1
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
2
|
Jawad M, Uthirapathy S, Altalbawy FMA, Oghenemaro EF, Rizaev J, Lal M, Eldesoqui M, Sharma N, Pramanik A, Al-Hamairy AK. Examining the role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease: a comprehensive review. Inflammopharmacology 2025; 33:573-592. [PMID: 39699843 DOI: 10.1007/s10787-024-01622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder that affects millions of people worldwide. One of the key pathological features of Alzheimer's disease is oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species and the body's ability to neutralize them with antioxidants. In recent years, there has been growing interest in the potential role of antioxidant supplementation in mitigating oxidative stress markers in Alzheimer's disease. This review paper aims to provide a comprehensive overview of the current research on antioxidant supplementation in Alzheimer's disease and its effects on oxidative stress markers. The paper will examine the underlying mechanisms of oxidative stress in Alzheimer's disease, the potential benefits of antioxidant supplementation, and the challenges and limitations of using antioxidants as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Subasini Uthirapathy
- Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia.
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, Babylon, Iraq
| |
Collapse
|
3
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
4
|
Rustichelli S, Lanni C, Zarà M, Guidetti GF, Torti M, Canobbio I. Curcumin Modulates Platelet Activation and ROS Production Induced by Amyloid Peptides: New Perspectives in Attenuating Prothrombotic Risk in Alzheimer's Disease Patients. Nutrients 2024; 16:4419. [PMID: 39771040 PMCID: PMC11678805 DOI: 10.3390/nu16244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyloid peptides, whose accumulation in the brain as senile plaques is associated with the onset of Alzheimer's disease, are also found in cerebral vessels and in circulation. In the bloodstream, amyloid peptides promote platelet adhesion, activation, oxidative stress, and thrombosis, contributing to the cardiovascular complications observed in Alzheimer's disease patients. Natural compounds, such as curcumin, are known to modulate platelet activation induced by the hemostatic stimuli thrombin and convulxin. In this study, we investigated the ability of curcumin to modulate platelet activation triggered by amyloid peptides, and we compared its effects with those displayed on platelet activation induced by physiological agonists. METHODS Commercial ultrapure curcumin was used, and platelet aggregation, granule secretion, phosphorylation of selected signaling proteins, and reactive oxygen species production were analyzed on isolated human platelets. RESULTS Our results demonstrate that curcumin effectively suppressed platelet aggregation induced by fibrillar amyloid peptides. This effect was associated with the reduction in intracellular signaling pathways involving PKC, PI3K, and MAPK. By contrast, platelet aggregation and activation induced by thrombin and convulxin were only partially reduced by preincubation with curcumin. Moreover, curcumin completely suppressed granule secretion only when platelets were stimulated with hemostatic agonists, but it had no effects upon stimulation with amyloid peptides. Additionally, curcumin reduced the production of reactive oxygen species induced by amyloid peptides with a stronger efficiency compared to platelets stimulated with thrombin. CONCLUSIONS These results indicate that curcumin displays selective and potent inhibitory activity on platelet responses to pathological stimuli, such as fibrillar amyloid peptides.
Collapse
Affiliation(s)
- Serena Rustichelli
- University School for Advanced Studies (IUSS), 27100 Pavia, Italy;
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marta Zarà
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Gianni Francesco Guidetti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.Z.); (G.F.G.); (M.T.)
| |
Collapse
|
5
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024; 61:10916-10940. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
6
|
Pawar N, Peña-Figueroa M, Verde-Sesto E, Maestro A, Alvarez-Fernandez A. Exploring the Interaction of Lipid Bilayers with Curcumin-Laponite Nanoparticles: Implications for Drug Delivery and Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406885. [PMID: 39466993 DOI: 10.1002/smll.202406885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Curcumin, the active compound in turmeric, is renowned for its anti-inflammatory, antioxidant, and antimicrobial properties, making it beneficial for treating conditions like arthritis, neurodegenerative diseases, and various cancers. Despite its promising therapeutic potential, curcumin's poor bioavailability-due to its rapid metabolism and low solubility-limits its clinical efficacy. To address this, recent research has focused on enhancing curcumin delivery using nanoparticles, liposomes, and novel nanomaterials. Among these, laponite, a synthetic nanoclay, has shown promise in improving curcumin delivery due to its unique properties, including large surface area, dual charge, and stability in solution. This study explores the use of curcumin-laponite nanoparticles as carrier vehicles for controlled delivery to in vitro model membranes. Utilizing advanced techniques such as neutron reflectometry, atomic force microscopy, quartz crystal microbalance with dissipation, and infrared spectroscopy, the interaction between curcumin-laponite nanoparticles and solid-supported lipid bilayers is monitored, revealing enhanced stability and controlled release of curcumin across the membrane. These findings pave the way for the development of curcumin-based therapies targeting cardiovascular, neurological, and oncological diseases, leveraging the synergistic effects of curcumin's biological activity and laponite's delivery capabilities.
Collapse
Affiliation(s)
- Nisha Pawar
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Miriam Peña-Figueroa
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Donostia-San, Sebastián, 20018, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Armando Maestro
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Alberto Alvarez-Fernandez
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU) - Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, San Sebastián, 20018, Spain
| |
Collapse
|
7
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
8
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
9
|
Wu Z, Li J, Xu Y, Guo R, Wang F, Liu Y, Wang S, Dong Y, Li B. Association of Physical Activity with Phenotypic Age among Populations with Different Breakfast Habits. Nutrients 2024; 16:575. [PMID: 38474704 DOI: 10.3390/nu16050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The global aging situation has reached a serious stage, and healthy lifestyles, like regular physical activity and eating breakfast, could slow the process. Phenotypic age (PhenoAge) is regarded as a novel measure of aging. Therefore, our study aimed to quantify the impact of physical activity and eating breakfast on aging via PhenoAge and phenotypic age acceleration (PhenoAgeAccel). METHODS A total of 3719 adults who participated in the National Health and Nutrition Examination Survey were involved in this study. Physical activity was divided into an active group and an inactive group. According to the number of reported breakfast recalls, eating breakfast was divided into the no recalls group, one recall group, and both recalls group. Sensitivity analysis was performed by stratified analysis. RESULTS Active physical activity was a protective factor for PhenoAge and PhenoAgeAccel. Compared to the inactive group, the β values of the active group were -8.36 (-10.09, -6.62) for PhenoAge and -1.67 (-2.21, -1.14) for PhenoAgeAccel. The stratified analysis results showed that in the groups reporting breakfast in both recalls, one recall, and no recalls, the β values of the active group were -8.84 (-10.70, -6.98), -8.17 (-12.34, -4.00), and -3.46 (-7.74, 0.82), respectively, compared to the inactive group. CONCLUSIONS Active physical activity was strongly correlated with lower values of PhenoAge and PhenoAgeAccel, but the association was no longer statistically significant when combined with not regularly eating breakfast.
