1
|
Carbayo-Herencia JA, Simarro Rueda M, Artigao Ródenas LM, Divisón Garrote JA, Molina Escribano F, Ponce García I, Palazón Bru A, Torres Moreno P, Caldevilla Bernardo D, Martínez López R, Gil Guillén VF, Banegas JR. Diabesity and cardiovascular mortality in a prospective population cohort followed for more than 20 years. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025:500768. [PMID: 39955205 DOI: 10.1016/j.arteri.2025.500768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Control of the main cardiovascular risk factors had succeeded in reducing cardiovascular diseases (CVD). However, the general increase in the prevalence of type 2 diabetes mellitus (DM2) and obesity has slowed this decline. Both CVRFs are strongly associated, and the term diabesity has been coined to refer to this relationship. The main objective of this study was to assess the influence of diabesity on cardiovascular mortality. METHODS Prospective cohort study involving 1246 individuals (54.3% women) followed for 20.9 years (SD=7.31) and selected by random two-stage sampling in a province in southeastern Spain. Diabesity was defined as the combination of DM2 with overweight and obesity. Survival curves (Kaplan-Meier) were calculated and two Cox regression models were used, one unadjusted and the other adjusted by the main explanatory variables in which the diabesity variable consisted of 6 categories (normal weight, overweight, obesity, normal weight+DM2, overweight+DM2 and obesity+DM2). RESULTS There were 95 deaths due to CV causes (7.6% of the total; 6.2% women and 9.3% men; p=0.01). After adjustment, the combination of DM2 and overweight increased the incidence of cardiovascular mortality by 133% (HR=2.33; 95% CI: 1.18-4.58; p=0.014) and the combination of DM2 and obesity by 49% (HR=1.49; 95% CI: 0.64-3.45; p=0.351), not reaching statistical significance in the latter case. CONCLUSIONS In the general population, the results of our study show that the combination of overweight and DM2 is associated with higher CV mortality. It seems a priority to intervene intensively in the control of both overweight and DM2.
Collapse
Affiliation(s)
- Julio A Carbayo-Herencia
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, España; Grupo de Enfermedades Vasculares de Albacete (GEVA).
| | - Marta Simarro Rueda
- Centro de Salud de Chinchilla, Albacete, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | | | - Juan A Divisón Garrote
- Facultad de Medicina, Universidad Católica San Antonio Murcia (UCAM), Murcia, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | | | - Isabel Ponce García
- Centro de Salud de Tarazona de la Mancha, Albacete, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | | | - Pilar Torres Moreno
- Centro de Salud de Alcadozo, Albacete, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | - David Caldevilla Bernardo
- Servicio de Radiodiagnóstico, Complejo Hospitalario Universitario de Albacete, Universidad de Castilla-La Mancha, Albacete, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | - Rosalina Martínez López
- Servicio de Análisis Clínicos (Bioquímica clínica), Complejo Hospitalario y Universitario de Albacete (CHUA), Albacete, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | - Vicente Francisco Gil Guillén
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| | - José R Banegas
- Departamento de Medicina Preventiva y Salud Pública, Universidad Autónoma de Madrid y CIBERESP, Madrid, España; Grupo de Enfermedades Vasculares de Albacete (GEVA)
| |
Collapse
|
2
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Montagnani M, Potenza MA, Corsalini M, Barile G, Charitos IA, De Giacomo A, Jirillo E, Colella M, Santacroce L. Current View on How Human Gut Microbiota Mediate Metabolic and Pharmacological Activity of Panax ginseng. A Scoping Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1756-1773. [PMID: 38504564 DOI: 10.2174/0118715303270923240307120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brainand the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Barile
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, Bari, Italy
| | - Andrea De Giacomo
- Department of Neurological and Psychiatric Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Doctoral School, eCampus University, Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Brain K, Burrows TL, Bruggink L, Malfliet A, Hayes C, Hodson FJ, Collins CE. Diet and Chronic Non-Cancer Pain: The State of the Art and Future Directions. J Clin Med 2021; 10:5203. [PMID: 34768723 PMCID: PMC8584994 DOI: 10.3390/jcm10215203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Nutrition plays an important role in pain management. Healthy eating patterns are associated with reduced systemic inflammation, as well as lower risk and severity of chronic non-cancer pain and associated comorbidities. The role of nutrition in chronic non-cancer pain management is an emerging field with increasing interest from clinicians and patients. Evidence from a number of recent systematic reviews shows that optimising diet quality and incorporating foods containing anti-inflammatory nutrients such as fruits, vegetables, long chain and monounsaturated fats, antioxidants, and fibre leads to reduction in pain severity and interference. This review describes the current state of the art and highlights why nutrition is critical within a person-centred approach to pain management. Recommendations are made to guide clinicians and highlight areas for future research.
