamine; this is shown by similar rheological behavior and molecular structures in the presence or absence of the chelator. The intrinsic abilities of the chitosan formulation to make silver complex are demonstrated with the observation of two peaks characteristic of Ag-S and Ag-O bonds. Agar and chitosan are both proven to be reliable gels to act as carriers for bio-based active agents. This paper confirms the potential asset of the chitosan formulation CS-ItA-LCys as a promising gel for the complexation of soluble silver.
Collapse
Affiliation(s)
- Luana Cuvillier
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Arianna Passaretti
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Elodie Guilminot
- Arc’Antique Conservation and Research Laboratory, 26 Rue de la Haute Forêt, 44300 Nantes, France;
| | - Edith Joseph
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
6
|
Yan Y, Zhang C, Deng X, Zhang J, Xue Y, Zhang J, Luo Y, Yang F, Wang G, Wang R, Chen J. Designing Superhydrophilic Hydrogels as Binder-Free Catalysts for Enhanced Oxygen Evolution Performance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yong Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chenyang Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yingjian Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Reay SL, Jackson EL, Salthouse D, Ferreira AM, Hilkens CMU, Novakovic K. Effective Endotoxin Removal from Chitosan That Preserves Chemical Structure and Improves Compatibility with Immune Cells. Polymers (Basel) 2023; 15:polym15071592. [PMID: 37050208 PMCID: PMC10096541 DOI: 10.3390/polym15071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Chitosan is one of the most researched biopolymers for healthcare applications, however, being a naturally derived polymer, it is susceptible to endotoxin contamination, which elicits pro-inflammatory responses, skewing chitosan's performance and leading to inaccurate conclusions. It is therefore critical that endotoxins are quantified and removed for in vivo use. Here, heat and mild NaOH treatment are investigated as facile endotoxin removal methods from chitosan. Both treatments effectively removed endotoxin to below the FDA limit for medical devices (<0.5 EU/mL). However, in co-culture with peripheral blood mononuclear cells (PBMCs), only NaOH-treated chitosan prevented TNF-α production. While endotoxin removal is the principal task, the preservation of chitosan's structure is vital for the synthesis and lysozyme degradation of chitosan-based hydrogels. The chemical properties of NaOH-treated chitosan (by FTIR-ATR) were significantly similar to its native composition, whereas the heat-treated chitosan evidenced macroscopic chemical and physical changes associated with the Maillard reaction, deeming this treatment unsuitable for further applications. Degradation studies conducted with lysozyme demonstrated that the degradation rates of native and NaOH-treated chitosan-genipin hydrogels were similar. In vitro co-culture studies showed that NaOH hydrogels did not negatively affect the cell viability of monocyte-derived dendritic cells (moDCs), nor induce phenotypical maturation or pro-inflammatory cytokine release.
Collapse
Affiliation(s)
- Sophie L Reay
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma L Jackson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
8
|
Adhikari HS, Garai A, Yadav PN. Synthesis, characterization, and anticancer activity of chitosan functionalized isatin based thiosemicarbazones, and their copper(II) complexes. Carbohydr Res 2023; 526:108796. [PMID: 36944301 DOI: 10.1016/j.carres.2023.108796] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The one-pot synthetic method of condensation of isatin and 5-chloroisatin on to amino group at C2 position of the pyranose ring chitosan in chitosan thiosemicarbazide was employed to get these chitosan thiosemicarbazones (TSCs). The partial incorporation of thiosemicarbazone moiety in chitosan was shown by FT-IR and 13C NMR spectroscopic studies, powder X ray diffraction, and CHNS microanalysis. The NOS tridentate coordination behavior of TSCs with copper(II) chloride to give the square planar complexes was established by FT-IR spectroscopic data, magnetic susceptibility measurement, and EPR spectral analysis. The thermal stability of these biomaterial chitosan derivatives till the commencement of chain disruption at 200C was shown by thermal studies. As revealed by colorimetric MTT assays, the in vitro anticancer activity enhancement accorded with the functionalization of chitosan as isatin based chitosan TSCs, and NOS tridentate coordination of TSCs plus a monodentate coordination of chloride ion with copper(II) ion. Only a marginal activity difference of these compounds was observed against the tumorigenic MDCK and MCF-7 cancer cell lines, irrespective of unit molecular weight (Mw) and degree of deacetylation (DDA) of ring chitosan. The 5-chloroisatin chitosan TSCs showed better activity than isatin chitosan TSCs against both the cell lines.
