1
|
Chen L, Zhang H, Shang C, Hong Y. The Role and Applied Value of Mitochondria in Glioma-Related Research. CNS Neurosci Ther 2024; 30:e70121. [PMID: 39639571 PMCID: PMC11621238 DOI: 10.1111/cns.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondria, known as the "energy factory" of cells, are essential organelles with a double membrane structure and genetic material found in most eukaryotic cells. They play a crucial role in tumorigenesis and development, with alterations in mitochondrial structure and function in tumor cells leading to characteristics such as rapid proliferation, invasion, and drug resistance. Glioma, the most common brain tumor with a high recurrence rate and limited treatment options, has been linked to changes in mitochondrial structure and function. This review focuses on the bioenergetics, dynamics, metastasis, and autophagy of mitochondria in relation to glioma proliferation, as well as the potential use of mitochondria-targeting drugs in glioma treatment.
Collapse
Affiliation(s)
- Liwen Chen
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hui Zhang
- Department of Urology, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chao Shang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangLiaoningChina
| | - Yang Hong
- Department of Neurosurgery, Shengjing HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Bruszt K, Horvath O, Ordog K, Toth S, Juhasz K, Vamos E, Fekete K, Gallyas F, Toth K, Halmosi R, Deres L. Cardiac effects of OPA1 protein promotion in a transgenic animal model. PLoS One 2024; 19:e0310394. [PMID: 39570915 PMCID: PMC11581344 DOI: 10.1371/journal.pone.0310394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/30/2024] [Indexed: 11/24/2024] Open
Abstract
Mitochondria form a dynamic network in cells, regulated by the balance between mitochondrial fusion and fission. The inhibition of mitochondrial fission can have positive effects in acute ischemic/reperfusion injury models by preventing the fall in mitochondrial membrane potential associated with fission processes. However, inhibition of fission in chronic models is disadvantageous because it obstructs the elimination of damaged mitochondrial fragments. OPA1, in view of previous results, is a possible therapeutic target as a fusion promoter and structure stabilizer protein. We used transgenic mice in which the OMA1 cleavage sites of OPA1 were deleted. This resulted in a higher representation of L-OPA1 compared to S-OPA1. After genotyping and model validation, all animals were examined by echocardiograph on two occasions, at weeks 11 and 36. Histological samples were taken from hearts to examine mitochondrial morphology and structure remodeling. The signaling pathways related to mitochondrial dynamic processes were evaluated. Cardiomyocytes were isolated from neonatal mice to determine the efficiency of mitochondrial respiration using the SeaHorse assay method. OPA1 protein promotion has a negative effect on systolic function during aging. We confirmed that volume overload and ventricular remodeling did not manifest. The reason behind the loss of pump function might be, at least partly, due to the energy deficit caused by mitochondrial respiratory failure and damage in mitochondrial quality control pathways.
Collapse
Affiliation(s)
- Kitti Bruszt
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Orsolya Horvath
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Szilard Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Kata Juhasz
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Eszter Vamos
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs Medical School, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
3
|
Yao H, Zhao H, Du Y, Zhang Y, Li Y, Zhu H. Sex-related differences in SIRT3-mediated mitochondrial dynamics in renal ischemia/reperfusion injury. Transl Res 2024; 270:1-12. [PMID: 38556109 DOI: 10.1016/j.trsl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. Here, we demonstrate differential expression of renal SIRT3 may induce sexual dimorphism in IRI using the renal IRI model. Higher SIRT3 level in female mice was associated with E2-induced protection of renal tubular epithelium, reduced mitochondrial reactive oxygen species (ROS), and IRI resistance. In hypoxia-reoxygenated HEK cells, SIRT3 knockdown increased oxidative stress, shifted the interconnected mitochondrial network toward fission, exacerbated hypoxia/reoxygenation-induced endoplasmic reticulum stress (ERS), and abolished the protective effects of E2 on IRI. Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.