Collapse
Affiliation(s)
- Katherine Brain
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Tracy L. Burrows
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Laura Bruggink
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Anneleen Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Pain in Motion International Research Group, 1000 Brussels, Belgium
- Research Foundation Flanders (FWO), 1000 Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
| | - Chris Hayes
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Fiona J. Hodson
- Hunter Integrated Pain Service, Newcastle, NSW 2300, Australia; (L.B.); (C.H.); (F.J.H.)
| | - Clare E. Collins
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (K.B.); (T.L.B.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021; 10:antiox10081257. [PMID: 34439505 PMCID: PMC8389322 DOI: 10.3390/antiox10081257] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aβ) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aβ and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.
Collapse
|
6
|
Świątkiewicz I, Magielski P, Kubica J. C-Reactive Protein as a Risk Marker for Post-Infarct Heart Failure over a Multi-Year Period. Int J Mol Sci 2021; 22:ijms22063169. [PMID: 33804661 PMCID: PMC8003799 DOI: 10.3390/ijms22063169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory activation during acute ST-elevation myocardial infarction (STEMI) can contribute to post-infarct heart failure (HF). This study aimed to determine prognostic value of high-sensitivity C-reactive protein concentration (CRP) for HF over a long-term follow-up in 204 patients with a first STEMI undergoing guideline-based therapies including percutaneous coronary intervention. CRP was measured at admission, 24 h (CRP24), discharge (CRPDC), and one month (CRP1M) after index hospitalization for STEMI. Within a median period of 5.6 years post-index hospitalization for STEMI, hospitalization for HF (HFH) which is a primary endpoint, occurred in 24 patients (11.8%, HF+ group). During the study, 8.3% of HF+ patients died vs. 1.7% of patients without HFH (HF- group) (p = 0.047). CRP24, CRPDC, and CRP1M were significantly higher in HF+ compared to HF- group. The median CRP1M in HF+ group was 2.57 mg/L indicating low-grade systemic inflammation, in contrast to 1.54 mg/L in HF- group. CRP1M ≥ 2 mg/L occurred in 58.3% of HF+ vs. 42.8% of HF- group (p = 0.01). Kaplan–Meier analysis showed decreased probability of survival free from HFH in patients with CRP24 (p < 0.001), CRPDC (p < 0.001), and CRP1M (p = 0.03) in quartile IV compared to lower quartiles. In multivariable analysis, CRPDC significantly improved prediction of HFH over a multi-year period post-STEMI. Persistent elevation in CRP post STEMI aids in risk stratification for long-term HF and suggests that ongoing cardiac and low-grade systemic inflammation promote HF development despite guideline-based therapies.