Collapse
Affiliation(s)
- Zibo Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Yang Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Fengdan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Yan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Sizhe Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Yibo Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun 130021, China
| |
Collapse
|
10
|
Khedr SI, Gomaa MM, Mogahed NMFH, Gamea GA, Khodear GAM, Sheta E, Soliman NAH, El Saadany AA, Salama AM. Trichinella spiralis: A new parasitic target for curcumin nanoformulas in mice models. Parasitol Int 2024; 98:102810. [PMID: 37730195 DOI: 10.1016/j.parint.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Trichinosis spiralis is a global disease with significant economic impact. Albendazole is the current-treatment. Yet, the world-widely emerging antimicrobial resistance necessitates search for therapeutic substitutes. Curcumin is a natural compound with abundant therapeutic benefits. This study aimed to evaluate the potential of crude-curcumin, chitosan and for the first time curcumin-nano-emulsion and curcumin-loaded-chitosan-nanoparticles against Trichinella spiralis adults and larvae in acute and chronic trichinosis models. Trichinosis spiralis was induced in 96 Swiss-albino mice. Infected mice were divided into 2 groups. Group I constituted the acute model, where treatment started 2 h after infection for 5 successive days. Group II constituted the chronic model, where treatment started at the 30th day-post-infection and continued for 10 successive days (Refer to graphical abstract). Each group contained 8 subgroups that were designated Ia-Ih and IIa-IIh and included; a; Untreated-control, b; Albendazole-treated (Alb-treated), c; Crude-curcumin-treated (Cur-treated), d; Curcumin-nanoemulsion-treated (Cur-NE-treated), e; Albendazole and crude-curcumin-treated (Alb-Cur-treated), f; Albendazole and curcumin-nanoemulsion-treated (Alb-Cur-NE-treated), g; Chitosan-nanoparticles-treated (CS-NPs-treated) and h; Curcumin-loaded-chitosan-nanoparticles-treated (Cur-CS-NPs-treated). Additionally, six mice constituted control-uninfected group III. The effects of the used compounds on the parasite tegument, in-vivo parasitic load-worm burden, local pathology and MDA concentration in small intestines of acutely-infected and skeletal muscle of chronically-infected mice were studied. Results showed that albendazole was effective, yet, its combination with Cur-NE showed significant potentiation against adult worms and muscle larvae and alleviated the pathology in both models. Cur-CS-NPs exhibited promising results in both models. Crude-curcumin showed encouraging results especially against muscle larvae on long-term use. Treatments effectively reduced parasite load, local MDA level and CD31 expression with anti-inflammatory effect in intestine and muscle sections.
Collapse
Affiliation(s)
- Safaa Ibrahim Khedr
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Maha Mohamed Gomaa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Ghada A Gamea
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Gehan A M Khodear
- Medical technology center, Medical Research Institute, Alexandria University, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Nada A H Soliman
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
11
|
Polis B, Samson AO. Enhancing cognitive function in older adults: dietary approaches and implications. Front Nutr 2024; 11:1286725. [PMID: 38356861 PMCID: PMC10864441 DOI: 10.3389/fnut.2024.1286725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Natural aging encompasses physiological and psychological changes that impact overall health and quality of life. Mitigating these effects requires physical and mental exercise, coupled with proper nutrition. Notably, protein malnutrition emerges as a potential risk factor for senile dementia, with insufficient intake correlating with premature cognitive decline. Adequate protein intake in the elderly positively associates with memory function and lowers cognitive impairment risk. Considering diet as a modifiable risk factor for cognitive decline, extensive research has explored diverse dietary strategies to prevent dementia onset in older adults. However, conclusive results remain limited. This review aims to synthesize recent evidence on effective dietary approaches to enhance cognitive function and prognosis in older individuals. Specifically, the study evaluates complex multicomponent programs, protein-rich diets, and branched-chain amino acid supplementation. By addressing the nexus of nutrition and cognitive health, this review contributes to understanding viable interventions for promoting cognitive well-being in aging populations.
Collapse
Affiliation(s)
- Baruh Polis
- Laboratory of Computational Biology and Drug Discovery, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | | |
Collapse
|
12
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
13
|
Chen H, Li H, Yin X, Liu Y, Zhang T, Wu H, Kang G, Yu Y, Bai M, Bao L, Yang J, Dong W. The therapeutic effect of Zhenbao pills on behavioral changes in zebrafish caused by aluminum chloride. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
14
|
Akanchise T, Angelova A. Potential of Nano-Antioxidants and Nanomedicine for Recovery from Neurological Disorders Linked to Long COVID Syndrome. Antioxidants (Basel) 2023; 12:393. [PMID: 36829952 PMCID: PMC9952277 DOI: 10.3390/antiox12020393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, "brain fog", memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, we highlight the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
15
|
Lei F, Li P, Chen T, Wang Q, Wang C, Liu Y, Deng Y, Zhang Z, Xu M, Tian J, Ren W, Li C. Recent advances in curcumin-loaded biomimetic nanomedicines for targeted therapies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Mani R, Sha Sulthana A, Muthusamy G, Elangovan N. Progress in the development of naturally derived active metabolites-based drugs: Potential therapeutics for Alzheimer's disease. Biotechnol Appl Biochem 2022; 69:2713-2732. [PMID: 35067971 DOI: 10.1002/bab.2317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multitargeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration, thereby allowing successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents.