Collapse
Affiliation(s)
- Hari Sharan Adhikari
- Institute of Engineering, Pashchimanchal Campus, Department of Applied Sciences, Tribhuvan University, Pokhara, Nepal
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
9
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
10
|
Tarakanov R, Shagdarova B, Lyalina T, Zhuikova Y, Il’ina A, Dzhalilov F, Varlamov V. Protective Properties of Copper-Loaded Chitosan Nanoparticles against Soybean Pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. Polymers (Basel) 2023; 15:polym15051100. [PMID: 36904341 PMCID: PMC10007554 DOI: 10.3390/polym15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of soybean pathogens to existing pesticides and environmental concerns requires new approaches to control bacterial diseases. Chitosan is a biodegradable, biocompatible and low-toxicity biopolymer with antimicrobial activity that is promising for use in agriculture. In this work, a chitosan hydrolysate and its nanoparticles with copper were obtained and characterized. The antimicrobial activity of the samples against Psg and Cff was studied using the agar diffusion method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The samples of chitosan and copper-loaded chitosan nanoparticles (Cu2+ChiNPs) significantly inhibited bacterial growth and were not phytotoxic at the concentrations of the MIC and MBC values. The protective properties of chitosan hydrolysate and copper-loaded chitosan nanoparticles against soybean bacterial diseases were tested on plants in an artificial infection. It was demonstrated that the Cu2+ChiNPs were the most effective against Psg and Cff. Treatment of pre-infected leaves and seeds demonstrated that the biological efficiencies of (Cu2+ChiNPs) were 71% and 51% for Psg and Cff, respectively. Copper-loaded chitosan nanoparticles are promising as an alternative treatment for bacterial blight and bacterial tan spot and wilt in soybean.
Collapse
Affiliation(s)
- Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
- Correspondence: (R.T.); (V.V.)
| | - Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Tatiana Lyalina
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Yuliya Zhuikova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alla Il’ina
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Fevzi Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: (R.T.); (V.V.)
| |
Collapse
|
11
|
Sultana J, Garg A, Kulshrestha A, Rohman SS, Dutta B, Singh K, Kumar A, Guha AK, Sarma D. Zn@CS: An Efficient Cu-Free Catalyst System for Direct Azide-Alkyne Cycloadditions and Multicomponent Synthesis of 4-Aryl-NH-1,2,3-triazoles in H2O and DES. Catal Letters 2022. [DOI: 10.1007/s10562-022-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Martínez ME, Rangel-Méndez JR, Gimeno M, Tecante A, Lapidus GT, Shirai K. Removal of Heavy Metal Ions from Wastewater with Poly-ε-Caprolactone-Reinforced Chitosan Composite. Polymers (Basel) 2022; 14:polym14235196. [PMID: 36501593 PMCID: PMC9740919 DOI: 10.3390/polym14235196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Currently, the requirements for adsorbent materials are based on their environmentally friendly production and biodegradability. However, they are also related to the design of materials to sustain many cycles in pursuit of low cost and profitable devices for water treatments. In this regard, a chitosan reinforced with poly-ε-caprolactone thermoplastic composite was prepared and characterized by scanning electron microscopy; Fourier transforms infrared spectroscopy, X-ray diffraction analysis, mechanical properties, as well as erosion and swelling assays. The isotherm and kinetic data were fitted with Freundlich and pseudo-second-order models, respectively. The adsorption equilibrium capacities at pH 6 of Zn(II), Cu(II), Fe(II), and Al(III) were 165.59 ± 3.41 mg/g, 3.91 ± 0.02 mg/g, 10.72 ± 0.11 mg/g, and 1.99 ± 0.22 mg/g, respectively. The adsorbent material lost approximately 6% of the initial mass in the adsorption-desorption processes.
Collapse
Affiliation(s)
- Manuel E. Martínez
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - José René Rangel-Méndez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José No. 2055, San Luis Potosi 76210, Mexico
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Mexico City 04510, Mexico
| | - Gretchen T. Lapidus
- Unidad Iztapalapa, Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana, Avenida Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a Sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
| | - Keiko Shirai
- Laboratorio de Biopolímeros y Planta Piloto de Bioprocesos de Residuos Agroindustriales y de Alimentos, Unidad Iztapalapa, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. Ferrocarril San Rafael Atlixco número 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Mexico City 09310, Mexico
- Correspondence:
| |
Collapse
|
13
|
Kanarat J, Bunchuay T, Chutimasakul T, Limprasart W, Unlum J, Tantirungrotechai J. Copper‐Chitosan Beads as Efficient and Recyclable Heterogeneous Catalysts for C−H Oxidation and C−X Amination. ChemistrySelect 2022. [DOI: 10.1002/slct.202202517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jurin Kanarat
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Threeraphat Chutimasakul
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Nuclear Technology Research and Development Center Institute of Nuclear Technology (Public Organization) Nakhon Nayok 26120 Thailand
| | - Waranya Limprasart
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Jetnarin Unlum
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
14
|
Miron A, Sarbu A, Zaharia A, Sandu T, Iovu H, Fierascu RC, Neagu AL, Chiriac AL, Iordache TV. A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels 2022; 8:742. [PMID: 36421564 PMCID: PMC9690297 DOI: 10.3390/gels8110742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 07/29/2023] Open
Abstract
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.