Collapse
Affiliation(s)
- Iwona Świątkiewicz
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +1-(858)-246-2510
| | - Przemysław Magielski
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (P.M.); (J.K.)
| |
Collapse
|
7
|
Fedullo AL, Schiattarella A, Morlando M, Raguzzini A, Toti E, De Franciscis P, Peluso I. Mediterranean Diet for the Prevention of Gestational Diabetes in the Covid-19 Era: Implications of Il-6 In Diabesity. Int J Mol Sci 2021; 22:1213. [PMID: 33530554 PMCID: PMC7866163 DOI: 10.3390/ijms22031213] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this review is to highlight the influence of the Mediterranean Diet (MedDiet) on Gestational Diabetes Mellitus (GDM) and Gestational Weight Gain (GWG) during the COVID-19 pandemic era and the specific role of interleukin (IL)-6 in diabesity. It is known that diabetes, high body mass index, high glycated hemoglobin and raised serum IL-6 levels are predictive of poor outcomes in coronavirus disease 2019 (COVID-19). The immunopathological mechanisms of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection include rising levels of several cytokines and in particular IL-6. The latter is associated with hyperglycemia and insulin resistance and could be useful for predicting the development of GDM. Rich in omega-3 polyunsaturated fatty acids, vitamins, and minerals, MedDiet improves the immune system and could modulate IL-6, C reactive protein and Nuclear Factor (NF)-κB. Moreover, polyphenols could modulate microbiota composition, inhibit the NF-κB pathway, lower IL-6, and upregulate antioxidant enzymes. Finally, adhering to the MedDiet prior to and during pregnancy could have a protective effect, reducing GWG and the risk of GDM, as well as improving the immune response to viral infections such as COVID-19.
Collapse
Affiliation(s)
- Anna Lucia Fedullo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Maddalena Morlando
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.S.); (M.M.); (P.D.F.)
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy; (A.L.F.); (A.R.); (E.T.)
| |
Collapse
|
8
|
Cao F, Wu K, Zhu YZ, Bao ZW. Roles and Mechanisms of Dipeptidyl Peptidase 4 Inhibitors in Vascular Aging. Front Endocrinol (Lausanne) 2021; 12:731273. [PMID: 34489872 PMCID: PMC8416540 DOI: 10.3389/fendo.2021.731273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular aging is characterized by alterations in the constitutive properties and biological functions of the blood vessel wall. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are indispensability elements in the inner layer and the medial layer of the blood vessel wall, respectively. Dipeptidyl peptidase-4 (DPP4) inhibitors, as a hypoglycemic agent, play a protective role in reversing vascular aging regardless of their effects in meliorating glycemic control in humans and animal models of type 2 diabetes mellitus (T2DM) through complex cellular mechanisms, including improving EC dysfunction, promoting EC proliferation and migration, alleviating EC senescence, obstructing EC apoptosis, suppressing the proliferation and migration of VSMCs, increasing circulating endothelial progenitor cell (EPC) levels, and preventing the infiltration of mononuclear macrophages. All of these showed that DPP4 inhibitors may exert a positive effect against vascular aging, thereby preventing vascular aging-related diseases. In the current review, we will summarize the cellular mechanism of DPP4 inhibitors regulating vascular aging; moreover, we also intend to compile the roles and the promising therapeutic application of DPP4 inhibitors in vascular aging-related diseases.
