1
|
Zhang Y, Liang Y, Gu Y. The dopaminergic system and Alzheimer's disease. Neural Regen Res 2025; 20:2495-2512. [PMID: 39314145 PMCID: PMC11801300 DOI: 10.4103/nrr.nrr-d-24-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease is a common neurodegenerative disorder in older adults. Despite its prevalence, its pathogenesis remains unclear. In addition to the most widely accepted causes, which include excessive amyloid-beta aggregation, tau hyperphosphorylation, and deficiency of the neurotransmitter acetylcholine, numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition. Dopamine is a crucial catecholaminergic neurotransmitter in the human body. Dopamine-associated treatments, such as drugs that target dopamine receptor D and dopamine analogs, can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations. However, therapeutics targeting the dopaminergic system are associated with various adverse reactions, such as addiction and exacerbation of cognitive impairment. This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease, focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs. The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease, thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options.
Collapse
Affiliation(s)
- Yuhan Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yuan Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
2
|
Mario A, Ivana L, Claudia MM, Antonello B, Francesco P, Tommaso C, Madia L. Can ketamine therapy overcome treatment-resistant depression in Alzheimer's disease and older adults? Preclinical and clinical evidence. Biomed Pharmacother 2025; 188:118199. [PMID: 40412361 DOI: 10.1016/j.biopha.2025.118199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/11/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Treatment-resistant depression (TRD) presents substantial clinical challenges, particularly in patients with Alzheimer's disease (AD) and older adults experiencing late-life depression. Traditional monoaminergic therapies often fail in this population due to neurodegenerative changes that impact receptor dynamics and neurotransmitter systems. Emerging evidence suggests that N-methyl-D-aspartate (NMDA) receptor antagonists, such as ketamine, esketamine, and arketamine, may offer new avenues for treatment. This review examines the potential of ketamine and its derivatives in treating TRD in older adults and individuals with AD, focusing on their mechanisms of action, clinical efficacy, and limitations in the context of neurodegenerative pathology. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a systematic search of PubMed, Google Scholar, and Web of Science databases up until January 2025, with no year restrictions. Nineteen human clinical studies and eight preclinical studies met the inclusion criteria. Evidence suggests that ketamine may offer advantages over standard treatments for AD, potentially due to its broader mechanism of action compared to the NMDA antagonist memantine, as observed in animal models of AD. Clinical findings have demonstrated the rapid and robust antidepressant effects of ketamine and esketamine, alleviating depressive symptoms in both AD patients and older adults with TRD, indicating their potential as effective therapeutic options for these complex conditions.
Collapse
Affiliation(s)
- Altamura Mario
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Leccisotti Ivana
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Bellomo Antonello
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Panza Francesco
- Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Cassano Tommaso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lozupone Madia
- Department of Translational Biomedicine and Neuroscience "DiBrain", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Sárkány Z, Damásio J, Macedo‐Ribeiro S, Martins PM. Association between the use of levodopa/carbidopa, Alzheimer's disease biomarkers, and cognitive decline among participants in the National Alzheimer's Coordinating Center Uniform Data Set. Alzheimers Dement 2025; 21:e70213. [PMID: 40356023 PMCID: PMC12069009 DOI: 10.1002/alz.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 05/15/2025]
Abstract
INTRODUCTION This retrospective study investigates whether exposure to levodopa/carbidopa (LA/CA) medication is associated with modified Alzheimer's disease (AD) trajectories. METHODS Multivariate analysis used cerebrospinal fluid (CSF) biomarker information included in the National Alzheimer's Coordinating Center Uniform Data Set for subjects with normal cognition (NC), mild cognitive impairment (MCI), and dementia (DE). Survival analyses examined the progression to MCI/DE and death events. RESULTS LA/CA use is associated with lower levels of CSF amyloid beta, phosphorylated-tau (p-tau) and total-tau. After adjusting for age, sex, and apolipoprotein E (APOE) ε4 allele presence, that effect was quantified by negative coefficients of the fitted linear mixed models: p-values < 0.01 in all cases except for p-tau in the MCI subgroup (p = 0.02). No similar effects were identified for other antiparkinsonians. Exposure to LA/CA decreased the progression from MCI to DE (p = 0.03). DISCUSSION The identified association between LA/CA exposure, AD biomarkers, and progression deserves further investigation in controlled clinical trials. HIGHLIGHTS LA/CA is associated with lower levels of CSF biomarkers for AD. This effect is not observed when other antiparkinsonian drugs are used. LA/CA is also associated with delayed progression to dementia by AD patients with MCI.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Joana Damásio
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Centro de Genética Preditiva e Preventiva (CGPP)IBMC Universidade do PortoPortoPortugal
- Neurology DepartmentCentro Hospitalar Universitário de Santo António, ULS de Santo AntónioPortoPortugal
- ICBAS School of Medicine and Biomedical SciencesUniversidade do PortoPortoPortugal
| | - Sandra Macedo‐Ribeiro
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Pedro M. Martins
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| |
Collapse
|
4
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2025; 47:457-482. [PMID: 39331291 PMCID: PMC11872848 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Riffo-Lepe N, González-Sanmiguel J, Armijo-Weingart L, Saavedra-Sieyes P, Hernandez D, Ramos G, San Martín LS, Aguayo LG. Synaptic and synchronic impairments in subcortical brain regions associated with early non-cognitive dysfunction in Alzheimer's disease. Neural Regen Res 2025; 21:01300535-990000000-00688. [PMID: 39885666 PMCID: PMC12094569 DOI: 10.4103/nrr.nrr-d-24-01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/16/2024] [Accepted: 12/21/2024] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT For many decades, Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions, which are thought to be related to cognitive dysfunctions such as memory and language deficits. The exact cause of Alzheimer's disease is still under debate, making it challenging to establish an effective therapy or early diagnosis. It is widely accepted that the accumulation of amyloid-beta peptide in the brain parenchyma leads to synaptic dysfunction, a critical step in Alzheimer's disease development. The traditional amyloid cascade model is initiated by accumulating extracellular amyloid-beta in brain areas essential for memory and language. However, while it is possible to reduce the presence of amyloid-beta plaques in the brain with newer immunotherapies, cognitive symptoms do not necessarily improve. Interestingly, recent studies support the notion that early alterations in subcortical brain regions also contribute to brain damage and precognitive decline in Alzheimer's disease. A body of recent evidence suggests that early Alzheimer's disease is associated with alterations (e.g., motivation, anxiety, and motor impairment) in subcortical areas, such as the striatum and amygdala, in both human and animal models. Also, recent data indicate that intracellular amyloid-beta appears early in subcortical regions such as the nucleus accumbens, locus coeruleus, and raphe nucleus, even without extracellular amyloid plaques. The reported effects are mainly excitatory, increasing glutamatergic transmission and neuronal excitability. In agreement, data in Alzheimer's disease patients and animal models show an increase in neuronal synchronization that leads to electroencephalogram disturbances and epilepsy. The data indicate that early subcortical brain dysfunctions might be associated with non-cognitive symptoms such as anxiety, irritability, and motivation deficits, which precede memory loss and language alterations. Overall, the evidence reviewed suggests that subcortical brain regions could explain early dysfunctions and perhaps be targets for therapies to slow disease progression. Future research should focus on these non-traditional brain regions to reveal early pathological alterations and underlying mechanisms to advance our understanding of Alzheimer's disease beyond the traditionally studied hippocampal and cortical circuits.