Collapse
Affiliation(s)
- Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Ana-Lorena Neagu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
15
|
Mohsen M, Baraka A, Naeem I, Tantawy H, Awaad M, Abuzalat O. Effect of sulfur doping of zinc-imidazole coordination polymer (ZnIm CP) as a novel photocatalyst for degradation of ionic dyes. BMC Chem 2022; 16:86. [PMCID: PMC9636770 DOI: 10.1186/s13065-022-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractZinc-Imidazole coordination polymer (ZnImCP) was simply synthesized hydrothermally at relatively low temperature (70 °C) from zinc acetate and imidazole. ZnImCP was treated by sulfide solution to produce sulfur-doped samples (S-ZnImCPs). Structures of the synthesized ZnImCP and S-ZnImCPs were characterized through FTIR, PXRD, and, Raman, SEM/EDX, N2-BET, UV–VIS DRS, and pHpzc analyses. The photocatalytic performances of pristine CP and sulfur modified CPs under visible and ultra-violet irradiations for degrading the cationic methylene blue (MB) and the anionic methyl orange (MO) were investigated considering different initial pH values 4, 7 and 10. Under visible light, the results indicate that these CPs display considerable photocatalytic degradation towards the cationic MB for the initial pH 4 and 7 where degradation increases with sulfur content. While under ultra-violet, results indicate considerable photocatalytic degradation towards both dyes for the initial pH 7 and 10 where degradation increases with sulfur content which indicates the gainful of non-metal dopping. The buffering nature of CPs and the type of radiation considering determined band-gap values effectively influence the degradation mechanisms.
Collapse
|
16
|
Zhou H, Ou L. Adsorption of ammonia nitrogen in wastewater by tailing loaded manganese oxide material. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Adhikari HS, Garai A, Manandhar KD, Yadav PN. Pyridine-Based NNS Tridentate Chitosan Thiosemicarbazones and Their Copper(II) Complexes: Synthesis, Characterization, and Anticancer Activity. ACS OMEGA 2022; 7:30978-30988. [PMID: 36092560 PMCID: PMC9453788 DOI: 10.1021/acsomega.2c02966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/05/2022] [Indexed: 06/01/2023]
Abstract
Chitosan-functionalized pyridine-based thiosemicarbazones and their copper(II) complexes have been found to own a substantial antiproliferative activity against the tumorigenic Madin Darby canine kidney (MDCK) and MCF-7 cancer cell lines. In the current study, chitosan oligosaccharide (CS) (87% DDA, Mw < 3000 Da) and crab shell chitosan (CCS) (67% DDA, M w 350 kDa) were functionalized as chitosan pyridine-2-thiosemicarbazones and chitosan 2-acetyl pyridine-2-thiosemicarbazones, and their copper(II) complexes were synthesized. The formation of chitosan thiosemicarbazones and their NNS tridentate behavior to give the square planar copper(II) chitosan thiosemicarbazone complexes were established by spectroscopic studies, powder X-ray diffraction, elemental analysis, and magnetic moment measurements. The thermal study showed a marked stability of these derivatives before the outset of chitosan backbone degradation at 200 °C. The colorimetric MTT assay revealed a higher activity of CS thiosemicarbazones, viz., CSTSC series (IC50 375-381 μg mL-1 in the MDCK cell line and 281-355 μg mL-1 in the MCF-7 cell line) than that of high-molecular-weight CCS thiosemicarbazones, viz., CCSTSC series (IC50 335-400 μg mL-1 in the MDCK cell line and 365-400 μg mL-1 in the MCF-7 cell line), showing an enhanced activity with a decrease in Mw and an increase in DDA of constituent chitosan, a higher activity of both of these series of thiosemicarbazones than that of their native chitosan, viz., CS (IC50 370 μg mL-1 in the MCF-7 cell line and >400 μg mL-1 in the MDCK cell line) and CCS (IC50 > 400 μg mL-1 in both cell lines), and a higher activity of the Cu-CSTSC complexes (IC50 322-342 μg mL-1 in the MDCK cell line and 278-352 μg mL-1 in the MCF-7 cell line) and Cu-CCSTSC complexes (IC50 274-400 μg mL-1 in the MDCK cell line and 231-352 μg mL-1 in the MCF-7 cell line) than that of their respective ligands.
Collapse
Affiliation(s)
- Hari Sharan Adhikari
- Institute
of Engineering, Department of Applied Sciences, Tribhuvan University, Pashchimanchal Campus, Pokhara33700, Nepal
| | - Aditya Garai
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore560012, India
| | | | - Paras Nath Yadav
- Central
Department of Chemistry, Tribhuvan University, Kathmandu44600, Nepal
| |
Collapse
|
18
|
Tailoring nanohole sizes through the deacetylation process in chitosan powders obtained from squid pens. Carbohydr Polym 2022; 297:120026. [DOI: 10.1016/j.carbpol.2022.120026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
19
|
Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol 2022; 213:845-857. [PMID: 35667458 PMCID: PMC9240323 DOI: 10.1016/j.ijbiomac.2022.05.199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
We report the successful preparation and characterization of chitosan-Zn complex (ChiZn) in the form of films, intended to enhance the biological performance of chitosan by the presence of Zn as antibacterial agent and biologically active ion. The influence of Zn chelation on morphology and structure of chitosan was assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and infrared spectroscopy. The biodegradability study of ChiZn showed a sustained release of Zn up to 2 mg/mL. No toxic response was observed toward stromal cell line ST-2 in indirect contact with the ChiZn films. The dissolution product of ChiZn showed improved wound closure (88% closure) compared to the positive control group (70% closure). Moreover, ChiZn exhibited antibacterial activity against S. aureus together with a slight increase (~30%) in the secretion of VEGF and moderate decrease in nitric oxide evolution. Our findings indicate that ChiZn could be used as a safe and effective wound healing agent.