Collapse
Affiliation(s)
- Renuka Mani
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ahmed Sha Sulthana
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Ganesan Muthusamy
- Department of Biochemistry, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
17
|
Abdelkader H, Mustafa WW, Alqahtani AM, Alsharani S, Al Fatease A, Alany RG. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. J Pharm Pharmacol 2022; 74:1546-1567. [PMID: 35972442 DOI: 10.1093/jpp/rgac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ageing is a major cause of multiple age-related diseases. Several mechanisms have been reported to contribute to these abnormalities including glycation, oxidative stress, the polyol pathway and osmotic stress. Glycation, unlike glycosylation, is an irregular biochemical reaction to the formation of active advanced glycation end-products (AGEs), which are considered to be one of the causes of these chronic diseases. This study provides a recent and comprehensive review on the possible causes, mechanisms, types, analytical techniques, diseases and treatments of the toxic glycation end products. KEY FINDINGS Several mechanisms have been found to play a role in generating hyperglycaemia-induced oxidative stress including an increase in the levels of reactive oxygen species (ROS), increase in the levels of AGEs, binding of AGEs and their receptors (RAGE) and the polyol pathway and thus have been investigated as promising novel targets. SUMMARY This review focuses on the key mechanisms attributed to cumulative increases of glycation and pathological RAGE expression as a significant cause of multiple age-related diseases, and reporting on different aspects of antiglycation therapy as a novel approach to managing/treating age-related diseases. Additionally, historical, current and possible future antiglycation approaches will be presented focussing on novel drug delivery methods.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W Mustafa
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK.,Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alsharani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Hassan NA, Alshamari AK, Hassan AA, Elharrif MG, Alhajri AM, Sattam M, Khattab RR. Advances on Therapeutic Strategies for Alzheimer's Disease: From Medicinal Plant to Nanotechnology. Molecules 2022; 27:4839. [PMID: 35956796 PMCID: PMC9369981 DOI: 10.3390/molecules27154839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic dysfunction of neurons in the brain leading to dementia. It is characterized by gradual mental failure, abnormal cognitive functioning, personality changes, diminished verbal fluency, and speech impairment. It is caused by neuronal injury in the cerebral cortex and hippocampal area of the brain. The number of individuals with AD is growing at a quick rate. The pathology behind AD is the progress of intraneuronal fibrillary tangles, accumulation of amyloid plaque, loss of cholinergic neurons, and decrease in choline acetyltransferase. Unfortunately, AD cannot be cured, but its progression can be delayed. Various FDA-approved inhibitors of cholinesterase enzyme such as rivastigmine, galantamine, donepezil, and NDMA receptor inhibitors (memantine), are available to manage the symptoms of AD. An exhaustive literature survey was carried out using SciFinder's reports from Alzheimer's Association, PubMed, and Clinical Trials.org. The literature was explored thoroughly to obtain information on the various available strategies to prevent AD. In the context of the present scenario, several strategies are being tried including the clinical trials for the treatment of AD. We have discussed pathophysiology, various targets, FDA-approved drugs, and various drugs in clinical trials against AD. The goal of this study is to shed light on current developments and treatment options, utilizing phytopharmaceuticals, nanomedicines, nutraceuticals, and gene therapy.
Collapse
Affiliation(s)
- Nasser A. Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia;
| | - Allam A. Hassan
- Department of Chemistry, Faculty of Science, Suez University, Suez 43221, Egypt;
- Department of Chemistry, College of Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed G. Elharrif
- Department of Basic Medical Sciences, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Abdullah M. Alhajri
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Mohammed Sattam
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; (A.M.A.); (M.S.)
| | - Reham R. Khattab
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
19
|
Lv H, Wang Y, Yang X, Ling G, Zhang P. Application of curcumin nanoformulations in Alzheimer's disease: prevention, diagnosis and treatment. Nutr Neurosci 2022:1-16. [PMID: 35694842 DOI: 10.1080/1028415x.2022.2084550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Alzheimer's disease (AD) is a serious neurodegenerative disease. Although many therapeutic strategies have been studied, their clinical applications are immature. Moreover, these methods can only alleviate symptoms rather than cure it, posing a challenge to brain health in older adults worldwide. Curcumin (CUR) is a very promising natural compound for nerve protection and treatment. It can prevent and treat AD, and on the other hand, its fluorescence properties can be used in the diagnosis of AD. However, CUR is characterized by very low water solubility, fluid instability, rapid metabolism, low bioavailability and difficulty in penetrating the biological barriers, which limit its application. Nanocarriers are a potential material to improve the biocompatibility of CUR and its ability to cross biological barriers. Therefore, delivering CUR by nanocarriers is an effective method to achieve better efficacy. Methods: In this review, the preventive, therapeutic and diagnostic effects of CUR nanoformulations on AD, as well as various patents, clinical trials and experimental research progress in this field are discussed. The aim is to provide detailed reference and practical suggestions for future research. Results: CUR has a variety of pharmacological activities in the prevention and treatment of AD, and its nanoformulation can effectively improve solubility, bioavailability and the ability to penetrate the blood-brain barrier. Significant benefits have been observed in the current study. Discussion: CUR formulations have a good prospect in the prevention, diagnosis and treatment of AD, but the safety and principle of its administration need more detailed study in the future.
Collapse
Affiliation(s)
- Hongqian Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
20
|
2D QSAR, design, docking study and ADMET of some N-aryl derivatives concerning inhibitory activity against Alzheimer disease. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alzheimer disease (AD) is an ailment that disturbs mainly people of old age. The fundamental remedial way to deal with AD depends on the utilization of AChEI. The design of new intense and particular AChEI is critical in drug discovery. In silico technique will be used to solve the above problem. A new method was established to discover novel agents with better biological activity against Alzheimer disease.
Results
A validated model was established in this research to predict the biological activities of some anti-Alzheimer compounds and to design new hypothetical drugs influenced with molecular properties in the derived model; ATS4i, MATS2e, SpMax7_BhS, Energy(HOMO) and Molecular Weight and showed good correlation R2 = 0.936, R2adj = 0.907, Q2cv = 0.88, LOF = 0.0154 and R2ext = 0.881. All the descriptors in the model were in good agreement with the 15 test set predicted values. Five compounds were designed using D35rm as a template with improved activity. The compounds have higher and better binding scores (− 10.1, − 9.4, − 9.3, − 9.1 and − 8.1 all in kcal/mol) than the approved drugs (Donepezil = − 7.4 kcal/mol).
Conclusion
As the outcome, every one of the selected and the designed compounds is created and improved as potential anti-Alzheimer agents. Despite this, the further test examines and in vivo investigations are recommended to assess the method of the activities and other pharmacological impacts on these compounds.