Collapse
Affiliation(s)
- Hanlin Yao
- Zhongnan Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China; Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
4
|
Ghani M, Szabó B, Alkhatibe M, Amsalu H, Zohar P, Janka EA, Mótyán JA, Tar K. Serine 39 in the GTP-binding domain of Drp1 is involved in shaping mitochondrial morphology. FEBS Open Bio 2024; 14:1147-1165. [PMID: 38760979 PMCID: PMC11216946 DOI: 10.1002/2211-5463.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Continuous fusion and fission are critical for mitochondrial health. In this study, we further characterize the role played by dynamin-related protein 1 (Drp1) in mitochondrial fission. We show that a single amino acid change in Drp1 at position 39 from serine to alanine (S39A) within the GTP-binding (GTPase) domain results in a fused mitochondrial network in human SH-SY5Y neuroblastoma cells. Interestingly, the phosphorylation of Ser-616 and Ser-637 of Drp1 remains unaffected by the S39A mutation, and mitochondrial bioenergetic profile and cell viability in the S39A mutant were comparable to those observed in the control. This leads us to propose that the serine 39 residue of Drp1 plays a crucial role in mitochondrial distribution through its involvement in the GTPase activity. Furthermore, this amino acid mutation leads to structural anomalies in the mitochondrial network. Taken together, our results contribute to a better understanding of the function of the Drp1 protein.
Collapse
Affiliation(s)
- Marvi Ghani
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenHungary
| | - Bernadett Szabó
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Mahmoud Alkhatibe
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Hailemariam Amsalu
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenHungary
| | - Peleg Zohar
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| | - Eszter Anna Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of MedicineUniversity of DebrecenHungary
- HUN‐REN‐UD Allergology Research GroupUniversity of DebrecenHungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenHungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of MedicineUniversity of DebrecenHungary
| |
Collapse
|
5
|
Cox SN, Lo Giudice C, Lavecchia A, Poeta ML, Chiara M, Picardi E, Pesole G. Mitochondrial and Nuclear DNA Variants in Amyotrophic Lateral Sclerosis: Enrichment in the Mitochondrial Control Region and Sirtuin Pathway Genes in Spinal Cord Tissue. Biomolecules 2024; 14:411. [PMID: 38672428 PMCID: PMC11048214 DOI: 10.3390/biom14040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive disease with prevalent mitochondrial dysfunctions affecting both upper and lower motor neurons in the motor cortex, brainstem, and spinal cord. Despite mitochondria having their own genome (mtDNA), in humans, most mitochondrial genes are encoded by the nuclear genome (nDNA). Our study aimed to simultaneously screen for nDNA and mtDNA genomes to assess for specific variant enrichment in ALS compared to control tissues. Here, we analysed whole exome (WES) and whole genome (WGS) sequencing data from spinal cord tissues, respectively, of 6 and 12 human donors. A total of 31,257 and 301,241 variants in nuclear-encoded mitochondrial genes were identified from WES and WGS, respectively, while mtDNA reads accounted for 73 and 332 variants. Despite technical differences, both datasets consistently revealed a specific enrichment of variants in the mitochondrial Control Region (CR) and in several of these genes directly associated with mitochondrial dynamics or with Sirtuin pathway genes within ALS tissues. Overall, our data support the hypothesis of a variant burden in specific genes, highlighting potential actionable targets for therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Claudio Lo Giudice
- Institute of Biomedical Technologies, National Research Council, 70126 Bari, Italy;
| | - Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
| | - Matteo Chiara
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (A.L.); (M.L.P.); (E.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, 70126 Bari, Italy
| |
Collapse
|
6
|
Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion 2024; 75:101847. [PMID: 38246334 DOI: 10.1016/j.mito.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangzhou Medical University, Guangzhou 511495, China
| | - Wenjun Luo
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Haoyu Chen
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
7
|