Collapse
Affiliation(s)
- Nicolás Riffo-Lepe
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
| | - Juliana González-Sanmiguel
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
| | - Lorena Armijo-Weingart
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Concepción, Chile
| | - Paulina Saavedra-Sieyes
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
| | - David Hernandez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
| | - Gerson Ramos
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
| | - Loreto S. San Martín
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Concepción, Chile
| | - Luis G. Aguayo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Jin Y, Tang R, Wu L, Xu K, Chen X, Zhu Y, Shi J, Li J. Cognitive Impairment in MASLD is associated with Amygdala-Related Connectivity Dysfunction in the Prefrontal and Sensory Cortex. J Integr Neurosci 2024; 23:215. [PMID: 39735969 DOI: 10.31083/j.jin2312215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear. METHODS A total of 74 MASLD patients (43 with MCI_MASLD and 31 without MCI [nonMCI_MASLD]) and 62 demographic-matched healthy controls (HC) were enrolled. All participants underwent resting-state functional magnetic resonance imaging scans and psychological scale assessments. Liver fat content and blood index measurements were performed on the patients. Using the bilateral amygdala as seeds, the seed-based functional connectivity (FC) maps were calculated and one-way analysis of covariance with post hoc tests was performed to investigate the difference among the three groups. RESULTS Compared to nonMCI_MASLD patients, MCI_MASLD patients demonstrated enhanced FC between the right amygdala and the medial prefrontal cortex (mPFC), while reduced FC between the left amygdala and the left supplementary motor area (SMA). Interestingly, the FC values of the mPFC were correlated with the Montreal Cognitive Assessment Scale (MoCA) scores and liver controlled attenuation parameters, and the FC values of the SMA were also correlated with the MoCA scores. Furthermore, the FC values between the bilateral amygdala and regions within the frontal-limbic-mesencephalic circuits were higher in MASLD patients when compared to HC. CONCLUSIONS Aberrant FC of the amygdala can provide potential neuroimaging markers for MCI in MASLD, which is associated with amygdala-related connectivity disturbances in areas related to cognition and sensory processing. Moreover, visceral fat accumulation may exacerbate brain dysfunction.
Collapse
Affiliation(s)
- Yihan Jin
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Ruoyu Tang
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Liqiang Wu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Kuanghui Xu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Xiaofei Chen
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Yaxin Zhu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Junping Shi
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Vu GH, Nguyen HD. Molecular mechanisms of sulforaphane in Alzheimer's disease: insights from an in-silico study. In Silico Pharmacol 2024; 12:96. [PMID: 39493676 PMCID: PMC11530583 DOI: 10.1007/s40203-024-00267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
This study was to identify the molecular pathways that may explain sulforaphane's Alzheimer's disease (AD) benefits using multiple advanced in silico approaches. We found that sulforaphane regulates 45 targets, including TNF, INS, and BCL2. Therefore, it may help treat AD by reducing neuroinflammation, insulin resistance, and apoptosis. The important relationships were co-expression and pathways. 45 targets were linked to the midbrain, metabolite interconversion enzymes, 14q23.3 and 1q31.1 chromosomes, and modified residues. "Amyloid precursor protein catabolic process", "regulation of apoptotic signaling pathway", and "positive regulation of nitric oxide biosynthetic process" were the main pathways, while NFKB1, SP1, RELA, hsa-miR-17-5p, hsa-miR-16-5p, and hsa-miR-26b-5p were transcription factors and miRNAs implicated in sulforaphane In AD treatment, miRNA sponges, dexibuprofen, and sulforaphane may be effective. Furthermore, its unique physicochemical, pharmacokinetic, and biological qualities make sulforaphane an effective AD treatment, including efficient gastrointestinal absorption, drug-like properties, absence of CYP450 enzyme inhibition, not being a substrate for P-glycoprotein, ability to cross the blood-brain barrier, glutathione S-transferase substrate, immunostimulant effects, and antagonistic neurotransmitter effects. Sulforaphane is a promising compound for AD management. Further work is needed to elucidate its therapeutic effects based on our findings, including genes, miRNAs, molecular pathways, and transcription factors. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00267-4.
Collapse
Affiliation(s)
- Giang Huong Vu
- Department of Public Heath, Hong Bang Health Center, Hai Phong, Vietnam
| | - Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| |
Collapse
|
8
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
9
|
Wang C, Hei Y, Liu Y, Bajpai AK, Li Y, Guan Y, Xu F, Yao C. Systems genetics identifies methionine as a high risk factor for Alzheimer's disease. Front Neurosci 2024; 18:1381889. [PMID: 39081851 PMCID: PMC11286400 DOI: 10.3389/fnins.2024.1381889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level. Gene enrichment analysis indicated that the genes associated with the concentration of methionine in the midbrain are involved in the dopaminergic synaptic signaling pathway. Protein interaction network analysis revealed that glycogen synthase kinase 3 beta (GSK-3β) was a key regulator of the dopaminergic synaptic pathway and its expression level was significantly correlated with the AD phenotype. Finally, in vitro experiments demonstrated that methionine deprivation could reduce the expression of Aβ and phosphorylated Tau, suggesting that lowering methionine levels in humans may be a preventive or therapeutic strategy for AD. In conclusion, our findings support that methionine is a high risk factor for AD. These findings predict potential regulatory network, theoretically supporting methionine restriction to prevent AD.