Collapse
|
21
|
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022; 16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022] Open
Abstract
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Collapse
Affiliation(s)
- Ratan Das
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Gajendra Kumar Mourya
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Neelesh Kumar
- Biomedical Applications Unit, Central Scientific Instruments Organisation, Chandigarh, India
| | - Masaraf Hussain
- Department of Neurology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| |
Collapse
|
22
|
Antioxidants in Alzheimer's Disease: Current Therapeutic Significance and Future Prospects. BIOLOGY 2022; 11:biology11020212. [PMID: 35205079 PMCID: PMC8869589 DOI: 10.3390/biology11020212] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) rate is accelerating with the increasing aging of the world's population. The World Health Organization (WHO) stated AD as a global health priority. According to the WHO report, around 82 million people in 2030 and 152 million in 2050 will develop dementia (AD contributes 60% to 70% of cases), considering the current scenario. AD is the most common neurodegenerative disease, intensifying impairments in cognition, behavior, and memory. Histopathological AD variations include extracellular senile plaques' formation, tangling of intracellular neurofibrils, and synaptic and neuronal loss in the brain. Multiple evidence directly indicates that oxidative stress participates in an early phase of AD before cytopathology. Moreover, oxidative stress is induced by almost all misfolded protein lumps like α-synuclein, amyloid-β, and others. Oxidative stress plays a crucial role in activating and causing various cell signaling pathways that result in lesion formations of toxic substances, which foster the development of the disease. Antioxidants are widely preferred to combat oxidative stress, and those derived from natural sources, which are often incorporated into dietary habits, can play an important role in delaying the onset as well as reducing the progression of AD. However, this approach has not been extensively explored yet. Moreover, there has been growing evidence that a combination of antioxidants in conjugation with a nutrient-rich diet might be more effective in tackling AD pathogenesis. Thus, considering the above-stated fact, this comprehensive review aims to elaborate the basics of AD and antioxidants, including the vitality of antioxidants in AD. Moreover, this review may help researchers to develop effectively and potentially improved antioxidant therapeutic strategies for this disease as it also deals with the clinical trials in the stated field.
Collapse
|
23
|
Shumail H, Khalid S, Alqahtani T, Algahtany M, Azhar Ud Din M, Alqahtani A. An overview on therapeutic role of Diferuloylmethane (Curcumin) in Azheimer’s disease and sleep disorders. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin is widely used in spices in Asia. It has been widely explored for various diseases as therapeutic agent. Alzheimer’s disease (AD) is a neurodegenerative disease associated with dementia and cognitive disabilities. With the progression of disease, various changes appear in the brain cells that greatly affect the daily routine of the patient including sleep-wake disturbances. In the last few decades, extensive research has been carried out on this disease suggesting the development of non-steroidal anti-inflammatory drugs for its treatment. Since long, turmeric has been used in Asian countries as a home remedy for treating various ailments. Curcumin is an active ingredient isolated from the turmeric plant and is composed of curcuminoids. Because of its anti-inflammatory, antioxidant, anti-apoptotic and neuroprotective properties, curcumin can be safely administered to stop the progression of dementia and can be used for the development of such drugs that can reverse the neurotic damage caused by AD. This review article provides a comprehensive overview on the research carried out for AD using curcumin as active model drug.
Collapse
Affiliation(s)
- Hoor Shumail
- Department of Microbiology, Women University Mardan, Pakistan
| | - Shah Khalid
- Department of Botany, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mubarak Algahtany
- Division of Neurosurgery, Department of Surgery, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M. Azhar Ud Din
- Professor Xu Jiaping Molecular Biology Laboratory, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
24
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
25
|
Mukherjee S, Mishra AK, Peer GDG, Bagabir SA, Haque S, Pandey RP, Raj VS, Jain N, Pandey A, Kar SK. The Interplay of the Unfolded Protein Response in Neurodegenerative Diseases: A Therapeutic Role of Curcumin. Front Aging Neurosci 2021; 13:767493. [PMID: 34867295 PMCID: PMC8640216 DOI: 10.3389/fnagi.2021.767493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Abnormal accumulation of misfolded proteins in the endoplasmic reticulum and their aggregation causes inflammation and endoplasmic reticulum stress. This promotes accumulation of toxic proteins in the body tissues especially brain leading to manifestation of neurodegenerative diseases. The studies suggest that deregulation of proteostasis, particularly aberrant unfolded protein response (UPR) signaling, may be a common morbific process in the development of neurodegeneration. Curcumin, the mixture of low molecular weight polyphenolic compounds from turmeric, Curcuma longa has shown promising response to prevents many diseases including current global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and neurodegenerative disorders. The UPR which correlates positively with neurodegenerative disorders were found affected by curcumin. In this review, we examine the evidence from many model systems illustrating how curcumin interacts with UPR and slows down the development of various neurodegenerative disorders (ND), e.g., Alzheimer's and Parkinson's diseases. The recent global increase in ND patients indicates that researchers and practitioners will need to develop a new pharmacological drug or treatment to manage and cure these neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - G. D. Ghouse Peer
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Sali Abubaker Bagabir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Ramendra Pati Pandey
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - V. Samuel Raj
- Department of Biotechnology, Sri Ramaswamy Memorial (SRM) University, Sonepat, India
| | - Neeraj Jain
- Division of Cancer Biology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Santosh Kumar Kar
- Nano Herb Research Laboratory, Kalinga Institute of Industrial Technology (KIIT) Technology Business Incubator, KIIT University, Bhubaneswar, India
| |
Collapse
|
26
|
Nguyen Thi KO, Do HG, Duong NT, Nguyen TD, Nguyen QT. Geographical Discrimination of Curcuma longa L. in Vietnam Based on LC-HRMS Metabolomics. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211045479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Curcuma longa L. has been used as a food, cosmetic, traditional medicine, and natural dye for a long time in tropical and subtropical regions such as India, China, and Vietnam. Curcuminoids are considered the main bioactive compounds in this plant. This study focuses on metabolites profiling of the rhizome methanolic extract of C longa samples collected in 6 different provinces in Vietnam using liquid chromatography coupled with high-resolution mass spectrometry. The partial least-squares discriminant analysis model was then established to discriminate its metabolomes and identify the chemomarkers that help to distinguish C longa from 6 geographical locations. Consequently, collected samples were segregated into 3 main groups: northern (Lang Son, with typical content of 2 terpenoids), center (Nghe An), and southern highland (Lam Dong, with distinctive profile of 3 curcuminoids). The absolute curcuminoids’ amount was also measured based on the calibration curve of reference standards. The differential metabolites including curcumin, demethoxycurcumin, and bisdemethoxycurcumin were found with the highest range in samples from Lang Son, indicating the excellent quality of turmeric cultivated in this area.