Affortit C, Coyat C, Saidia AR, Ceccato JC, Charif M, Sarzi E, Flamant F, Guyot R, Cazevieille C, Puel JL, Lenaers G, Wang J. The human OPA1 delTTAG mutation induces adult onset and progressive auditory neuropathy in mice. Cell Mol Life Sci 2024; 81:80. [PMID: 38334784 PMCID: PMC10858076 DOI: 10.1007/s00018-024-05115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Dominant optic atrophy (DOA) is one of the most prevalent forms of hereditary optic neuropathies and is mainly caused by heterozygous variants in OPA1, encoding a mitochondrial dynamin-related large GTPase. The clinical spectrum of DOA has been extended to a wide variety of syndromic presentations, called DOAplus, including deafness as the main secondary symptom associated to vision impairment. To date, the pathophysiological mechanisms underlying the deafness in DOA remain unknown. To gain insights into the process leading to hearing impairment, we have analyzed the Opa1delTTAG mouse model that recapitulates the DOAplus syndrome through complementary approaches combining morpho-physiology, biochemistry, and cellular and molecular biology. We found that Opa1delTTAG mutation leads an adult-onset progressive auditory neuropathy in mice, as attested by the auditory brainstem response threshold shift over time. However, the mutant mice harbored larger otoacoustic emissions in comparison to wild-type littermates, whereas the endocochlear potential, which is a proxy for the functional state of the stria vascularis, was comparable between both genotypes. Ultrastructural examination of the mutant mice revealed a selective loss of sensory inner hair cells, together with a progressive degeneration of the axons and myelin sheaths of the afferent terminals of the spiral ganglion neurons, supporting an auditory neuropathy spectrum disorder (ANSD). Molecular assessment of cochlea demonstrated a reduction of Opa1 mRNA level by greater than 40%, supporting haploinsufficiency as the disease mechanism. In addition, we evidenced an early increase in Sirtuin 3 level and in Beclin1 activity, and subsequently an age-related mtDNA depletion, increased oxidative stress, mitophagy as well as an impaired autophagic flux. Together, these results support a novel role for OPA1 in the maintenance of inner hair cells and auditory neural structures, addressing new challenges for the exploration and treatment of OPA1-linked ANSD in patients.
Collapse
Affiliation(s)
- Corentin Affortit
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Head and Neck Surgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Carolanne Coyat
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
| | - Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
| | - Jean-Charles Ceccato
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, 60000, Oujda, Morocco
| | - Emmanuelle Sarzi
- Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM) UCBL-CNRS UMR5261, Inserm U1315, Université Claude Bernard, Lyon I, Faculty of Medicine and Pharmacy, Lyon, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS Lyon, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS Lyon, Lyon, France
| | - Chantal Cazevieille
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France
| | - Guy Lenaers
- Université Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
- Service de Neurologie, CHU d'Angers, Angers, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France.
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Li M, Hu Y, Zhou H, Chen Y. NR4A1 Aggravates Myocardial Ischaemia-Reperfusion Injury by Inhibiting OPA1-Mediated Mitochondrial Fusion. J Cardiovasc Transl Res 2023; 16:1050-1063. [PMID: 37249897 DOI: 10.1007/s12265-023-10396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia-reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.
Collapse
Affiliation(s)
- Muding Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Yingyun Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
10
|
Valentin K, Georgi T, Riedl R, Aminfar H, Singer C, Klopstock T, Wedrich A, Schneider M. Idebenone Treatment in Patients with OPA1-Dominant Optic Atrophy: A Prospective Phase 2 Trial. Neuroophthalmology 2023; 47:237-247. [PMID: 38130806 PMCID: PMC10732653 DOI: 10.1080/01658107.2023.2251575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this study was to evaluate the therapeutic effect of idebenone in patients with OPA1-dominant optic atrophy (DOA). Sixteen patients with genetically confirmed OPA1-DOA were treated with 900 mg idebenone daily for 12 months. The primary endpoint was the best recovery/least deterioration of visual acuity. Secondary endpoints were the changes of visual acuity, colour vision, contrast sensitivity, visual field, peripapillary retinal nerve fibre layer thickness (pRNFLT), and visual-related quality of life. For the primary endpoint, a significant increase was observed for the right eye (p = .0027), for the left eye (p = .0111) and for the better-seeing eye (p = .0152). For visual fields, a significant improvement was observed for the left eye between baseline and 9 months (p = .0038). Regarding pRNFLT, a significant decrease was found for the left eye between baseline and 3 months (p = .0413) and between baseline and 6 months (p = .0448). In the visual function questionnaire, a significant improvement was observed in the subscale general vision (p = .0156) and in the composite score (p = .0256). In conclusion, best recovery of visual acuity improved, even though the amount of improvement was small. Furthermore, a maintenance of visual function after 12 months of idebenone intake could be observed as well as a significant improvement in vision-related quality of life.Whether this effect is due to idebenone treatment, the placebo effect, or is explainable by the natural progression of DOA, remains unclear. Trial registration: EU Clinical Trials Register, EudraCT Number: 2019-001493-28.