Collapse
Affiliation(s)
- Congmin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Hei
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhe Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yawen Guan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Cuifang Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
Baek S, Jang J, Jung HJ, Lee H, Choe Y. Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer's Disease Mouse Brain. Mol Neurobiol 2024; 61:3976-3999. [PMID: 38049707 PMCID: PMC11236860 DOI: 10.1007/s12035-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Optical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer's disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Soonbong Baek
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jaemyung Jang
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busanjin-gu, Busan, 47340, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.
| |
Collapse
|
11
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Armijo-Weingart L, San Martin L, Gallegos S, Araya A, Konar-Nie M, Fernandez-Pérez E, Aguayo LG. Loss of glycine receptors in the nucleus accumbens and ethanol reward in an Alzheimer´s Disease mouse model. Prog Neurobiol 2024; 237:102616. [PMID: 38723884 PMCID: PMC11163974 DOI: 10.1016/j.pneurobio.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aβ in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aβ in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Loreto San Martin
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Anibal Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Macarena Konar-Nie
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Eduardo Fernandez-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile; Programa de Neurociencia, Psiquiatría y Salud Mental (NEPSAM), Universidad de Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile.
| |
Collapse
|
13
|
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1345498. [PMID: 38689734 PMCID: PMC11058985 DOI: 10.3389/fendo.2024.1345498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | | | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
14
|
Tzavellas NP, Tsamis KI, Katsenos AP, Davri AS, Simos YV, Nikas IP, Bellos S, Lekkas P, Kanellos FS, Konitsiotis S, Labrakakis C, Vezyraki P, Peschos D. Firing Alterations of Neurons in Alzheimer's Disease: Are They Merely a Consequence of Pathogenesis or a Pivotal Component of Disease Progression? Cells 2024; 13:434. [PMID: 38474398 PMCID: PMC10930991 DOI: 10.3390/cells13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aβ) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.
Collapse
Affiliation(s)
- Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Athena S. Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Foivos S. Kanellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 451 10 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
15
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
16
|
Tian J, Du E, Guo L. Mitochondrial Interaction with Serotonin in Neurobiology and Its Implication in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1165-1177. [PMID: 38025801 PMCID: PMC10657725 DOI: 10.3233/adr-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a lethal neurodegenerative disorder characterized by severe brain pathologies and progressive cognitive decline. While the exact cause of this disease remains unknown, emerging evidence suggests that dysregulation of neurotransmitters contributes to the development of AD pathology and symptoms. Serotonin, a critical neurotransmitter in the brain, plays a pivotal role in regulating various brain processes and is implicated in neurological and psychiatric disorders, including AD. Recent studies have shed light on the interplay between mitochondrial function and serotonin regulation in brain physiology. In AD, there is a deficiency of serotonin, along with impairments in mitochondrial function, particularly in serotoninergic neurons. Additionally, altered activity of mitochondrial enzymes, such as monoamine oxidase, may contribute to serotonin dysregulation in AD. Understanding the intricate relationship between mitochondria and serotonin provides valuable insights into the underlying mechanisms of AD and identifies potential therapeutic targets to restore serotonin homeostasis and alleviate AD symptoms. This review summarizes the recent advancements in unraveling the connection between brain mitochondria and serotonin, emphasizing their significance in AD pathogenesis and underscoring the importance of further research in this area. Elucidating the role of mitochondria in serotonin dysfunction will promote the development of therapeutic strategies for the treatment and prevention of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
17
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Nabinger DD, Altenhofen S, Buatois A, Facciol A, Peixoto JV, da Silva JMK, Chatterjee D, Rübensam G, Gerlai R, Bonan CD. Acute administration of a dopamine D2/D3 receptor agonist alters behavioral and neural parameters in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110753. [PMID: 36934998 DOI: 10.1016/j.pnpbp.2023.110753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The dopaminergic neurotransmitter system is implicated in several brain functions and behavioral processes. Alterations in it are associated with the pathogenesis of several human neurological disorders. Pharmacological agents that interact with the dopaminergic system allow the investigation of dopamine-mediated cellular and molecular responses and may elucidate the biological bases of such disorders. Zebrafish, a translationally relevant biomedical research organism, has been successfully employed in prior psychopharmacology studies. Here, we evaluated the effects of quinpirole (dopamine D2/D3 receptor agonist) in adult zebrafish on behavioral parameters, brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Zebrafish received intraperitoneal injections of 0.5, 1.0, or 2.0 mg/kg quinpirole or saline (control group) twice with an inter-injection interval of 48 h. All tests were performed 24 h after the second injection. After this acute quinpirole administration, zebrafish exhibited decreased locomotor activity, increased anxiety-like behaviors and memory impairment. However, quinpirole did not affect social and aggressive behavior. Quinpirole-treated fish exhibited stereotypic swimming, characterized by repetitive behavior followed by immobile episodes. Moreover, quinpirole treatment also decreased the number of BDNF-immunoreactive cells in the zebrafish brain. Analysis of neurotransmitter levels demonstrated a significant increase in glutamate and a decrease in serotonin, while no alterations were observed in dopamine. These findings demonstrate that dopaminergic signaling altered by quinpirole administration results in significant behavioral and neuroplastic changes in the central nervous system of zebrafish. Thus, we conclude that the use of quinpirole administration in adult zebrafish may be an appropriate tool for the analysis of mechanisms underlying neurological disorders related to the dopaminergic system.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Amanda Facciol
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gabriel Rübensam
- Centro de Pesquisa em Toxicologia e Farmacologia (INTOX), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
20
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
21
|
Taheri P, Yaghmaei P, Hajebrahimi Z, Parivar K. Neuroprotective effects of nerolidol against Alzheimer's disease in Wistar rats. Drug Dev Res 2022; 83:1858-1866. [DOI: 10.1002/ddr.22002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Peyman Taheri
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Zahra Hajebrahimi
- Khayyam Research Institute Ministry of Science Research and Technology Tehran Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
22
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
23
|
Abrantes M, Rodrigues D, Domingues T, Nemala SS, Monteiro P, Borme J, Alpuim P, Jacinto L. Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays. J Nanobiotechnology 2022; 20:495. [DOI: 10.1186/s12951-022-01695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
AbstractDetecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Collapse
|
24
|
Lai JQ, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 2022; 33:451-462. [PMID: 35534336 DOI: 10.1016/j.tem.2022.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