Collapse
Affiliation(s)
- Kieu-Oanh Nguyen Thi
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang-Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ngoc-Tu Duong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quang-Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
27
|
Chen Z, Farag MA, Zhong Z, Zhang C, Yang Y, Wang S, Wang Y. Multifaceted role of phyto-derived polyphenols in nanodrug delivery systems. Adv Drug Deliv Rev 2021; 176:113870. [PMID: 34280511 DOI: 10.1016/j.addr.2021.113870] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, American University in Cairo AUC, Cairo, Egypt
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
28
|
Rossino MG, Amato R, Amadio M, Rosini M, Basagni F, Cammalleri M, Dal Monte M, Casini G. A Nature-Inspired Nrf2 Activator Protects Retinal Explants from Oxidative Stress and Neurodegeneration. Antioxidants (Basel) 2021; 10:1296. [PMID: 34439544 PMCID: PMC8389314 DOI: 10.3390/antiox10081296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress (OS) plays a key role in retinal dysfunctions and acts as a major trigger of inflammatory and neurodegenerative processes in several retinal diseases. To prevent OS-induced retinal damage, approaches based on the use of natural compounds are actively investigated. Recently, structural features from curcumin and diallyl sulfide have been combined in a nature-inspired hybrid (NIH1), which has been described to activate transcription nuclear factor erythroid-2-related factor-2 (Nrf2), the master regulator of the antioxidant response, in different cell lines. We tested the antioxidant properties of NIH1 in mouse retinal explants. NIH1 increased Nrf2 nuclear translocation, Nrf2 expression, and both antioxidant enzyme expression and protein levels after 24 h or six days of incubation. Possible toxic effects of NIH1 were excluded since it did not alter the expression of apoptotic or gliotic markers. In OS-treated retinal explants, NIH1 strengthened the antioxidant response inducing a massive and persistent expression of antioxidant enzymes up to six days of incubation. These effects resulted in prevention of the accumulation of reactive oxygen species, of apoptotic cell death, and of gliotic reactivity. Together, these data indicate that a strategy based on NIH1 to counteract OS could be effective for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Maria Grazia Rossino
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
| | - Rosario Amato
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.R.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (M.R.); (F.B.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.R.); (R.A.); (M.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
29
|
Curcumin Loaded PEGylated Nanoemulsions Designed for Maintained Antioxidant Effects and Improved Bioavailability: A Pilot Study on Rats. Int J Mol Sci 2021; 22:ijms22157991. [PMID: 34360758 PMCID: PMC8347926 DOI: 10.3390/ijms22157991] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of -40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078-0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.
Collapse
|
30
|
Cunha S, Forbes B, Sousa Lobo JM, Silva AC. Improving Drug Delivery for Alzheimer's Disease Through Nose-to-Brain Delivery Using Nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ Hydrogels. Int J Nanomedicine 2021; 16:4373-4390. [PMID: 34234432 PMCID: PMC8256381 DOI: 10.2147/ijn.s305851] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Current treatments for Alzheimer's disease (AD) attenuate the progression of symptoms and aim to improve the patient's quality of life. Licensed medicines are mostly for oral administration and are limited by the difficulty in crossing the blood-brain barrier (BBB). Here in, the nasal route has been explored as an alternative pathway that allows drugs to be directly delivered to the brain via the nasal cavity. However, clearance mechanisms in the nasal cavity impair the delivery of drugs to the brain and limit their bioavailability. To optimize nose-to-brain delivery, formulations of lipid-based nanosystems, namely nanoemulsions and nanostructured lipid carriers (NLC), formulated in situ gelling hydrogels have been proposed as approaches for nose-to-brain delivery. These formulations possess characteristics that facilitate drug transport directly to the brain, minimizing side effects and maximizing therapeutic benefits. It has been recommended that the manufacture of these drug delivery systems follows the quality by design (QbD) approach based on nasal administration requirements. This review provides an insight into the current knowledge of the AD, highlighting the need for an effective drug delivery to the brain. Considering the mounting interest in the use of nanoemulsions and NLC for nose-to-brain delivery, a description of drug transport pathways in the nasal cavity and the application of these nanosystems and their in situ hydrogels through the intranasal route are presented. Relevant preclinical studies are summarised, and the future prospects for the use of lipid-based nanosystems in the treatment of AD are emphasized.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 9NH, UK
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, Porto, 4249-004, Portugal
| |
Collapse
|
31
|
Ege D. Action Mechanisms of Curcumin in Alzheimer's Disease and Its Brain Targeted Delivery. MATERIALS 2021; 14:ma14123332. [PMID: 34208692 PMCID: PMC8234049 DOI: 10.3390/ma14123332] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
AD is a chronic neurodegenerative disease. Many different signaling pathways, such as Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of the most promising is curcumin; however, because it has difficulty permeating the blood–brain barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating AD and indicated the challenges that require further research.
Collapse
Affiliation(s)
- Duygu Ege
- Biomedical Engineering, Boğaziçi University, Rasathane Cd, Kandilli Campus, Istanbul 34684, Turkey
| |
Collapse
|
32
|
Talebi M, Kakouri E, Talebi M, Tarantilis PA, Farkhondeh T, İlgün S, Pourbagher-Shahri AM, Samarghandian S. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Rev Neurother 2021; 21:625-642. [PMID: 33910446 DOI: 10.1080/14737175.2021.1923479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanying memory deficits. The available pharmaceutical care has some limitations mostly entailing side effects, shelf-life, and patient's compliance. The momentous implications of nutraceuticals in AD have attracted scientists. Several preclinical studies for the investigation of nutraceuticals have been conducted.Areas covered: This review focuses on the potential use of a nutraceuticals-based therapeutic approach to treat and prevent AD. Increasing knowledge of AD pathogenesis has led to the discovery of new therapeutic targets including pathophysiological mechanisms and various cascades. Hence, the present contribution will attend to the most popular and effective nutraceuticals with proposed brief mechanisms entailing antioxidant, anti-inflammatory, autophagy regulation, mitochondrial homeostasis, and more. Therefore, even though the effectiveness of nutraceuticals cannot be dismissed, it is essential to do further high-quality randomized clinical trials.Expert opinion: According to the potential of nutraceuticals to combat AD as multi-target directed drugs, there is critical importance to assess them as feasible lead compounds for drug discovery and development. To the best of the authors' knowledge, modification of blood-brain barrier permeability, bioavailability, and features of randomized clinical trials should be considered in prospective studies.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eleni Kakouri
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States.,Food Safety Net Services, San Antonio, Texas, United States
| | - Petros A Tarantilis
- Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
33
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
34
|
Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S. Role of natural products for the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 898:173974. [PMID: 33652057 DOI: 10.1016/j.ejphar.2021.173974] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Negative psychological and physiological consequences of neurodegenerative disorders represent a high social and health cost. Among the neurodegenerative disorders Alzheimer's disease (AD) is recognized as a leading neurodegenerative condition and a primary cause of dementia in the elderlys. AD is considered as neurodegenerative disorder that progressively impairs cognitive function and memory. According to current epidemiological data, about 50 milLion people worldwide are suffering from AD. The primary symptoms of AD are almost inappreciable and usually comprise forgetfulness of recent events. Numerous processes are involved in the development of AD, for example oxidative stress (OS) mainly due to mitochondrial dysfunction, intracellular the accumulation of hyperphosphorylated tau (τ) proteins in the form of neurofibrillary tangles, excessive the accumulation of extracellular plaques of beta-amyloid (Aβ), genetic and environmental factors. Running treatments only attenuate symptoms and temporarily reduce the rate of cognitive progression associated with AD. This means that most treatments focus only on controlLing symptoms, particularly in the initial stages of the disease. In the past, the first choice of treatment was based on natural ingredients. In this sense, diverse natural products (NPs) are capable to decrease the symptoms and alleviate the development of several diseases including AD attracting the attention of the scientific community and the pharmaceutical industry. Specifically, numerous NPs including flavonoids, gingerols, tannins, anthocyanins, triterpenes and alkaloids have been shown anti-inflammatory, antioxidant, anti-amyloidogenic, and anti-choLinesterase properties. This review provide a summary of the pathogenesis and the therapeutic goals of AD. It also discusses the available data on various plants and isolated natural compounds used to prevent and diminish the symptoms of AD.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, TUMS, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University Research Institute of Health Sciences (IUNICS), and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
35
|
Romanucci V, Giordano M, De Tommaso G, Iuliano M, Bernini R, Clemente M, Garcia-Viñuales S, Milardi D, Zarrelli A, Di Fabio G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem 2021; 16:1172-1183. [PMID: 33326184 DOI: 10.1002/cmdc.202000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. Increasing evidence has shown that aggregation of amyloid β (Aβ) and oxidative stress are strictly interconnected, and their modulation might have a positive and synergic effect in contrasting AD-related impairments. Herein, a new and efficient fragment-based approach towards tyrosol phosphodiester derivatives (TPDs) has been developed starting from suitable tyrosol building blocks and exploiting the well-established phosphoramidite chemistry. The antioxidant activity of new TPDs has been tested as well as their ability to inhibit Aβ protein aggregation. In addition, their metal chelating ability has been evaluated as a possible strategy to develop new natural-based entities for the prevention or therapy of AD. Interestingly, TPDs containing a catechol moiety have demonstrated highly promising activity in inhibiting the aggregation of Aβ40 and a strong ability to chelate biometals such as CuII and ZnII .
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Maddalena Giordano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Sara Garcia-Viñuales
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
36
|
Wang C, Yang H, Li J. Combination of Microwave, Ultrasonic, Enzyme Assisted Method for Curcumin Species Extraction from Turmeric (Curcuma Longa L.) and Evaluation of their Antioxidant Activity. EFOOD 2021. [DOI: 10.2991/efood.k.210329.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
37
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
38
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
39
|
Khaket TP, Singh MP, Khan I, Kang SC. In vitro and in vivo studies on potentiation of curcumin-induced lysosomal-dependent apoptosis upon silencing of cathepsin C in colorectal cancer cells. Pharmacol Res 2020; 161:105156. [DOI: 10.1016/j.phrs.2020.105156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
|
40
|
Dezhampanah H, Shabanzade Z. Investigation of binding interaction between human serum albumin with zirconium complex of curcumin and curcumin. J Biomol Struct Dyn 2020; 40:722-732. [PMID: 32930062 DOI: 10.1080/07391102.2020.1819421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current study investigates the binding process of Zr(CUR) as a novel six-coordinate complex of zirconium with curcumin ligand and curcumin (CUR); as the main pharmacologically active ingredient of turmeric to human serum albumin (HSA); using fluorescence spectroscopy, infrared spectroscopy and molecular docking techniques. The fluorimetric results revealed that Zr(CUR) and CUR could effectively quench the endogenous fluorescence of HSA, formed a 1:1 complex, with a static quenching mechanism. The distance between donor (HSA) and acceptor (Zr(CUR) and CUR) were determined to be 3.15 nm for Zr(CUR) and 2.95 nm for CUR on the basis of the Forester's theory of non-radiative energy transfer. Results of the infrared absorption spectrum show that the secondary structure of HSA changes for both types. Molecular docking results indicated that for structure with minimum binding energy Zr(CUR) and CUR are in the position between IIA and IIIA. Also, a docking study showed that Zr(CUR) and CUR have several hydrogen bonds and Van der Waals contact with HSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Dezhampanah
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Zahra Shabanzade
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
41
|
Synthesis of new symmetric cyclic and acyclic halocurcumin analogues typical precursors for hybridization. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Ahmed A, Ghallab EH, Shehata M, Zekri ARN, Ahmed OS. Impact of nano-conjugate on Drosophila for early diagnosis of Alzheimer's disease. NANOTECHNOLOGY 2020; 31:365102. [PMID: 32045897 DOI: 10.1088/1361-6528/ab7535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease. Recent identification of AD biomarkers has led to the diagnosis of AD before the onset of dementia. It has been shown that Drosophila melanogaster is a valuable model for studying human neurodegeneration, including AD. According to its properties, curcumin shows promising potential for the diagnosis of AD. In order to improve its use, new formulations, including nanotechnology-based delivery systems, have been applied. The current study aims to diagnose AD by detecting the accumulation of amyloid beta-peptide via carbon-dot-curcumin nanoparticle conjugation in Drosophila. The accumulation of amyloid beta-peptide has been detected via the conjugate using the fluorescence imaging technique. These results suggest that carbon-dot-curcumin nanoparticle conjugation could be used as a diagnostic tool for AD.
Collapse
Affiliation(s)
- Aya Ahmed
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al-Ainist., Fom El-Khaleeg, Cairo 11976, Egypt
| | | | | | | | | |
Collapse
|
43
|
Jia S, Sun Y, Li L, Wang R, Xiang Y, Li S, Zhang Y, Jiang H, Du Z. Discrimination of turmeric from different origins in China by MRM-based curcuminoid profiling and multivariate analysis. Food Chem 2020; 338:127794. [PMID: 32798827 DOI: 10.1016/j.foodchem.2020.127794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
In this research, a three-step strategy was utilized for discriminating turmeric samples from different provinces and regions in China. Firstly, MRM-based UPLC-MS/MS method for chemical profiling of curcuminoids in turmeric samples was established. Then, response surface methodology was applied for optimizing the extraction process of targeted curcuminoids. Finally, multivariate analysis was conducted for systematic characterization of 66 curcuminoids in turmeric. Principal component analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) revealed that turmeric samples from Sichuan and other regions could be classified into two distinct groups. Turmeric samples from the same group had similar curcuminoids content distribution. 25 differential curcuminoids were discovered through OPLS-DA, among which most curcuminoids were more abundant in Sichuan. Furthermore, turmeric samples from different provinces could be clearly discriminated based on hierarchical cluster analysis (HCA) using the screened differential curcuminoids.