Collapse
Affiliation(s)
| | - Thomas Georgi
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Haleh Aminfar
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Christoph Singer
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Mona Schneider
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Liu JC, Zhao QF, Zhang L, Yu BY, Li F, Kou JP. Ruscogenin Alleviates Myocardial Ischemia via Myosin IIA-Dependent Mitochondrial Fusion and Fission Balance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1879-1904. [PMID: 37650421 DOI: 10.1142/s0192415x23500830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Qing-Fei Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Ling Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jun-Ping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
12
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
13
|
Newman NJ, Yu-Wai-Man P, Biousse V, Carelli V. Understanding the molecular basis and pathogenesis of hereditary optic neuropathies: towards improved diagnosis and management. Lancet Neurol 2023; 22:172-188. [PMID: 36155660 DOI: 10.1016/s1474-4422(22)00174-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023]
Abstract
Hereditary optic neuropathies result from defects in the human genome, both nuclear and mitochondrial. The two main and most recognised phenotypes are dominant optic atrophy and Leber hereditary optic neuropathy. Advances in modern molecular diagnosis have expanded our knowledge of genotypes and phenotypes of inherited disorders that affect the optic nerve, either alone or in combination, with various forms of neurological and systemic degeneration. A unifying feature in the pathophysiology of these disorders appears to involve mitochondrial dysfunction, suggesting that the retinal ganglion cells and their axons are especially susceptible to perturbations in mitochondrial homoeostasis. As we better understand the pathogenesis behind these genetic diseases, aetiologically targeted therapies are emerging and entering into clinical trials, including treatments aimed at halting the cascade of neurodegeneration, replacing or editing the defective genes or their protein products, and potentially regenerating damaged optic nerves, as well as preventing generational disease transmission.
Collapse
MESH Headings
- Humans
- Optic Nerve Diseases/diagnosis
- Optic Nerve Diseases/genetics
- Optic Nerve Diseases/therapy
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Nerve
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- DNA, Mitochondrial/genetics
Collapse
Affiliation(s)
- Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Valérie Biousse
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Yuan Y, Zhang XM. Mechanistic study of optic atrophy 1 in ischemia-reperfusion disease. J Mol Med (Berl) 2023; 101:1-8. [PMID: 36418744 DOI: 10.1007/s00109-022-02271-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Mitochondria consist of the inner mitochondrial membrane and the outer mitochondrial membrane, which maintain mitochondrial homeostasis through continuous fission and fusion to ensure a healthy mitochondrial network and thus regulate normal cellular function, namely mitochondrial dynamics. The imbalance between mitochondrial fusion and fission results in abnormal mitochondrial structure and eventually mitochondrial dysfunction, which is involved in the pathological process of ischemia-reperfusion injury (IRI). Optic atrophy 1 (OPA1) is a key protein that regulates mitochondrial inner membrane fusion and ensures normal mitochondrial function by balancing mitochondrial dynamics, participating in various processes such as mitochondrial fusion, oxidative stress, and apoptosis. Ischemia-induced changes in mitochondrial dynamics may be a key factor in limiting the recanalization time window and exacerbating reperfusion injury, and the mechanisms of these changes deserve further attention. Therefore, targeting OPA1-related mitochondrial fusions, thereby balancing mitochondrial dynamics and improving mitochondrial dysfunction, is a promising therapeutic strategy for ischemia-reperfusion diseases. This review will elaborate on the structure and function of OPA1 and the role of OPA1 in IRI to provide promising therapeutic targets for the treatment of ischemia-reperfusion diseases.