Abstract
Cognitive dysfunction is a common adverse consequence of traumatic brain injury (TBI). After brain injury, the brain and other organs trigger a series of complex metabolic changes, including reduced glucose metabolism, enhanced lipid peroxidation, disordered neurotransmitter secretion, and imbalanced trace element synthesis. In recent years, several research and clinical studies have demonstrated that brain metabolism directly or indirectly affects cognitive dysfunction after TBI, but the mechanisms remain unclear. Drugs that improve the symptoms of cognitive dysfunction caused by TBI are under investigation and treatments that target metabolic processes are expected to improve cognitive function in the future. This review explores the impact of metabolic disorders on cognitive dysfunction after TBI and provides new strategies for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jin-Qing Lai
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
25
|
Sun X, Kato H, Sato H, Han X, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Dopamine-related oxidative stress and mitochondrial dysfunction in dopaminergic neurons differentiated from deciduous teeth-derived stem cells of children with Down syndrome. FASEB Bioadv 2022; 4:454-467. [PMID: 35812076 PMCID: PMC9254221 DOI: 10.1096/fba.2021-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Down syndrome (DS) is one of the common genetic disorders caused by the trisomy of human chromosome 21 (HSA21). Mitochondrial dysfunction and redox imbalance play important roles in DS pathology, and altered dopaminergic regulation has been demonstrated in the brain of individuals with DS. However, the pathological association of these elements is not yet fully understood. In this study, we analyzed dopaminergic neurons (DNs) differentiated from deciduous teeth-derived stem cells of children with DS or healthy control children. As previously observed in the analysis of a single case of DS, compared to controls, patient-derived DNs (DS-DNs) displayed shorter neurite outgrowth and fewer branches, as well as downregulated vesicular monoamine transporter 2 and upregulated dopamine transporter 1, both of which are key regulators of dopamine homeostasis in DNs. In agreement with these expression profiles, DS-DNs accumulated dopamine intracellularly and had increased levels of cellular and mitochondrial reactive oxygen species (ROS). DS-DNs showed downregulation of non-canonical Notch ligand, delta-like 1, which may contribute to dopamine accumulation and increased ROS levels through DAT1 upregulation. Furthermore, DS-DNs showed mitochondrial dysfunction in consistent with lower expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and upregulation of a HSA21-encoded negative regulator of PGC-1α, nuclear receptor-interacting protein 1. These results suggest that dysregulated dopamine homeostasis may participate in oxidative stress and mitochondrial dysfunction of the dopaminergic system in DS.
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral AnatomyKyushu University Graduate School of Dental ScienceFukuokaJapan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| | - Takahiro A. Kato
- Department of NeuropsychiatryGraduate School of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and DevelopmentFaculty of Dental Science, Kyushu UniversityFukuokaJapan
| |
Collapse
|
26
|
Yoshikawa M, Ishikawa C, Li H, Kudo T, Shiba D, Shirakawa M, Murtani M, Takahashi S, Aizawa S, Shiga T. Comparing effects of microgravity and amyotrophic lateral sclerosis in the mouse ventral lumbar spinal cord. Mol Cell Neurosci 2022; 121:103745. [PMID: 35660087 DOI: 10.1016/j.mcn.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microgravity (MG) exposure and motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), lead to motor deficits, including muscle atrophy and loss of neuronal activity. Abnormalities in motor neurons and muscles caused by MG exposure can be recovered by subsequent ground exercise. In contrast, the degeneration that occurs in ALS is irreversible. A common phenotype between MG exposure and ALS pathology is motor system abnormality, but the causes may be different. In this study, to elucidate the motor system that is affected by each condition, we investigated the effects of MG and the human SOD1 ALS mutation on gene expression in various cell types of the mouse ventral lumbar spinal cord, which is rich in motor neurons innervating the lower limb. To identify cell types affected by MG or ALS pathogenesis, we analyzed differentially expressed genes with known cell-type markers, which were determined from previous single-cell studies of the spinal cord in MG-exposed and SOD1G93A mice, an ALS mouse model. Differentially expressed genes were observed in MG mice in various spinal cord cell types, including neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, meningeal cells/Schwann cells, and vascular cells. We also examined neuronal populations in the spinal cord. Gene expression in putative excitatory and inhibitory neurons changed more than that in cholinergic motor neurons of the spinal cord in both MG and SOD1G93A mice. Many putative neuron types, especially visceral motor neurons, and axon initial segments (AIS) were affected in MG mice. In contrast, the effect on neurons and AIS in SOD1G93A mice was slight at P30 but progressed with aging. Interestingly, changes in dopaminergic system-related genes were specifically altered in the spinal cord of MG mice. These results indicate that MG and ALS pathology in various cell types contribute to motor neuron degeneration. Furthermore, there were more alterations in neurons in MG-exposed mice than in SOD1G93A mice. A large number of differentially expressed genes (DEGs) in MG mice represent more than SOD1G93A mice with ALS pathology. Elucidation of MG pathogenesis may provide more insight into the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan.
| | - Chihiro Ishikawa
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Haiyan Li
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki 305-8505, Japan
| | - Masafumi Murtani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Takashi Shiga
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
27
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
28
|
Regional Cerebral Blood Flow Correlates of Neuropsychiatric Symptom Domains in Early Alzheimer’s Disease. Diagnostics (Basel) 2022; 12:diagnostics12051246. [PMID: 35626401 PMCID: PMC9140211 DOI: 10.3390/diagnostics12051246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Although various neuropsychiatric symptoms are frequently accompanied with Alzheimer’s disease (AD) and pose a substantial burden to both patients and caregivers, their neurobiological underpinnings remain unclear. This study investigated associations between regional cerebral blood flow (rCBF) and neuropsychiatric symptom domains in early AD. A total of 59 patients with early AD underwent brain technetium-99m hexamethylpropylene amine oxime (99mTc-HMPAO) single-photon emission computed tomography (SPECT) scans. Neuropsychiatric symptoms were assessed by the Neuropsychiatric Inventory and clustered into the affective, apathy, hyperactivity, and psychotic domains. A voxel-wise multiple regression analysis was performed with four domain scores as independent variables and age, sex, and Mini-Mental State Examination scores as covariates. The affective domain score was negatively correlated with rCBF in the prefrontal cortex, thalamus, and caudate. The apathy domain score showed inverse correlations with rCBF in the prefrontal and pre/postcentral gyri and midbrain. Patients with higher hyperactivity domain scores had increased rCBF in the prefrontal and temporal lobes. The psychotic symptom domain was positively correlated with rCBF in the cuneus and negatively associated with rCBF in the prefrontal, cingulate, and occipital regions and putamen. The score of each neuropsychiatric symptom domain showed the differential correlates of brain perfusion, while altered rCBF in the prefrontal cortex was found in all domains. Although preliminary, our results may suggest common and distinct patterns of rCBF underlying neuropsychiatric symptoms in early AD. Further studies with larger samples and control participants are warranted to confirm these findings.