Collapse
Affiliation(s)
- Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Yi Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Lieyao Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Yi Xiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Hongren Biopharmaceutical Inc., Wuhan, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Xu M, Ni H, Xu L, Shen H, Deng H, Wang Y, Yao M. B14 ameliorates bone cancer pain through downregulating spinal interleukin-1β via suppressing neuron JAK2/STAT3 pathway. Mol Pain 2020; 15:1744806919886498. [PMID: 31615322 PMCID: PMC6876167 DOI: 10.1177/1744806919886498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Curcumin has several pharmacological properties such as anti-inflammatory, antioxidant, and neuroprotective activities. B14 is a curcumin analogue and is considered to be a more potent compound with preserved pharmacodynamic activities. Based on the previous research studies, janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a remarkable role in inflammation, chronic pain, and even contributes to the pathogenesis of neuropathic pain. Pro-inflammatory cytokines interleukin-1β is a downstream factor of JAK2/STAT3 signal transition pathway, which participates in neuron injury and inflammation. We hypothesized that this signal transition pathway played an indispensable role in bone cancer pain. We herein established a bone cancer pain model to monitor the variation of JAK2/STAT3 signal transduction pathway and measured the effect of B14. The results in bone cancer pain model showed that (i) the levels of interleukin-1β were elevated, and the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 were increased; (ii) double immunostaining showed that p-JAK2, p-STAT3, and interleukin-1β were colocalized primarily with neurons, rather than with astrocytes or microglial cells; (iii) B14 injection (intraperitoneally) markedly eased bone cancer pain; (iv) Western blotting showed that B14 injection lowered p-JAK2, p-STAT3, and interleukin-1β levels, meanwhile the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 was reduced; (v) immunofluorescence results also confirmed decreased levels of p-JAK2, p-STAT3, and interleukin-1β in B14 treatment group. These findings suggested that B14 injection attenuated bone cancer pain in rats. This intervention inhibited JAK2/STAT3 cascade activation, downregulating interleukin-1β expression in spinal dorsal horn.
Collapse
Affiliation(s)
- Miao Xu
- The Second Affiliate Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Hui Shen
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Housheng Deng
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| | - Yungong Wang
- The Affiliated Zhuzhou Hospital Xiangya Medical College, Changsha, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, China
| |
Collapse
|
45
|
Wilson B, Geetha KM. Neurotherapeutic applications of nanomedicine for treating Alzheimer's disease. J Control Release 2020; 325:25-37. [PMID: 32473177 DOI: 10.1016/j.jconrel.2020.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive, irreversible, fatal brain disease which disturbs cognitive functions. It affects 35 million people worldwide and the number of people suffering may increase to 100 million by 2050 if no effective treatments are available. The present treatment improves cognitive functions and provide temporary symptomatic relief, but do not stop or delay the disease progression. Moreover, they are mainly available as conventional oral dosage forms and these conventional oral medications lack brain specificity and also produce side effects which leads to poor patient compliance. Brain drug targeting by nanomedicines is a promising approach to improve brain targeting specificity, brain bioavailability and patient compliance. The present review discuses about the currently available pharmacotherapy for AD and the neurotherapeutic applications as well as the advancements of nanomedicine for treating AD. It also highlights the recent advancements of various nanomedicines containing phytopharmaceuticals for treating AD. It is believed that nanomedicines containing approved drugs can be transformed into the clinics hence improve the life style of AD patients.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
46
|
Gao C, Chu X, Gong W, Zheng J, Xie X, Wang Y, Yang M, Li Z, Gao C, Yang Y. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer's disease. J Nanobiotechnology 2020; 18:71. [PMID: 32404183 PMCID: PMC7222444 DOI: 10.1186/s12951-020-00626-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although many therapeutic strategies for Alzheimer's disease (AD) have been explored, these strategies are seldom used in the clinic. Therefore, AD therapeutic research is still urgently needed. One major challenge in the field of nanotherapeutics is to increase the selective delivery of drugs to a targeted location. Herein, we devised and tested a strategy for delivery of nanoparticles to neurons to inhibit tau aggregation by directly targeting p-tau. RESULTS Curcumin (CUR) is loaded onto red blood cell (RBC) membrane-coated PLGA particles bearing T807 molecules attached to the RBC membrane surface (T807/RPCNP). With the advantage of the suitable physicochemical properties of the PLGA nanoparticles and the unique biological functions of the RBC membrane, the RPCNP are stabilized and promote sustained CUR release, which provided improved biocompatibility and resulted in long-term presence in the circulation. Under the synergistic effects of T807, T807/RPCNP can not only effectively penetrate the blood-brain barrier (BBB), but they also possess high binding affinity to hyperphosphorylated tau in nerve cells where they inhibit multiple key pathways in tau-associated AD pathogenesis. When CUR was encapsulated, our data also demonstrated that CUR-loaded T807/RPCNP NPs can relieve AD symptoms by reducing p-tau levels and suppressing neuronal-like cells death both in vitro and in vivo. The memory impairment observed in an AD mouse model is significantly improved following systemic administration of CUR-loaded T807/RPCNP NPs. CONCLUSION Intravenous neuronal tau-targeted T807-modified novel biomimetic nanosystems are a promising clinical candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chunhong Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaoyang Chu
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jinpeng Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiangyang Xie
- General Hospital of Central Theater of the PLA, Wuhan, 430070, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
47
|
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, Yang Y, Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater 2020; 108:285-299. [PMID: 32251785 DOI: 10.1016/j.actbio.2020.03.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Biomimetic nanotechnology represents a promising approach for the delivery of therapeutic agents for the treatment of complex diseases. Recently, neuronal mitochondria have been proposed to serve as a promising therapeutic target for sporadic Alzheimer's disease (AD). However, the efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge due to the complicated physiological and pathological environment. Herein, we devised and tested a strategy for functional antioxidant delivery to neuronal mitochondria by loading antioxidants into red blood cell (RBC) membrane-camouflaged human serum albumin nanoparticles bearing T807 and triphenylphosphine (TPP) molecules attached to the RBC membrane surface (T807/TPP-RBC-NPs). With the advantage of the suitable physicochemical properties of the nanoparticles and the unique biological functions of the RBC membrane, the T807/TPP-RBC-NPs are stabilized and promote sustained drug release, providing improved biocompatibility and long-term circulation. Under the synergistic effects of T807 and TPP, T807/TPP-RBC-NPs can not only penetrate the blood-brain barrier (BBB) but also target nerve cells and further localize in the mitochondria. After encapsulating curcumin (CUR) as the model antioxidant, the research data demonstrated that CUR-loaded T807/TPP-RBC-NPs can relieve AD symptoms by mitigating mitochondrial oxidative stress and suppressing neuronal death both in vitro and in vivo. In conclusion, the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems provides an effective drug delivery platform for brain diseases. STATEMENT OF SIGNIFICANCE: The efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge for drug delivery due to the complicated physiological and pathological environment. To address this need, various types of nanovessels have been fabricated using a variety of materials in the last few decades. However, problems with the synthetic materials still exist and even cause toxicology issues. New findings in nanomedicine are promoting the development of biomaterials. Herein, we designed a red blood cell (RBC) membrane-coated human serum albumin nanoparticle dual-modified with T807 and TPP (T807/TPP-RBC-NPs) to accomplish these objectives. After encapsulating curcumin as the model drug, the research data demonstrated that the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems are a promising therapeutic candidate for mitochondrial dysfunction in Alzheimer's disease (AD).