Collapse
Affiliation(s)
- Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fatih Kurtuldu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
20
|
Lemke P, Jünemann L, Moerschbacher BM. Synergistic Antimicrobial Activities of Chitosan Mixtures and Chitosan–Copper Combinations. Int J Mol Sci 2022; 23:ijms23063345. [PMID: 35328766 PMCID: PMC8951000 DOI: 10.3390/ijms23063345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Several recent studies revealed the significant contribution of intensive agriculture to global climate change and biodiversity decline. However, synthetic pesticides and fertilizers, which are among the main reasons for these negative effects, are required to achieve the high performance of elite crops needed to feed the growing world population. Modern agro-biologics, such as biopesticides, biostimulants, and biofertilizers are intended to replace or reduce the current agro-chemicals, but the former are often difficult to combine with the latter. Chitosans, produced from the fisheries’ byproduct chitin, are among the most promising agro-biologics, and copper fungicides are among the most widely used plant protectants in organic farming. However, the two active ingredients tend to form precipitates, hindering product development. Here, we show that partial hydrolysis of a chitosan polymer can yield a mixture of smaller polymers and oligomers that act synergistically in their antifungal activity. The low molecular weight (Mw) of this hydrolysate allows its combination with copper acetate, again leading to a synergistic effect. Combined, these synergies allow a 50% reduction in copper concentration, while maintaining the antifungal activity. This is potentially a significant step towards a more sustainable agriculture.
Collapse
|
21
|
Gu G, Erişen DE, Yang K, Zhang B, Shen M, Zou J, Qi X, Chen S, Xu X. Antibacterial and anti-inflammatory activities of chitosan/copper complex coating on medical catheters: In vitro and in vivo. J Biomed Mater Res B Appl Biomater 2022; 110:1899-1910. [PMID: 35253986 DOI: 10.1002/jbm.b.35047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Copper ions (Cu) grafted chitosan coating was prepared using the pneumatic spraying method on the silicone rubber surface. Coating's surface properties, morphology, composition, Cu releasing behavior, antibacterial, and anti-inflammatory activities are investigated and discussed. Surface properties, composition, and morphology were investigated by scanning electron microscopy (SEM) and contact angle measurements. The antibacterial activity has been tested with Escherichia coli and Staphylococcus aureus suspensions in vitro. Besides, the morphology of the biofilm was inspected with a field emission SEM. To evaluate the anti-inflammatory activity and biosafety of the coating in vivo, the optimized coating samples and control groups were implanted subcutaneously into the back of mice. The bacterial environment model was established by injection of the bacterial suspension. The morphology and bacterial adhered on the surface of catheters and the surrounding tissues were analyzed after 5 days of implantation. As in vitro results, the number of adhered bacterial on the surface of the silicon rubber surface was decreased, and the anti-inflammatory rate was increased by the intensify of the Cu content in chitosan coating. As for in vivo results, after 5 days of implantation, there was no evident inflammation in the surrounding tissues of all catheters in all without the S. aureus injected group. In the injected chitosan/Cu coated group; the inflammation, the number of the adhered bacteria were observed less than other injected samples without Cu; no inflammation were noticeable. Results indicate that the Cu-modified chitosan coating can confer excellent antibacterial and anti-inflammatory activity as applied on medical catheters.
Collapse
Affiliation(s)
- Guisong Gu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China.,School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China
| | - Deniz Eren Erişen
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Ke Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Bingchun Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Minggang Shen
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shanshan Chen
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Xiaohe Xu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Cahyaningtyas HAA, Suyotha W, Cheirsilp B, Prihanto AA, Yano S, Wakayama M. Optimization of protease production by Bacillus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22163-22178. [PMID: 34780017 DOI: 10.1007/s11356-021-17279-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Chitin extraction from shrimp shell powder (SSP) using protease-producing microbes is an attractive approach for valorizing shrimp shell waste because it is simple and environmentally friendly. In this study, the protease production and chitin extraction from SSP by Bacillus cereus HMRSC30 were simultaneously optimized using statistical approaches. As a result, fermentation in medium composed of 30 g/L SSP, 0.2 g/L MgSO4 · 7H2O, 3 g/L (NH4)2SO4, 0.5 g/L K2HPO4, and 1.5 g/L KH2PO4 (pH 6.5) for 7 days maximized protease production (197.75 ± 0.33 U/mL) to approximately 1.64-fold compared to unoptimized condition (126.8 ± 0.047 U/mL). This level of enzyme production was enough to achieve 97.42 ± 0.28% deproteinization (DP) but low demineralization (DM) of 53.76 ± 0.21%. The high DM of 90% could be easily accomplished with the post-treatment using 0.4 M HCl and acetic acid. In addition, the study evaluated the possible roadmap to maximize the value of generated products and obtain additional profits from this microbial process. The observation showed the possibility of serving crude chitin as a bio-adsorbent with the highest removal capacity against Coomassie brilliant blue (97.99%), followed by methylene blue (74.42%). The recovered protease exhibited the function to remove egg yolk stain, indicating its potential for use as a detergent in de-staining. The results corroborated the benefits of microbial fermentation by B. cereus HMRSC30 as green process for comprehensive utilization of shrimp shell waste as well as minimizing waste generation along the established process.