Collapse
|
29
|
Cerebrospinal fluid catecholamines in Alzheimer's disease patients with and without biological disease. Transl Psychiatry 2022; 12:151. [PMID: 35397615 PMCID: PMC8994756 DOI: 10.1038/s41398-022-01901-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic and dopaminergic neurons are involved in cognitive functions, relate to behavioral and psychological symptoms in dementia and are affected in Alzheimer's disease (AD). Amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N) hallmarks the AD neuropathology. Today, the AT(N) pathophysiology can be assessed through biomarkers. Previous studies report cerebrospinal fluid (CSF) catecholamine concentrations in AD patients without biomarker refinement. We explored if CSF catecholamines relate to AD clinical presentation or neuropathology as reflected by CSF biomarkers. CSF catecholamines were analyzed in AD patients at the mild cognitive impairment (MCI; n = 54) or dementia stage (n = 240) and in cognitively unimpaired (n = 113). CSF biomarkers determined AT status and indicated synaptic damage (neurogranin). The AD patients (n = 294) had higher CSF noradrenaline and adrenaline concentrations, but lower dopamine concentrations compared to the cognitively unimpaired (n = 113). AD patients in the MCI and dementia stage of the disease had similar CSF catecholamine concentrations. In the CSF neurogranin positively associated with noradrenaline and adrenaline but not with dopamine. Adjusted regression analyses including AT status, CSF neurogranin, age, gender, and APOEε4 status verified the findings. In restricted analyses comparing A+T+ patients to A-T- cognitively unimpaired, the findings for CSF adrenaline remained significant (p < 0.001) but not for CSF noradrenaline (p = 0.07) and CSF dopamine (p = 0.33). There were no differences between A+T+ and A-T- cognitively unimpaired. Thus, we find alterations in CSF catecholamines in symptomatic AD and the CSF adrenergic transmitters to increase simultaneously with synaptic damage as indexed by CSF neurogranin.
Collapse
|
30
|
Bashir S, Uzair M, Abualait T, Arshad M, Khallaf RA, Niaz A, Thani Z, Yoo WK, Túnez I, Demirtas-Tatlidede A, Meo SA. Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review). Mol Med Rep 2022; 25:109. [PMID: 35119081 PMCID: PMC8845030 DOI: 10.3892/mmr.2022.12625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and brain neuronal loss. A pioneering field of research in AD is brain stimulation via electromagnetic fields (EMFs), which may produce clinical benefits. Noninvasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), have been developed to treat neurological and psychiatric disorders. The purpose of the present review is to identify neurobiological changes, including inflammatory, neurodegenerative, apoptotic, neuroprotective and genetic changes, which are associated with repetitive TMS (rTMS) treatment in patients with AD. Furthermore, it aims to evaluate the effect of TMS treatment in patients with AD and to identify the associated mechanisms. The present review highlights the changes in inflammatory and apoptotic mechanisms, mitochondrial enzymatic activities, and modulation of gene expression (microRNA expression profiles) associated with rTMS or sham procedures. At the molecular level, it has been suggested that EMFs generated by TMS may affect the cell redox status and amyloidogenic processes. TMS may also modulate gene expression by acting on both transcriptional and post‑transcriptional regulatory mechanisms. TMS may increase brain cortical excitability, induce specific potentiation phenomena, and promote synaptic plasticity and recovery of impaired functions; thus, it may re‑establish cognitive performance in patients with AD.
Collapse
Affiliation(s)
- Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | - Roaa A. Khallaf
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Asim Niaz
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Ziyad Thani
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi-do 24252, Republic of Korea
| | - Isaac Túnez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Ministry for Economy, Industry and Competitiveness, 28046 Madrid, Spain
| | | | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
Reward System Dysfunction and the Motoric-Cognitive Risk Syndrome in Older Persons. Biomedicines 2022; 10:biomedicines10040808. [PMID: 35453558 PMCID: PMC9029623 DOI: 10.3390/biomedicines10040808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
During aging, many physiological systems spontaneously change independent of the presence of chronic diseases. The reward system is not an exception and its dysfunction generally includes a reduction in dopamine and glutamate activities and the loss of neurons of the ventral tegmental area (VTA). These impairments are even more pronounced in older persons who have neurodegenerative diseases and/or are affected by cognitive and motoric frailty. All these changes may result in the occurrence of cognitive and motoric frailty and accelerated progression of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases. In particular, the loss of neurons in VTA may determine an acceleration of depressive symptoms and cognitive and motor frailty trajectory, producing an increased risk of disability and mortality. Thus, we hypothesize the existence of a loop between reward system dysfunction, depression, and neurodegenerative diseases in older persons. Longitudinal studies are needed to evaluate the determinant role of the reward system in the onset of motoric-cognitive risk syndrome.
Collapse
|
32
|
Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sci 2022; 12:brainsci12020246. [PMID: 35204009 PMCID: PMC8869980 DOI: 10.3390/brainsci12020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
This short review presents the hypothesis that stress-dependent dopamine (DA) transmission contributes to developing and maintaining the brain network supporting a cognitive reserve. Research has shown that people with a greater cognitive reserve are better able to avoid symptoms of degenerative brain changes. The paper will review evidence that: (1) successful adaptation to stressors involves development and stabilization of effective but flexible coping strategies; (2) this process requires dynamic reorganization of functional networks in the adult brain; (3) DA transmission is amongst the principal mediators of this process; (4) age- and disease-dependent cognitive impairment is associated with dysfunctional connectivity both between and within these same networks as well as with reduced DA transmission.