Collapse
Affiliation(s)
- Fen Cao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Kun Wu
- Department of Neurology, Huaihua First People’s Hospital, Huaihua, China
| | - Yong-Zhi Zhu
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
| | - Zhong-Wu Bao
- Department of Cardiology, Huaihua First People’s Hospital, Huaihua, China
- *Correspondence: Zhong-Wu Bao,
| |
Collapse
|
9
|
Yang Y, Xu Y, Wang J, Zhai X, Jiang H. Predictive efficacy of neutrophil-to-lymphocyte ratio for long-term prognosis in new onset acute coronary syndrome: a retrospective cohort study. BMC Cardiovasc Disord 2020; 20:500. [PMID: 33256605 PMCID: PMC7706201 DOI: 10.1186/s12872-020-01773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Inflammation is involved in the pathogenesis and progression of coronary artery diseases (CADs), including acute coronary syndrome. The neutrophil-to-lymphocyte ratio (NLR) has been identified as a novel marker of the pro-inflammatory state. We aimed to evaluate the predictive efficacy of the NLR for the prognosis of patients with new-onset ACS. METHODS We retrospectively included consecutive patients with new-onset ACS treated with emergency coronary angiography. NLR was measured at baseline and analyzed by tertiles. The severity of coronary lesions was evaluated by the Gensini score. Correlations of NLR with the severity of CAD and the incidence of major adverse cardiovascular diseases (MACEs) during follow-up were determined. RESULTS Overall, 737 patients were included. The NLR was positively correlated with the severity of coronary lesions as assessed by Gensini score (P < 0.05). During the follow-up period (mean, 43.49 ± 23.97 months), 65 MACEs occurred. No significant association was detected between baseline NLR and the risk of MACEs during follow-up by either Kaplan-Meier or Cox regression analysis. Multivariable logistic regression analysis showed that a higher NLR was independently associated with coronary lesion severity as measured by the Gensini score (1st tertile vs. 3rd tertile hazard ratio [HR]: 0.527, P < 0.001, and 2nd tertile vs. 3rd tertile HR: 0.474, P = 0.025). CONCLUSIONS The NLR may be associated with coronary disease severity at baseline but is not associated with adverse outcomes in patients with new-onset ACS. ETHICS APPROVAL NUMBER 2019XE0208.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology Fourth Ward, The Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, 830011, China
| | - Yanan Xu
- The People's Hospital of Xuancheng City, Anhui, 242000, China
| | - Jun Wang
- The People's Hospital of Xuancheng City, Anhui, 242000, China
| | - Xueqin Zhai
- Department of Cardiology Fourth Ward, The Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, 830011, China
| | - Haibing Jiang
- Department of Cardiology Fourth Ward, The Xinjiang Medical University Affiliated Hospital of Traditional Chinese Medicine, Urumqi, 830011, China.
| |
Collapse
|
10
|
Bertocchi I, Foglietta F, Collotta D, Eva C, Brancaleone V, Thiemermann C, Collino M. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: Lessons for drug repurposing. Br J Pharmacol 2020; 177:4921-4930. [PMID: 32776354 PMCID: PMC7436458 DOI: 10.1111/bph.15229] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19, the illness caused by SARS-CoV-2, has a wide-ranging clinical spectrum that, in the worst-case scenario, involves a rapid progression to severe acute respiratory syndrome and death. Epidemiological data show that obesity and diabetes are among the main risk factors associated with high morbidity and mortality. The increased susceptibility to SARS-CoV-2 infection documented in obesity-related metabolic derangements argues for initial defects in defence mechanisms, most likely due to an elevated systemic metabolic inflammation ("metaflammation"). The NLRP3 inflammasome is a master regulator of metaflammation and has a pivotal role in the pathophysiology of either obesity or diabetes. Here, we discuss the most recent findings suggesting contribution of NLRP3 inflammasome to the increase in complications in COVID-19 patients with diabesity. We also review current pharmacological strategies for COVID-19, focusing on treatments whose efficacy could be due, at least in part, to interference with the activation of the NLRP3 inflammasome. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,University of Turin, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Orbassano (TORINO), Italy
| | - Federica Foglietta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Carola Eva
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy.,University of Turin, Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Orbassano (TORINO), Italy
| | | | - Christoph Thiemermann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
11
|
The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications. Molecules 2020; 25:molecules25133061. [PMID: 32635492 PMCID: PMC7411588 DOI: 10.3390/molecules25133061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complications.