Collapse
Affiliation(s)
- Ying Yuan
- College of Acupuncture, Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Ming Zhang
- College of Acupuncture, Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China. .,Sub-health institute Hubei university of Chinese Medicine, Wuhan, 430065, China. .,Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion Wuhan, Wuhan, 430065, China.
| |
Collapse
|
15
|
Wang R, Xu H, Tan B, Yi Q, Sun Y, Xiang H, Chen T, Liu H, Xie Q, Wang L, Tian J, Zhu J. SIRT3 promotes metabolic maturation of human iPSC-derived cardiomyocytes via OPA1-controlled mitochondrial dynamics. Free Radic Biol Med 2023; 195:270-282. [PMID: 36596388 DOI: 10.1016/j.freeradbiomed.2022.12.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
The metabolic patterns and energetics of human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) are much less than those of normal adult cardiomyocytes, which has limited their application in disease therapy and regenerative medicine. It has been demonstrated that SIRT3, a mitochondria-target deacetylase, controls mitochondrial metabolism in physiological and pathological conditions. In this research, We investigated the role and regulatory mechanism of SIRT3 in energy metabolism in HiPSC-CMs. We found that the expression of SIRT3 was increased during the differentiation and maturation of HiPSC-CMs. Knocking down SIRT3 impaired mitochondrial structure, mitochondrial respiration capacity, and fatty acid oxidation but enhanced glycolysis. However, honokiol, a pharmacological activator of SIRT3, improved the mitochondrial ultrastructure and energetics, and promoted oxidative phosphorylation in HiPSC-CMs. Furthermore, SIRT3 regulated the acetylation of OPA1, and the knockdown of OPA1 blocked the promotion of energy metabolism by honokiol, meanwhile, knocking down OPA1 impaired mitochondrial fusion, mitochondrial respiration capacity, and fatty acid oxidation which were reversed by M1 (a mitochondrial fusion promoter) in HiPSC-CMs. In summary, SIRT3 regulated energetics and promoted metabolism remodeling by targeting the OPA1-controlled mitochondrial dynamics in HiPSC-CMs, and targeting SIRT3 may have revelatory implications in the treatment of cardiovascular diseases and the application of HiPSC-CMs to regenerative medicine.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yanting Sun
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Xiang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tangtian Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiumin Xie
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Tian
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Cardiovascular Internal Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
16
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Shang D, Huang M, Wang B, Yan X, Wu Z, Zhang X. mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:578-598. [PMID: 35950246 PMCID: PMC10207910 DOI: 10.2174/1570159x20666220810114644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence indicates that the semiautonomous organelles mitochondria play key roles in the progression of many neurodegenerative disorders. Mitochondrial DNA (mtDNA) encodes components of the OXPHOS complex but mutated mtDNA accumulates in cells with aging, which mirrors the increased prevalence of neurodegenerative diseases. This accumulation stems not only from the misreplication of mtDNA and the highly oxidative environment but also from defective mitophagy after fission. In this review, we focus on several pivotal mitochondrial proteins related to mtDNA maintenance (such as ATAD3A and TFAM), mtDNA alterations including mtDNA mutations, mtDNA elimination, and mtDNA release-activated inflammation to understand the crucial role played by mtDNA in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Our work outlines novel therapeutic strategies for targeting mtDNA.