Collapse
Affiliation(s)
- Hilmi Amanah Aditya Cahyaningtyas
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Wasana Suyotha
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand.
| | - Benjamas Cheirsilp
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Asep Awaludin Prihanto
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65415, East Java, Indonesia
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
23
|
Adhikari HS, Garai A, Thapa M, Adhikari R, Yadav PN. Chitosan functionalized thiophene-2-thiosemicarbazones, and their copper(II) complexes: synthesis, characterization, and anticancer activity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hari Sharan Adhikari
- Institute of Engineering, Pashchimanchal Campus, Department of Applied Sciences, Tribhuvan University, Pokhara, Nepal
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Machchhendra Thapa
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Rameshwar Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
24
|
Allosteric extraction of a second gallium anion assisted by the first, loaded onto a fluorinated secondary amide reagent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Tharmavaram M, Pandey G, Bhatt P, Prajapati P, Rawtani D, Sooraj KP, Ranjan M. Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. Int J Biol Macromol 2021; 191:1046-1055. [PMID: 34600951 DOI: 10.1016/j.ijbiomac.2021.09.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Chitosan (CTS) functionalized Halloysite Nanotubes (HNT) have been used as receptive nano-supports for the grafting of copper (Cu) and laccase (Lac) for the degradation of chlorpyrifos. The developed nanocomposite Lac@Cu-CTS-HNT showed 83.4% Lac immobilization which was further characterized by TEM, SEM-EDX, FTIR, XRD, DSC and TGA. The chlorpyrifos degradation studies were performed under constant stirring for 24 h with both free enzyme and Lac@Cu-CTS-HNT and were analysed through HPLC. Percentage degradation of chlorpyrifos with the nanocomposite went as high as 97% for 50 μg/mL chlorpyrifos at neutral pH and room temperature. Variable pesticide and nanocomposite concentration, pH, and temperature studies for pesticide degradation were also performed, followed by reusability studies. The nanocomposite maintained its degradation ability at ~97% even at variable temperature and pH conditions. Reusability study was performed 5 times wherein the degradation percentage remained the same after 5 cycles (~<95%). Degradation kinetics were also performed for the nanocomposite in the presence and absence of the immobilized enzyme. Through this study, it is suggested that Lac@Cu-CTS-HNT can be a potential nano-catalyst for the degradation of chlorpyrifos in aqueous environment.
Collapse
Affiliation(s)
- Maithri Tharmavaram
- School of Doctoral Studies & Research, National Forensic Sciences University (Ministry of Home Affairs), sector 9, Gandhinagar 382007, Gujarat, India
| | - Gaurav Pandey
- School of Doctoral Studies & Research, National Forensic Sciences University (Ministry of Home Affairs), sector 9, Gandhinagar 382007, Gujarat, India
| | - Payal Bhatt
- School of Pharmacy, National Forensic Sciences University (Ministry of Home Affairs), sector 9, Gandhinagar 382007, Gujarat, India
| | - Prajesh Prajapati
- School of Pharmacy, National Forensic Sciences University (Ministry of Home Affairs), sector 9, Gandhinagar 382007, Gujarat, India
| | - Deepak Rawtani
- School of Pharmacy, National Forensic Sciences University (Ministry of Home Affairs), sector 9, Gandhinagar 382007, Gujarat, India.
| | - K P Sooraj
- FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat, India
| | - Mukesh Ranjan
- FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat, India
| |
Collapse
|
26
|
Kanarat J, Bunchuay T, Klysubun W, Tantirungrotechai J. Cu
2
O‐CuO/Chitosan Composites as Heterogeneous Catalysts for Benzylic C−H Oxidation at Room Temperature. ChemCatChem 2021. [DOI: 10.1002/cctc.202101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jurin Kanarat
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute (SLRI) 111 University Avenue, Muang District Nakhon Ratchasima 30000 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
27
|
Bakshi M, Kumar A. Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. CHEMOSPHERE 2021; 281:130940. [PMID: 34289610 DOI: 10.1016/j.chemosphere.2021.130940] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Copper-based nanoparticles (Cu-based NPs) have been gaining wide attention in agricultural applications due to their diverse characteristics and multipurpose properties. This includes their use in agrochemicals for efficient delivery and controlled release of pesticides and fertilizers. However, their excessive usage over a long duration of time could pose potential risks to the soil system. Further, they are known for their well-established anti-microbial effects which could be detrimental to soil health, particularly to the activities of soil microbes, which play a significant role in the functioning of terrestrial and agroecosystems. Thus, there is a great need to clearly understand these uniquely nanospecific properties of Cu-based NPs along with mode-of-action, effect on soil processes, soil organisms, and plants. This paper examines the current literature on Cu-based NPs to provide a systematic understanding of their potential impacts on the soil-plant environment. It explores their rising application and usage in agriculture along with their possible interaction with various soil components and the potential factors influencing it. It further investigates their uptake, translocation, and distribution in plants in various exposure media. It summarises that the dissolution, biotransformation, and bioavailability of Cu-based NPs in the soil are governed by several factors, like soil type, soil pH, and organic matter content. Further, environmental factors, time duration, and presence of other pollutants could also influence their biotransformation and soil toxicity. Finally, this review seeks to provide future perspectives that need attention for investigation purposes.