Collapse
|
33
|
Prachayasittikul V, Pingaew R, Prachayasittikul S, Prachayasittikul V. 8-Hydroxyquinolines: A Promising Pharmacophore Potentially Developed as Disease-Modifying Agents for Neurodegenerative Diseases: A Review. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Krashia P, Spoleti E, D'Amelio M. The VTA dopaminergic system as diagnostic and therapeutical target for Alzheimer's disease. Front Psychiatry 2022; 13:1039725. [PMID: 36325523 PMCID: PMC9618946 DOI: 10.3389/fpsyt.2022.1039725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.
Collapse
Affiliation(s)
- Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Elena Spoleti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
35
|
Spoleti E, Krashia P, La Barbera L, Nobili A, Lupascu CA, Giacalone E, Keller F, Migliore M, Renzi M, D'Amelio M. Early derailment of firing properties in CA1 pyramidal cells of the ventral hippocampus in an Alzheimer's disease mouse model. Exp Neurol 2021; 350:113969. [PMID: 34973962 DOI: 10.1016/j.expneurol.2021.113969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid β deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.
Collapse
Affiliation(s)
- Elena Spoleti
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy
| | - Paraskevi Krashia
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Livia La Barbera
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | - Annalisa Nobili
- Faculty of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy
| | | | | | - Flavio Keller
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome 00185, Italy.
| | - Marcello D'Amelio
- Faculty of Medicine and Surgery, University Campus Bio-Medico, Rome 00128, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Rome 00143, Italy.
| |
Collapse
|
36
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
37
|
Abstract
Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer's disease (AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast burden on human society. Interestingly, correlational research on depression and AD has shown that depression might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the progression of depression and AD. We herein review the current findings on the roles and mechanisms of astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these diseases by targeting astrocytes.
Collapse
|
38
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Bonan CD. Long-lasting behavioral effects of quinpirole exposure on zebrafish. Neurotoxicol Teratol 2021; 88:107034. [PMID: 34600099 DOI: 10.1016/j.ntt.2021.107034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/11/2023]
Abstract
The human brain matures into a complex structure, and to reach its complete development, connections must occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological disorders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development (24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic movements and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the early life stages of development led to late alterations in behavioral parameters of adult zebrafish.
Collapse
Affiliation(s)
- Debora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
39
|
Gloria Y, Ceyzériat K, Tsartsalis S, Millet P, Tournier BB. Dopaminergic dysfunction in the 3xTg-AD mice model of Alzheimer's disease. Sci Rep 2021; 11:19412. [PMID: 34593951 PMCID: PMC8484608 DOI: 10.1038/s41598-021-99025-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid (Aβ) protein aggregation and neurofibrillary tangles accumulation, accompanied by neuroinflammation. With all the therapeutic attempts targeting these biomarkers having been unsuccessful, the understanding of early mechanisms involved in the pathology is of paramount importance. Dopaminergic system involvement in AD has been suggested, particularly through the appearance of dopaminergic dysfunction-related neuropsychiatric symptoms and an overall worsening of cognitive and behavioral symptoms. In this study, we reported an early dopaminergic dysfunction in a mouse model presenting both amyloid and Tau pathology. 3xTg-AD mice showed an increase of postsynaptic D2/3R receptors density in the striatum and D2/3-autoreceptors in SN/VTA cell bodies. Functionally, a reduction of anxiety-like behavior, an increase in locomotor activity and D2R hyper-sensitivity to quinpirole stimulation have been observed. In addition, microglial cells in the striatum showed an early inflammatory response, suggesting its participation in dopaminergic alterations. These events are observed at an age when tau accumulation and Aβ deposits in the hippocampus are low. Thus, our results suggest that early dopaminergic dysfunction could have consequences in behavior and cognitive function, and may shed light on future therapeutic pathways of AD.
Collapse
Affiliation(s)
- Yesica Gloria
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Stergios Tsartsalis
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, University Hospitals of Geneva, Avenue de la Roseraie, 64, 1206, Geneva, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
40
|
Caligiore D, Silvetti M, D'Amelio M, Puglisi-Allegra S, Baldassarre G. Computational Modeling of Catecholamines Dysfunction in Alzheimer's Disease at Pre-Plaque Stage. J Alzheimers Dis 2021; 77:275-290. [PMID: 32741822 PMCID: PMC7592658 DOI: 10.3233/jad-200276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Alzheimer’s disease (AD) etiopathogenesis remains partially unexplained. The main conceptual framework used to study AD is the Amyloid Cascade Hypothesis, although the failure of recent clinical experimentation seems to reduce its potential in AD research. Objective: A possible explanation for the failure of clinical trials is that they are set too late in AD progression. Recent studies suggest that the ventral tegmental area (VTA) degeneration could be one of the first events occurring in AD progression (pre-plaque stage). Methods: Here we investigate this hypothesis through a computational model and computer simulations validated with behavioral and neural data from patients. Results: We show that VTA degeneration might lead to system-level adjustments of catecholamine release, triggering a sequence of events leading to relevant clinical and pathological signs of AD. These changes consist first in a midfrontal-driven compensatory hyperactivation of both VTA and locus coeruleus (norepinephrine) followed, with the progression of the VTA impairment, by a downregulation of catecholamine release. These processes could then trigger the neural degeneration at the cortical and hippocampal levels, due to the chronic loss of the neuroprotective role of norepinephrine. Conclusion: Our novel hypothesis might contribute to the formulation of a wider system-level view of AD which might help to devise early diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Marcello D'Amelio
- Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience (LOCEN), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
41
|
Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 2021; 13:654931. [PMID: 34326765 PMCID: PMC8315271 DOI: 10.3389/fnagi.2021.654931] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The elderly population is growing worldwide, with important health and socioeconomic implications. Clinical and experimental studies on aging have uncovered numerous changes in the brain, such as decreased neurogenesis, increased synaptic defects, greater metabolic stress, and enhanced inflammation. These changes are associated with cognitive decline and neurobehavioral deficits. Although aging is not a disease, it is a significant risk factor for functional worsening, affective impairment, disease exaggeration, dementia, and general disease susceptibility. Conversely, life events related to mental stress and trauma can also lead to accelerated age-associated disorders and dementia. Here, we review human studies and studies on mice and rats, such as those modeling human neurodegenerative diseases, that have helped elucidate (1) the dynamics and mechanisms underlying the biological and pathological aging of the main projecting systems in the brain (glutamatergic, cholinergic, and dopaminergic) and (2) the effect of defective glutamatergic, cholinergic, and dopaminergic projection on disabilities associated with aging and neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Detailed knowledge of the mechanisms of age-related diseases can be an important element in the development of effective ways of treatment. In this context, we briefly analyze which adverse changes associated with neurodegenerative diseases in the cholinergic, glutaminergic and dopaminergic systems could be targeted by therapeutic strategies developed as a result of our better understanding of these damaging mechanisms.