Collapse
Affiliation(s)
- Dehao Shang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Minghao Huang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
18
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
19
|
Thomas Broome S, Castorina A. Systemic Rotenone Administration Causes Extra-Nigral Alterations in C57BL/6 Mice. Biomedicines 2022; 10:biomedicines10123174. [PMID: 36551930 PMCID: PMC9775048 DOI: 10.3390/biomedicines10123174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic administration of rotenone replicates several pathogenic and behavioural features of Parkinson's disease (PD), some of which cannot be explained by deficits of the nigrostriatal pathway. In this study, we provide a comprehensive analysis of several neurochemical alterations triggered by systemic rotenone administration in the CNS of C57BL/6 mice. Mice injected with either 1, 3 or 10 mg/kg rotenone daily via intraperitoneal route for 21 days were assessed weekly for changes in locomotor and exploratory behaviour. Rotenone treatment caused significant locomotor and exploratory impairment at dosages of 3 or 10 mg/kg. Molecular analyses showed reductions of both TH and DAT expression in the midbrain, striatum and spinal cord, accompanied by altered expression of dopamine receptors and brain-derived neurotrophic factor (BDNF). Rotenone also triggered midbrain-restricted inflammatory responses with heightened expression of glial markers, which was not seen in extra-nigral regions. However, widespread alterations of mitochondrial function and increased signatures of oxidative stress were identified in both nigral and extra-nigral regions, along with disruptions of neuroprotective peptides, such as pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and activity-dependent neuroprotective protein (ADNP). Altogether, this study shows that systemic rotenone intoxication, similarly to PD, causes a series of neurochemical alterations that extend at multiple CNS levels, reinforcing the suitability of this pre-clinical model for the study extra-nigral defects of PD.
Collapse
|
20
|
Han J, Li Y, You Y, Fan K, Lei B. Autosomal dominant optic atrophy caused by six novel pathogenic OPA1 variants and genotype-phenotype correlation analysis. BMC Ophthalmol 2022; 22:322. [PMID: 35883160 PMCID: PMC9327245 DOI: 10.1186/s12886-022-02546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To describe the genetic and clinical features of nineteen patients from eleven unrelated Chinese pedigrees with OPA1-related autosomal dominant optic atrophy (ADOA) and define the phenotype-genotype correlations. METHODS Detailed ophthalmic examinations were performed. Targeted next-generation sequencing (NGS) was conducted in the eleven probands using a custom designed panel PS400. Sanger sequencing and cosegregation were used to verify the identified variants. The pathogenicity of gene variants was evaluated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS Nineteen patients from the eleven unrelated Chinese ADOA pedigrees had impaired vision and optic disc pallor. Optical coherence tomography showed significant thinning of the retinal nerve fiber layer. The visual field showed varying degrees of central or paracentral scotoma. The onset of symptoms occurred between 3 and 24 years of age (median age 6 years). Eleven variants in OPA1 were identified in the cohort, and nine novel variants were identified. Among the novel variants, two splicing variants c.984 + 1_984 + 2delGT, c.1194 + 2 T > C, two stop-gain variants c.1937C > G, c.2830G > T, and one frameshift variant c.2787_2794del8, were determined to be pathogenic based on ACMG. A novel splicing variant c.1316-10 T > G was determined to be likely pathogenic. In addition, a novel missense c.1283A > C (p.N428T) and two novel splicing variants c.2496G > A and c.1065 + 5G > C were of uncertain significance. CONCLUSIONS Six novel pathogenic variants were identified. The findings will facilitate genetic counselling by expanding the pathogenic mutation spectrum of OPA1.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Ya Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Ya You
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Ke Fan
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Bo Lei
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
21
|
Palfi A, Chadderton N, Millington-Ward S, Post I, Humphries P, Kenna PF, Farrar GJ. AAV-PHP.eB transduces both the inner and outer retina with high efficacy in mice. Mol Ther Methods Clin Dev 2022; 25:236-249. [PMID: 35474956 PMCID: PMC9018541 DOI: 10.1016/j.omtm.2022.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated virus (AAV) vectors are one of the main gene delivery vehicles used in retinal gene therapy approaches; however, there is a need to further improve the efficacy, tropism, and safety of these vectors. In this study, using a CMV-EGFP expression cassette, we characterize the retinal utility of AAV-PHP.eB, a serotype recently developed by in vivo directed evolution, which can cross the blood-brain barrier and target neurons with high efficacy in mice. Systemic and intravitreal delivery of AAV-PHP.eB resulted in the high transduction efficacy of retinal ganglion and horizontal cells, with systemic delivery providing pan-retinal coverage of the mouse retina. Subretinal delivery transduced photoreceptors and retinal pigment epithelium cells robustly. EGFP expression (number of transduced cells and mRNA levels) were similar when the retinas were transduced systemically or intravitreally with AAV-PHP.eB or intravitreally with AAV2/2. Notably, in photoreceptors, EGFP fluorescence intensities and mRNA levels were 50–70 times higher, when subretinal injections with AAV-PHP.eB were compared to AAV2/8. Our results demonstrate the pan-retinal transduction of ganglion cells and extremely efficient transduction of photoreceptor and retinal pigment epithelium cells as the most valuable features of AAV-PHP.eB in the mouse retina.