Collapse
Affiliation(s)
- Mansi Bakshi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
28
|
González-Martínez E, Pérez AG, González-Martínez DA, Águila CRD, Urbina EC, Ramírez DU, Yee-Madeira H. Chitosan-coated magnetic nanoparticles; exploring their potentialities for DNA and Cu(II) recovery. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1814335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eduardo González-Martínez
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| | - Annia Gómez Pérez
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| | - David A. González-Martínez
- Laboratorio de Bioinorgánica (LBI), Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Carlos R. Díaz Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Eliseo Cristiani Urbina
- Escuela Nacional de Ciencias Biológicas del (ENCB-IPN), Depto. Ingeniería Bioquímica, Avenida Wilfrido Massieu, UPALM, Col. San Pedro Zacatenco, 07738, CDMX, México
| | - Daniel Uribe Ramírez
- Escuela Nacional de Ciencias Biológicas del (ENCB-IPN), Depto. Ingeniería Bioquímica, Avenida Wilfrido Massieu, UPALM, Col. San Pedro Zacatenco, 07738, CDMX, México
| | - Hernani Yee-Madeira
- Instituto Politécnico Nacional – ESFM, Depto. De Física, U.P.A.L.M.,San Pedro Zacatenco, 07738, CDMX, México
| |
Collapse
|
29
|
Liu W, Qin Y, Li P. Design of Chitosan Sterilization Agents by a Structure Combination Strategy and Their Potential Application in Crop Protection. Molecules 2021; 26:3250. [PMID: 34071327 PMCID: PMC8198111 DOI: 10.3390/molecules26113250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Chitosan is the only cationic polysaccharide in nature. It is a type of renewable resource and is abundant. It has good biocompatibility, biodegradability and biological activity. The amino and hydroxyl groups in its molecules can be modified, which enables chitosan to contain a variety of functional groups, giving it a variety of properties. In recent years, researchers have used different strategies to synthesize a variety of chitosan derivatives with novel structure and unique activity. Structure combination is one of the main strategies. Therefore, we will evaluate the synthesis and agricultural antimicrobial applications of the active chitosan derivatives structure combinations, which have not been well-summarized. In addition, the advantages, challenges and developmental prospects of agricultural antimicrobial chitosan derivatives will be discussed.
Collapse
Affiliation(s)
- Weixiang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
30
|
Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and In Vitro Study. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.23.12.432-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of chitosan- CuO nanoparticles was studied. This research’s aims were biosynthesis CuO nanoparticles, synthesis of chitosan-CuO nanoparticles, and used as an antibacterial agent of Shigella dysenteriae. CuO nanoparticles and chitosan-CuO nanoparticles were characterized by FTIR spectroscopy and X-ray diffraction, respectively. CuO nanoparticle was synthesized by the reaction between leaf extract of sweet star fruit (Averrhoa carambola L.) and copper sulfate pentahydrate. Chitosan-CuO nanoparticles were synthesized by a heating method. The suspension of chitosan-CuO nanoparticles was used as an antibacterial agent with a paper disk method. The result showed that the Cu-O group at CuO nanoparticles was detected at a wavenumber of 503, 619, 767, and 821 cm-1. The crystallite size of the CuO nanoparticles was 4.25 nm. Cu-O group bonded at N-H and O-H groups and detected at 3406 cm-1 from the FTIR spectra of chitosan-CuO nanoparticles. The average inhibition zone of chitosan-CuO nanoparticles at concentration 2.500, 5.000, 7.500, and 10.000 ppm to Shigella dysenteriae were 13.57 ± 1.55; 14.90 ± 1.20; 15.97 ± 0.76 and 17.03 ± 1.80 mm, respectively.
Collapse
|
31
|
Berestova TV, Nosenko KN, Lusina OV, Kuzina LG, Kulish EI, Mustafin AG. ESTIMATING THE STABILITY OF METAL–LIGAND BONDING IN CARBOXYL-CONTAINING POLYMER COMPLEXES BY IR SPECTROSCOPY. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620120057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Yambulatov DS, Nikolaevskii SA, Lutsenko IA, Kiskin MA, Shmelev MA, Bekker OB, Efimov NN, Ugolkova EA, Minin VV, Sidorov AA, Eremenko IL. Copper(II) Trimethylacetate Complex with Caffeine: Synthesis, Structure, and Biological Activity. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420110093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Guo J, Yang J, Yang J, Zheng G, Chen T, Huang J, Bian J, Meng X. Water-soluble chitosan enhances phytoremediation efficiency of cadmium by Hylotelephium spectabile in contaminated soils. Carbohydr Polym 2020; 246:116559. [DOI: 10.1016/j.carbpol.2020.116559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 11/24/2022]
|
34
|
Mohsen M, Naeem I, Awaad M, Tantawy H, Baraka A. A cadmium-imidazole coordination polymer as solid state buffering material: Synthesis, characterization and its use for photocatalytic degradation of ionic dyes. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Aerogels from copper (II)-cellulose nanofibers and carbon nanotubes as absorbents for the elimination of toxic gases from air. J Colloid Interface Sci 2020; 582:950-960. [PMID: 32927175 DOI: 10.1016/j.jcis.2020.08.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
A novel deodorizer that is capable of selectively eliminating the odorous chemicals, such as ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan, is described. The deodorizer is a nanostructured aerogel by nature, consisting of 2,2-6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNF), transition metal divalent cations (M2+), and multi-walled carbon nanotubes (CNT) as the constitutive elements. CNF are firstly mixed with M2+ (M2+, in this paper, typifies Ni2+, Co2+ and Cu2+) to form CNF-M2+ complexes, monodispersed CNT is then mixed to prepare CNT/CNF-M2+ waterborne slurries; CNT/CNF-M2+ hybridized aerogels are finally obtained via freezing-drying of the CNT/CNF-M2+ waterborne slurries. The CNT/CNF-M2+ aerogels are a foam-like structure consisting of CNF and CNT as backbones and M2+ as linkers. The aerogels show higher capabilities (in comparison with activated carbon) for selectively adsorbing ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan. Computing simulations suggest a theoretical conclusion that the odorous chemicals are absorbed in a preferring manner of bimolecular absorptions via the M2+ moieties. The CNT/CNF-M2+ hybridized aerogels are lightweight, eco-friendly, and easy to produce in industrial scales. Our new finding, as is described in this paper, demonstrates potential applications of the TEMPO-oxidized CNF to the field of deodorizations.