Collapse
|
12
|
Coco C, Sgarra L, Potenza MA, Nacci C, Pasculli B, Barbano R, Parrella P, Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int J Mol Sci 2019; 20:ijms20122949. [PMID: 31212911 PMCID: PMC6628049 DOI: 10.3390/ijms20122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
In both developing and industrialized Countries, the growing prevalence of Type 2 Diabetes Mellitus (T2DM) and the severity of its related complications make T2DM one of the most challenging metabolic diseases worldwide. The close relationship between genetic and environmental factors suggests that eating habits and unhealthy lifestyles may significantly affect metabolic pathways, resulting in dynamic modifications of chromatin-associated proteins and homeostatic transcriptional responses involved in the progression of T2DM. Epigenetic mechanisms may be implicated in the complex processes linking environmental factors to genetic predisposition to metabolic disturbances, leading to obesity and type 2 diabetes mellitus (T2DM). Endothelial dysfunction represents an earlier marker and an important player in the development of this disease. Dysregulation of the endothelial ability to produce and release vasoactive mediators is recognized as the initial feature of impaired vascular activity under obesity and other insulin resistance conditions and undoubtedly concurs to the accelerated progression of atherosclerotic lesions and overall cardiovascular risk in T2DM patients. This review aims to summarize the most current knowledge regarding the involvement of epigenetic changes associated with endothelial dysfunction in T2DM, in order to identify potential targets that might contribute to pursuing “precision medicine” in the context of diabetic illness.
Collapse
Affiliation(s)
- Celeste Coco
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Luca Sgarra
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Assunta Potenza
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Carmela Nacci
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (Foggia), Italy.
| | - Monica Montagnani
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
13
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
14
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
15
|
Reduced Susceptibility to Sugar-Induced Metabolic Derangements and Impairments of Myocardial Redox Signaling in Mice Chronically Fed with D-Tagatose when Compared to Fructose. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5042428. [PMID: 30327714 PMCID: PMC6169220 DOI: 10.1155/2018/5042428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/12/2018] [Indexed: 01/03/2023]
Abstract
Background D-tagatose is an isomer of fructose and is ~90% as sweet as sucrose with less caloric value. Nowadays, D-tagatose is used as a nutritive or low-calorie sweetener. Despite clinical findings suggesting that D-tagatose could be beneficial in subjects with type 2 diabetes, there are no experimental data comparing D-tagatose with fructose, in terms of metabolic derangements and related molecular mechanisms evoked by chronic exposure to these two monosaccharides. Materials and methods C57Bl/6j mice were fed with a control diet plus water (CD), a control diet plus 30% fructose syrup (L-Fr), a 30% fructose solid diet plus water (S-Fr), a control diet plus 30% D-tagatose syrup (L-Tg), or a 30% D-tagatose solid diet plus water (S-Tg), during 24 weeks. Results Both solid and liquid fructose feeding led to increased body weight, abnormal systemic glucose homeostasis, and an altered lipid profile. These effects were associated with vigorous increase in oxidative markers. None of these metabolic abnormalities were detected when mice were fed with both the solid and liquid D-tagatose diets, either at the systemic or at the local level. Interestingly, both fructose formulations led to significant Advanced Glycation End Products (AGEs) accumulation in mouse hearts, as well as a robust increase in both myocardial AGE receptor (RAGE) expression and NF-κB activation. In contrast, no toxicological effects were shown in hearts of mice chronically exposed to liquid or solid D-tagatose. Conclusion Our results clearly suggest that chronic overconsumption of D-tagatose in both formulations, liquid or solid, does not exert the same deleterious metabolic derangements evoked by fructose administration, due to differences in carbohydrate interference with selective proinflammatory and oxidative stress cascades.