Collapse
|
48
|
Gong J, Sun D. Study on the mechanism of curcumin to reduce the inflammatory response of temporal lobe in Alzheimer's disease by regulating miR-146a. Minerva Med 2020; 113:109-118. [PMID: 32207596 DOI: 10.23736/s0026-4806.20.06463-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND To explore the potential mechanism of curcumin in the treatment of Alzheimer's disease and clarify the role of miR-146a in the neuroinflammatory response to Alzheimer's disease. METHODS Clinical case study: 20 AD patients and 20 age-gender matched non-inflammatory and non-dementia patients in the department of neurology of our hospital were included, peripheral venous blood and cerebrospinal fluid were collected, and mir-146a levels in peripheral blood and cerebrospinal fluid were detected by real-time fluorescence quantitative PCR. Animal experimental study group: There were 3 groups, including APP/PS1 mice control group, APP/PS1 mice low-dose curcumin treatment group, and C57BL/6J mice wild-type (WT) control group, with 10 mice in each group. mir-146a levels in mice brain tissue were detected by quantitative real-time PCR. Aβ, APP, complement factor H (CFH) and M1 microglia labeled IL-1 β and iNOS in temporal lobe tissues of mice were detected by using Westernblot method. RESULTS The plasma miRNA-146a level in AD group was 39.10 ±12.97 fmol/L, and that in control group was 60.54 ±13.16 fmol/L. The plasma miRNA-146a level in AD group was significantly lower than that in control group. The level of miRNA-146a in cerebrospinal fluid of AD group (25.16 ± 5.16 fmol/L) was significantly higher than that of control group (11.35 ±3.58 fmol/L). After treatment with low dose curcumin, the level of miRNA-146a in APP/PS1 mice decreased significantly, and the expression of A β and APP/PS1 in temporal lobe of mice detected by Western blot decreased significantly, the levels of IL-1 β and iNOS protein decreased significantly, and the protein of CFH increased signifanctly. CONCLUSIONS miRNA-146a can be used as one of the potential biomarkers of AD. Low dose curcumin can significantly reduce the level of neuropro-inflammatory miR-146A, up-regulate the expression of CFH protein, inhibit the phenotype of M1 microglia, and play a role in the treatment of AD by promoting the phagocytosis and clearance mechanism of A β.
Collapse
Affiliation(s)
- Jingfeng Gong
- Department of Neurology (I), The Fourth Hospital of Daqing, Daqing, P.R. China -
| | - Derong Sun
- General Department, North Banch of The Fourth Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
49
|
Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, Pasqua L, Taheri Y, Marina Salgado Castillo C, Martorell M, Martins N, Iriti M, Suleria HAR, Sharifi-Rad J. Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. J Clin Med 2020; 9:E430. [PMID: 32033365 PMCID: PMC7074182 DOI: 10.3390/jcm9020430] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The brain is the body's control center, so when a disease affects it, the outcomes are devastating. Alzheimer's and Parkinson's disease, and multiple sclerosis are brain diseases that cause a large number of human deaths worldwide. Curcumin has demonstrated beneficial effects on brain health through several mechanisms such as antioxidant, amyloid β-binding, anti-inflammatory, tau inhibition, metal chelation, neurogenesis activity, and synaptogenesis promotion. The therapeutic limitation of curcumin is its bioavailability, and to address this problem, new nanoformulations are being developed. The present review aims to summarize the general bioactivity of curcumin in neurological disorders, how functional molecules are extracted, and the different types of nanoformulations available.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | - Sushant Aryal
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | | | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. HernâniMonteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
| | | | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
50
|
Curcumin Derivative GT863 Inhibits Amyloid-Beta Production via Inhibition of Protein N-Glycosylation. Cells 2020; 9:cells9020349. [PMID: 32028683 PMCID: PMC7072163 DOI: 10.3390/cells9020349] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
Amyloid-β (Aβ) peptides play a crucial role in the pathogenesis of Alzheimer's disease (AD). Aβ production, aggregation, and clearance are thought to be important therapeutic targets for AD. Curcumin has been known to have an anti-amyloidogenic effect on AD. In the present study, we performed screening analysis using a curcumin derivative library with the aim of finding derivatives effective in suppressing Aβ production with improved bioavailability of curcumin using CHO cells that stably express human amyloid-β precursor protein and using human neuroblastoma SH-SY5Y cells. We found that the curcumin derivative GT863/PE859, which has been shown to have an inhibitory effect on Aβ and tau aggregation in vivo, was more effective than curcumin itself in reducing Aβ secretion. We further found that GT863 inhibited neither β- nor γ-secretase activity, but did suppress γ-secretase-mediated cleavage in a substrate-dependent manner. We further found that GT863 suppressed N-linked glycosylation, including that of the γ-secretase subunit nicastrin. We also found that mannosidase inhibitors that block the mannose trimming step of N-glycosylation suppressed Aβ production in a similar fashion, as was observed as a result of treatment with GT863. Collectively, these results suggest that GT863 downregulates N-glycosylation, resulting in suppression of Aβ production without affecting secretase activity.
Collapse
|