Collapse
|
36
|
Valueva SV, Vylegzhanina ME, Borovikova LN, Nazarova OV, Bezrukova MA, Zolotova YI, Panarin EF. Synthesis, Morphology, and Spectral Characteristics of Copper, Silver, and Selenium-Containing Hybrid Nanosystems Based on 2-Deoxy-2-metacrylamido-D-glucose Copolymer with 2-Dimethylaminoethyl Methacrylate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Huang H, Duan H, Yin L, Qi D, Xue J, Zhang Y, Deng J. Macromolecular Chiral Amplification through a Random Coil to One-Handed Helix Transformation Induced by Metal Ion Coordination in an Aqueous Solution. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huajun Huang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, School of Materials Science and Engineering & School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huimin Duan
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, School of Materials Science and Engineering & School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lijie Yin
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, School of Materials Science and Engineering & School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, School of Materials Science and Engineering & School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Hassan MM, Mohamed MH, Udoetok IA, Steiger BGK, Wilson LD. Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers (Basel) 2020; 12:E1502. [PMID: 32640585 PMCID: PMC7408214 DOI: 10.3390/polym12071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/23/2023] Open
Abstract
Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the "best-fit" for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu).
Collapse
Affiliation(s)
- Md. Mehadi Hassan
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
- Department of Arts and Sciences, Bangladesh Army University of Science and Technology, Saidpur 5311, Bangladesh
| | - Mohamed H. Mohamed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Inimfon A. Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Bernd G. K. Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| |
Collapse
|
39
|
Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 2020; 152:154-170. [DOI: 10.1016/j.ijbiomac.2020.02.276] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
|
40
|
Kaur P, Choudhary R, Pal A, Mony C, Adholeya A. Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution. Curr Top Med Chem 2020; 20:1009-1028. [DOI: 10.2174/1568026620666200330160810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
Abstract
Metal nanoparticles are well known for their antimicrobial properties. The use of metalbased
nanoparticles in the agricultural field has considerably increased globally by both direct and
indirect means for the management of plant diseases. In this context, the development of controlled
delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial
activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles
as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating
metal nanoparticles in a polymer matrix include the ability to function as a protector of metal
nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading
strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents
for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric
matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant
growth regulators used to enhance the crop productivity.
Collapse
Affiliation(s)
- Pawan Kaur
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Rita Choudhary
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Anamika Pal
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Chanchal Mony
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| | - Alok Adholeya
- Centre of Excellence in Agrinanotechnology, TERI-Deakin Nanobiotechnology Centre, Gurugram-122002, India
| |
Collapse
|
41
|
Pandit A, Deshpande C, Patil S, Jain R, Dandekar P. Mechanistic insights into controlled depolymerization of Chitosan using H-Mordenite. Carbohydr Polym 2020; 230:115600. [PMID: 31887872 DOI: 10.1016/j.carbpol.2019.115600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/25/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023]
Abstract
Kinetics of chitosan depolymerization were studied in dilute acetic acid solution, in presence of H-Mordenite (H-MOR). Rate constants for chitosan depolymerization were determined by measurement of molecular weight, using Gel permeation Chromatography (GPC). Depolymerization rate of chitosan was altered in presence of an acidic, porous material like H-MOR. Maximum concentration of H-MOR studied during process led to minimal increase in energy of activation, from 20.54 kJ/moL to 23.25 kJ/moL. Infra-red spectroscopy, adsorption studies and rheological assessment indicated adsorption /grafting of chitosan onto porous H-MOR surface as the possible mechanism for facilitation of the depolymerization process. Under extreme conditions investigated during process optimization, H-MOR resulted in a three-fold reduction in 5-Hydroxy Methyl Furfural (5-HMF) formation and over ten times decrease in glucosamine content, as compared to reactions conducted without H-MOR. Therefore, presence of H-MOR is imperative to cleave chitosan in controlled manner and obtain products of desired molecular weight, with fewer impurities.