Collapse
|
16
|
Aroor AR, Manrique-Acevedo C, DeMarco VG. The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovasc Diabetol 2018; 17:59. [PMID: 29669555 PMCID: PMC5907287 DOI: 10.1186/s12933-018-0704-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple population based analyses have demonstrated a high incidence of cardiovascular disease (CVD) and cardiovascular (CV) mortality in subjects with T2DM that reduces life expectancy by as much as 15 years. Importantly, the CV system is particularly sensitive to the metabolic and immune derangements present in obese pre-diabetic and diabetic individuals; consequently, CV dysfunction is often the initial CV derangement to occur and promotes the progression to end organ/tissue damage in T2DM. Specifically, diabetic CVD can manifest as microvascular complications, such as nephropathy, retinopathy, and neuropathy, as well as, macrovascular impairments, including ischemic heart disease, peripheral vascular disease, and cerebrovascular disease. Despite some progress in prevention and treatment of CVD, mainly via blood pressure and dyslipidemia control strategies, the impact of metabolic disease on CV outcomes is still a major challenge and persists in proportion to the epidemics of obesity and diabetes. There is abundant pre-clinical and clinical evidence implicating the DPP-4-incretin axis in CVD. In this regard, linagliptin is a unique DPP-4 inhibitor with both CV and renal safety profiles. Moreover, it exerts beneficial CV effects beyond glycemic control and beyond class effects. Linagliptin is protective for both macrovascular and microvascular complications of diabetes in preclinical models, as well as clinical models. Given the role of endothelial-immune cell interactions as one of the key events in the initiation and progression of CVD, linagliptin modulates these cell–cell interactions by affecting two important pathways involving stimulation of NO signaling and potent inhibition of a key immunoregulatory molecule.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
17
|
Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6905217. [PMID: 29359008 PMCID: PMC5735326 DOI: 10.1155/2017/6905217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.
Collapse
|
18
|
Anfinogenova Y, Grakova EV, Shvedova M, Kopieva KV, Teplyakov AT, Popov SV. Interdisciplinary approach to compensation of hypoglycemia in diabetic patients with chronic heart failure. Heart Fail Rev 2017; 23:481-497. [PMID: 28849410 DOI: 10.1007/s10741-017-9647-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is a chronic disease requiring lifelong control with hypoglycemic agents that must demonstrate excellent efficacy and safety profiles. In patients taking glucose-lowering drugs, hypoglycemia is a common cause of death associated with arrhythmias, increased thrombus formation, and specific effects of catecholamines due to sympathoadrenal activation. Focus is now shifting from merely glycemic control to multifactorial approach. In the context of individual drugs and classes, this article reviews interdisciplinary strategies evaluating metabolic effects of drugs for treatment of chronic heart failure (CHF) which can mask characteristic hypoglycemia symptoms. Hypoglycemia unawareness and cardiac autonomic neuropathy are discussed. Data suggesting that hypoglycemia modulates immune response are reviewed. The potential role of gut microbiota in improving health of patients with diabetes and CHF is emphasized. Reports stating that nondiabetic CHF patients can have life-threatening hypoglycemia associated with imbalance of thyroid hormones are discussed. Regular glycemic control based on HbA1c measurements and adequate pharmacotherapy remain the priorities in diabetes management. New antihyperglycemic drugs with safer profiles should be preferred in vulnerable CHF patients. Multidrug interactions must be considered. Emerging therapies with reduced hypoglycemia risk, telemedicine, sensor technologies, and genetic testing predicting hypoglycemia risk may help solving the challenges of hypoglycemia in CHF patients with diabetes. Interdisciplinary work may involve cardiologists, diabetologists/endocrinologists, immunologists, gastroenterologists, microbiologists, nutritionists, imaging specialists, geneticists, telemedicine experts, and other relevant specialists. This review emphasizes that systematic knowledge on pathophysiology of hypoglycemia in diabetic patients with CHF is largely lacking and the gaps in our understanding require further discoveries.
Collapse
Affiliation(s)
- Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111-a Kievskaya Street, Tomsk, Russia, 634012. .,National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, Russia, 634050.
| | - Elena V Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111-a Kievskaya Street, Tomsk, Russia, 634012
| | - Maria Shvedova
- Cardiovascular Research Center (CVRC), Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Kristina V Kopieva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111-a Kievskaya Street, Tomsk, Russia, 634012
| | - Alexander T Teplyakov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111-a Kievskaya Street, Tomsk, Russia, 634012
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111-a Kievskaya Street, Tomsk, Russia, 634012
| |
Collapse
|