Collapse
Affiliation(s)
- Arpad Palfi
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Naomi Chadderton
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Sophia Millington-Ward
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Iris Post
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Pete Humphries
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| | - Paul F Kenna
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51, Dublin, Ireland
| | - G Jane Farrar
- Department of Genetics, School of Genetics and Microbiology, Trinity College Dublin, D02 VF25, Dublin, Ireland
| |
Collapse
|
22
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
23
|
Li XY, Wei JL, Xie YX, Zhao J, Ma LY, Zhang N, Yang HF. Serum Levels of Mitochondrial Fission- and Fusion-Related Genes of Coal Workers' Pneumoconiosis and Risk Factor Analysis Based on a Generalized Linear Model. Appl Bionics Biomech 2022; 2022:8629583. [PMID: 35401788 PMCID: PMC8993577 DOI: 10.1155/2022/8629583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to explore the risk factors for coal workers' pneumoconiosis and to further explore the significance of mitochondrial fission and fusion factors in CWP and verify the feasibility of mitochondrial fission and fusion factors as diagnostic and therapeutic targets. Methods The data of 168 cases were collected, and they were divided into a healthy control group (40 cases), dust exposure control group (61 cases), and CWP group (67 cases) and entered into SPSS 24.0. The statistical data were analyzed by the chi-square test or Fisher's exact probability method. The variables with statistically significant differences of the univariate analysis results were included in the generalized linear model. Test level was α = 0.05. Blood samples were collected to detect the ROS content, MDA content, and SOD activity. The mRNA expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were determined by q-PCR. The protein expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were detected by western blot. Results Generalized linear regression analysis showed that lower school education, no respiratory protective measures, the working age beyond 15 years, and the type of work like coal mine drillers were the risk factors for CWP. With the aggravation of CWP, the degree of fibrosis and inflammation increased oxidative damage, increased mitochondrion division, and decreased fusion, which were more sensitive in the second and third stages of CWP. Conclusion The results in this found that mitochondria are injured by fission and fusion in the CWP patients. Detection of the mitochondria fission and fusion factors provides the application value to evaluate the injury degree and progress of CWP and the clues for finding the real and effective screening and diagnosis biomarkers.