Collapse
Affiliation(s)
- A Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - C Deshpande
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - S Patil
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India
| | - R Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-19, India.
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-19, India.
| |
Collapse
|
42
|
Valueva SV, Nazarova OV, Vylegzhanina ME, Borovikova LN, Zolotova YI, Panarin EF. Copper-Containing Nanosystems Based on Macromolecular Hydrophilic Stabilizers. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819110065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Preparation and Antifungal Activity Investigation of Oligochitosan-Zn2+ on Colletotrichum truncatum. INT J POLYM SCI 2019. [DOI: 10.1155/2019/8357381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study presents the structural characteristics and the antifungal efficiency of the oligochitosan-Zn2+ complexes. Oligochitosan with the average molecular weight of ~5 kDa was effectively prepared by gamma-ray irradiation degradation of chitosan in a solution containing H2O2. The oligochitosan-Zn2+ complexes with the different molar ratios of -NH2/Zn2+ were prepared by mixing Zn(NO3)2 into oligochitosan solution. The resultant complexes were characterized by FTIR, XRD, UV-Vis, and ICP-AES. The obtained results demonstrated that Zn2+ ions were stably bound with oligochitosan molecules through interacting with -OH and -NH2 groups. The in vitro antifungal effect of oligochitosan-Zn2+ complexes was assessed against Colletotrichum truncatum, a fungus species causing anthracnose on crops. The antifungal activity was significantly improved as the increase of Zn2+ content in the complexes. Particularly, the antifungal efficiency of the complexes reached to 75–100% compared to that of about 12% for oligochitosan. Thus, the addition of Zn2+ into oligochitosan strengthens its performance towards antifungal property and bring forward a new approach for progressing biobased materials for controlling plant diseases.
Collapse
|
44
|
Kaspar P, Sobola D, Sedlák P, Holcman V, Grmela L. Analysis of color shift on butterfly wings by Fourier transform of images from atomic force microscopy. Microsc Res Tech 2019; 82:2007-2013. [DOI: 10.1002/jemt.23370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Pavel Kaspar
- Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of Technology Brno Czech Republic
| | - Dinara Sobola
- Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of Technology Brno Czech Republic
| | - Petr Sedlák
- Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of Technology Brno Czech Republic
| | - Vladimír Holcman
- Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of Technology Brno Czech Republic
| | - Lubomír Grmela
- Department of Physics, Faculty of Electrical Engineering and CommunicationBrno University of Technology Brno Czech Republic
| |
Collapse
|
45
|
Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids Surf B Biointerfaces 2019; 180:186-192. [DOI: 10.1016/j.colsurfb.2019.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
|
46
|
Van Phu D, Du BD, Tuan LNA, Hung LT, Hien NQ. Preparation of radiolysis-degraded oligochitosan, oligochitosan-Zn 2+
complex and their induced effect against Anthracnose on soybean plants. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dang Van Phu
- Research and Development Center for Radiation Technology; Vietnam Atomic Energy Institute, 202A, Street 11, Linh Xuan Ward, Thu Duc District; Ho Chi Minh City Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
| | - Bui Duy Du
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc ward, District; 12 Ho Chi Minh City Viet Nam
| | - Le Nghiem Anh Tuan
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay; Hanoi Viet Nam
- Institute of Applied Materials Science; Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc ward, District; 12 Ho Chi Minh City Viet Nam
| | - Le Thanh Hung
- Research and Development Center for Hi-Tech Agriculture, AHTP; Pham Van Coi Commune, Cu Chi District; Ho Chi Minh City Viet Nam
| | - Nguyen Quoc Hien
- Research and Development Center for Radiation Technology; Vietnam Atomic Energy Institute, 202A, Street 11, Linh Xuan Ward, Thu Duc District; Ho Chi Minh City Viet Nam
| |
Collapse
|
47
|
Farkhonde Masoule S, Pourhajibagher M, Safari J, Khoobi M. Base-free green synthesis of copper(II) oxide nanoparticles using highly cross-linked poly(curcumin) nanospheres: synergistically improved antimicrobial activity. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03841-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Rogina A, Lončarević A, Antunović M, Marijanović I, Ivanković M, Ivanković H. Tuning physicochemical and biological properties of chitosan through complexation with transition metal ions. Int J Biol Macromol 2019; 129:645-652. [DOI: 10.1016/j.ijbiomac.2019.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
|
49
|
Saikia G, Ahmed K, Gogoi SR, Sharma M, Talukdar H, Islam NS. A chitosan supported peroxidovanadium(V) complex: Synthesis, characterization and application as an eco-compatible heterogeneous catalyst for selective sulfoxidation in water. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Szőllősi G, Kolcsár VJ. Highly Enantioselective Transfer Hydrogenation of Prochiral Ketones Using Ru(II)-Chitosan Catalyst in Aqueous Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201801602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group; University of Szeged; Dóm tér 8 Szeged 6720 Hungary
- University of Szeged Interdisciplinary Excellence Centre Institute of Pharmaceutical Chemistry; Eötvös u. 6 Szeged 6720 Hungary)
| | | |
Collapse
|