Collapse
Affiliation(s)
- Anna Gasiorowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Steczkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
43
|
Nabinger DD, Altenhofen S, Peixoto JV, da Silva JMK, Gerlai R, Bonan CD. Feeding status alters exploratory and anxiety-like behaviors in zebrafish larvae exposed to quinpirole. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110179. [PMID: 33212194 DOI: 10.1016/j.pnpbp.2020.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
The dysfunction of dopaminergic signaling is associated with several neurological disorders. The use of pharmacological agents that interact with this signaling system may be employed to understand mechanisms underlying such disorders. Nutritional status can impact dopamine reuptake, receptor affinity, transporter activity, and the effects of drugs that bind to dopamine receptors or interact with dopaminergic system. Here we evaluated the effects of quinpirole (a dopamine D2/D3 receptor agonist) exposure on fed and non-fed zebrafish larvae. Zebrafish larvae (6 days post-fertilization, dpf) were exposed to quinpirole (5.5, 16.7, and 50.0 μM) or water (control group) for one hour. To evaluate the effect of feeding status on quinpirole exposure, the experiments were performed on fed and non-fed animals, a between subject experimental design. Both fed and non-fed quinpirole treated larvae exhibited increased erratic movements compared to controls in an open tank exploration task. No alterations were observed on the main parameters of exploratory behavior and swim activity for non-fed larvae treated with quinpirole compared to controls. However, fed animals exposed to quinpirole exhibited increased locomotor activity, anxiety-like behavior, and repetitive circular movements when compared to controls and non-fed exposed animals. In addition, we observed quinpirole exposure to have no effects on morphological parameters and heartbeat, but to impair optomotor responses in both fed and non-fed larvae compared to control. We also found quinpirole effects to interact with feeding status, as quinpirole-treated fed larvae improved while quinpirole treated non-fed larvae impaired their avoidance reaction towards an aversive stimulus. These results indicate that the behavioral effects of quinpirole exposure depended upon feeding status. They showed that consumption of food, a naturally rewarding stimulus known to engage the dopaminergic system, made this neurotransmitter system more susceptible to quinpirole's effects.
Collapse
Affiliation(s)
- Débora Dreher Nabinger
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Vasconcellos Peixoto
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Maria Kuhl da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, ON, Canada
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
44
|
Mukhin VN, Borovets IR, Sizov VV, Pavlov KI, Klimenko VM. Differential Influence of Amyloid-β on the Kinetics of Dopamine Release in the Dorsal and Ventral Striatum of Rats. Neurotox Res 2021; 39:1285-1292. [PMID: 33991320 DOI: 10.1007/s12640-021-00371-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Dopaminergic dysfunction is a part of Alzheimer's disease pathology. The brain accumulation of amyloid-β of toxic form is a key link of the pathology, which, according to the literature, is also true for dopaminergic dysfunction. An increase in the amyloid-β level in the brain changes the maximum of the evoked dopamine release in the dorsal and ventral parts of the striatum of the experimental animals. Theoretically, this may be due to the change in the intensity of dopamine release from the nerve terminals or its reuptake. However, it has not been studied. To fill this gap, we examined the amyloid-β induced changes in the kinetics of the evoked dopamine release in the dorsal striatum and the nucleus accumbens core and shell. Amyloid-β solution (fragments 25-35) was injected into the ventricular system of the anesthetized male Wistar rats. Before and after injection, electrically evoked dopamine kinetics was registered with fast-scan cyclic voltammetry. The results had shown that the amount of dopamine release decreases in the dorsal striatum and increases in the nucleus accumbens shell. No changes were found in the intensity of dopamine reuptake.
Collapse
Affiliation(s)
- Valery N Mukhin
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia.
| | - Ivan R Borovets
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Vadim V Sizov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Konstantin I Pavlov
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| | - Victor M Klimenko
- Ivan P. Pavlov Department of Physiology, Federal State Budgetary Scientific Institution Institute of Experimental Medicine, Acad. Pavlov str., 12,, St. Petersburg, 197376, Russia
| |
Collapse
|
45
|
Iaccarino L, Sala A, Caminiti SP, Presotto L, Perani D. In vivo MRI Structural and PET Metabolic Connectivity Study of Dopamine Pathways in Alzheimer's Disease. J Alzheimers Dis 2021; 75:1003-1016. [PMID: 32390614 DOI: 10.3233/jad-190954] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by an involvement of brain dopamine (DA) circuitry, the presence of which has been associated with emergence of both neuropsychiatric symptoms and cognitive deficits. OBJECTIVE In order to investigate whether and how the DA pathways are involved in the pathophysiology of AD, we assessed by in vivo neuroimaging the structural and metabolic alterations of subcortical and cortical DA pathways and targets. METHODS We included 54 healthy control participants, 53 amyloid-positive subjects with mild cognitive impairment due to AD (MCI-AD), and 60 amyloid-positive patients with probable dementia due to AD (ADD), all with structural 3T MRI and 18F-FDG-PET scans. We assessed MRI-based gray matter reductions in the MCI-AD and ADD groups within an anatomical a priori-defined Nigrostriatal and Mesocorticolimbic DA pathways, followed by 18F-FDG-PET metabolic connectivity analyses to evaluate network-level metabolic connectivity changes. RESULTS We found significant tissue loss in the Mesocorticolimbic over the Nigrostriatal pathway. Atrophy was evident in the ventral striatum, orbitofrontal cortex, and medial temporal lobe structures, and already plateaued in the MCI-AD stage. Degree of atrophy in Mesocorticolimbic regions positively correlated with the severity of depression, anxiety, and apathy in MCI-AD and ADD subgroups. Additionally, we observed significant alterations of metabolic connectivity between the ventral striatum and fronto-cingulate regions in ADD, but not in MCI-AD. There were no metabolic connectivity changes within the Nigrostriatal pathway. CONCLUSION Our cross-sectional data support a clinically-meaningful, yet stage-dependent, involvement of the Mesocorticolimbic system in AD. Longitudinal and clinical correlation studies are needed to further establish the relevance of DA system involvement in AD.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
46
|
Saviano A, Casillo GM, Raucci F, Pernice A, Santarcangelo C, Piccolo M, Ferraro MG, Ciccone M, Sgherbini A, Pedretti N, Bonvicini D, Irace C, Daglia M, Mascolo N, Maione F. Supplementation with ribonucleotide-based ingredient (Ribodiet®) lessens oxidative stress, brain inflammation, and amyloid pathology in a murine model of Alzheimer. Biomed Pharmacother 2021; 139:111579. [PMID: 33845375 DOI: 10.1016/j.biopha.2021.111579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide, characterized by the deposition of neurofibrillary tangles and amyloid-β (Aβ) peptides in the brain. Additionally, increasing evidence demonstrates that a neuroinflammatory state and oxidative stress, iron-dependent, play a crucial role in the onset and disease progression. Besides conventional therapies, the use of natural-based products represents a future medical option for AD treatment and/or prevention. We, therefore, evaluated the effects of a ribonucleotides-based ingredient (Ribodiet®) in a non-genetic mouse model of AD. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aβ1-42 peptide (3 µg/3 μl) and after with Ribodiet® (0.1-10 mg/mouse) orally (p.o.) 3 times weekly for 21 days following the induction of experimental AD. The mnemonic and cognitive decline was then evaluated, and, successively, we have assessed ex vivo the modulation of different cyto-chemokines on mice brain homogenates. Finally, the level of GFAP, S100β, and iron-related metabolic proteins were monitored as markers of reactive gliosis, neuro-inflammation, and oxidative stress. Results indicate that Ribodiet® lessens oxidative stress, brain inflammation, and amyloid pathology via modulation of iron-related metabolic proteins paving the way for its rationale use for the treatment of AD and other age-related diseases.
Collapse
Affiliation(s)
- Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gian Marco Casillo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessia Pernice
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Miriam Ciccone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Nadia Pedretti
- Prosol S.p.A., Via Carso, 99, 24040 Madone, Bergamo, Italy
| | | | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Nicola Mascolo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
47
|
Ceyzériat K, Gloria Y, Tsartsalis S, Fossey C, Cailly T, Fabis F, Millet P, Tournier BB. Alterations in dopamine system and in its connectivity with serotonin in a rat model of Alzheimer's disease. Brain Commun 2021; 3:fcab029. [PMID: 34286270 PMCID: PMC8287930 DOI: 10.1093/braincomms/fcab029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine pathways alterations are reported in Alzheimer’s disease. However, it is
difficult in humans to establish when these deficits appear and their impact in the course
of Alzheimer’s disease. In the TgF344-Alzheimer’s disease rat model at the age of
6 months, we showed a reduction in in vivo release of striatal dopamine
due to serotonin 5HT2A-receptor blockade, in the absence of alterations in
5HT2A-receptor binding, suggesting a reduction in
5HT2A-receptor-dopamine system connectivity. In addition, a functional
hypersensitivity of postsynaptic dopamine D2-receptors and
D2-autoreceptors was also reported without any change in D2-receptor
density and in the absence of amyloid plaques or overexpression of the 18 kDa translocator
protein (an inflammatory marker) in areas of the dopamine system. Citalopram, a selective
serotonin reuptake inhibitor, induced functional
5HT2A-receptor−D2-receptor connectivity changes but had no effect on
D2-autoreceptor hypersensitivity. In older rats, dopamine cell bodies
overexpressed translocator protein and dopamine projection sites accumulated amyloid.
Interestingly, the 5HT2A-receptor density is decreased in the accumbens
subdivisions and the substantia nigra pars compacta. This reduction in the striatum is
related to the astrocytic expression of 5HT2A-receptor. Our results indicate
that both serotonin/dopamine connectivity and dopamine signalling pathways are
dysregulated and potentially represent novel early diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Division of Nuclear medicine, Diagnostic Department, University Hospitals and Geneva University of Geneva, 1206 Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Yesica Gloria
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Christine Fossey
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Thomas Cailly
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.,Department of Nuclear Medicine, CHU Cote de Nacre, 14000 Caen, France.,Normandie University, UNICAEN, IMOGERE, 14000 Caen, France
| | - Frédéric Fabis
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
La Barbera L, Vedele F, Nobili A, Krashia P, Spoleti E, Latagliata EC, Cutuli D, Cauzzi E, Marino R, Viscomi MT, Petrosini L, Puglisi-Allegra S, Melone M, Keller F, Mercuri NB, Conti F, D'Amelio M. Nilotinib restores memory function by preventing dopaminergic neuron degeneration in a mouse model of Alzheimer's Disease. Prog Neurobiol 2021; 202:102031. [PMID: 33684513 DOI: 10.1016/j.pneurobio.2021.102031] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023]
Abstract
What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aβ levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Francescangelo Vedele
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Annalisa Nobili
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Paraskevi Krashia
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| | - Elena Spoleti
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | | | - Debora Cutuli
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Emma Cauzzi
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ramona Marino
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Life Science and Public Health Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura Petrosini
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | | | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy
| | - Flavio Keller
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020, Ancona, Italy; Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020, Ancona, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020, Ancona, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Department of Sciences and Technologies for Humans and Environment, University Campus Bio-Medico, 00128, Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143, Rome, Italy.
| |
Collapse
|
49
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
50
|
Cummings J. New approaches to symptomatic treatments for Alzheimer's disease. Mol Neurodegener 2021; 16:2. [PMID: 33441154 PMCID: PMC7805095 DOI: 10.1186/s13024-021-00424-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Successful development of agents that improve cognition and behavior in Alzheimer's disease (AD) is critical to improving the lives of patients manifesting the symptoms of this progressive disorder. DISCUSSION There have been no recent approvals of cognitive enhancing agents for AD. There are currently 6 cognitive enhancers in Phase 2 trials and 4 in phase 3. They represent a variety of novel mechanisms. There has been progress in developing new treatments for neuropsychiatric symptoms in AD with advances in treatment of insomnia, psychosis, apathy, and agitation in AD. There are currently 4 AD-related psychotropic agents in Phase 2 trials and 7 in Phase 3 trials. Many novel mechanisms are being explored for the treatment of cognitive and behavioral targets. Progress in trial designs, outcomes measures, and population definitions are improving trial conduct for symptomatic treatment of AD. CONCLUSIONS Advances in developing new agents for cognitive and behavioral symptoms of AD combined with enhanced trial methods promise to address the unmet needs of patients with AD for improved cognition and amelioration of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|