Collapse
Affiliation(s)
- Xiao-Yu Li
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jing-Lin Wei
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yong-Xin Xie
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Ya Ma
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Na Zhang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
24
|
Kalogerou M, Ioannou S, Kolovos P, Prokopiou E, Potamiti L, Kyriacou K, Panagiotidis M, Ioannou M, Fella E, Worth EP, Georgiou T. Omega-3 fatty acids promote neuroprotection, decreased apoptosis and reduced glial cell activation in the retina of a mouse model of OPA1-related autosomal dominant optic atrophy. Exp Eye Res 2022; 215:108901. [DOI: 10.1016/j.exer.2021.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023]
|
25
|
Lin CC, Su H, Shiea J, Huang TL. Isobaric Tags for Relative and Absolute Quantitation Identification of Blood Proteins Relevant to Paroxetine Response in Patients With Major Depressive Disorder. Front Psychiatry 2022; 13:577857. [PMID: 35509884 PMCID: PMC9058070 DOI: 10.3389/fpsyt.2022.577857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Isobaric tags for relative and absolute quantitation (iTRAQ) is a proteomic investigation that could be utilized for rapid identification and quantification of proteins, which we would use to identify differentially expressed proteins in treatment responsive patients with major depressive disorder (MDD). METHODS Six treatment responsive patients of MDD were recruited, and their peripheral blood mononuclear cell (PBMC) were collected before and after 4 weeks of paroxetine treatment. iTRAQ and Mascot search engine were used to detect differentially expressed proteins, which were then validated by Western blot. RESULTS Two thousand one hundred and fifty three proteins were screened, and seven proteins showed differences of more than two-fold and 62 proteins with a differences of less than two-fold. Six proteins with commercially available antibodies were identified, and were validated by Western blot in 10 paroxetine responsive MDD patients. Putative hydroxypyruvate isomerase (HYI), eukaryotic translation initiation factor 4H (eIF4H), and RNA binding motif 8A (RBM8A) had statistically significant differences before and after treatment in the validation. Data are available via ProteomeXchange with identifier PXD028947. CONCLUSIONS By using iTRAQ and Western blot, we were able to identify HYI, eIF4H, and RAM8a to be the potential predictors of paroxetine treatment response in patients with MDD. This finding could help establish future individualized medicine.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Zeviani M, Carelli V. Mitochondrial Retinopathies. Int J Mol Sci 2021; 23:210. [PMID: 35008635 PMCID: PMC8745158 DOI: 10.3390/ijms23010210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns-Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.
Collapse
Affiliation(s)
- Massimo Zeviani
- Department of Neurosciences, The Clinical School, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 6, 40139 Bologna, Italy
| |
Collapse
|
27
|
Muñoz-Úbeda M, Semenzato M, Franco-Romero A, Junquera E, Aicart E, Scorrano L, López-Montero I. Transgene expression in mice of the Opa1 mitochondrial transmembrane protein through bicontinuous cubic lipoplexes containing gemini imidazolium surfactants. J Nanobiotechnology 2021; 19:425. [PMID: 34922554 PMCID: PMC8684174 DOI: 10.1186/s12951-021-01167-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoplexes are non-viral vectors based on cationic lipids used to deliver DNA into cells, also known as lipofection. The positively charge of the hydrophilic head-group provides the cationic lipids the ability to condensate the negatively charged DNA into structured complexes. The polar head can carry a large variety of chemical groups including amines as well as guanidino or imidazole groups. In particular, gemini cationic lipids consist of two positive polar heads linked by a spacer with different length. As for the hydrophobic aliphatic chains, they can be unsaturated or saturated and are connected to the polar head-groups. Many other chemical components can be included in the formulation of lipoplexes to improve their transfection efficiency, which often relies on their structural features. Varying these components can drastically change the arrangement of DNA molecules within the lamellar, hexagonal or cubic phases that are provided by the lipid matrix. Lipofection is widely used to deliver genetic material in cell culture experiments but the simpler formulations exhibit major drawbacks related to low transfection, low specificity, low circulation half-life and toxicity when scaled up to in vivo experiments. RESULTS So far, we have explored in cell cultures the transfection ability of lipoplexes based on gemini cationic lipids that consist of two C16 alkyl chains and two imidazolium polar head-groups linked with a polyoxyethylene spacer, (C16Im)2(C4O). Here, PEGylated lipids have been introduced to the lipoplex formulation and the transgene expression of the Opa1 mitochondrial transmembrane protein in mice was assessed. The addition of PEG on the surface of the lipid mixed resulted in the formation of Ia3d bicontinuous cubic phases as determined by small angle X-ray scattering. After a single intramuscular administration, the cubic lipoplexes were accumulated in tissues with tight endothelial barriers such as brain, heart, and lungs for at least 48 h. The transgene expression of Opa1 in those organs was identified by western blotting or RNA expression analysis through quantitative polymerase chain reaction. CONCLUSIONS The expression reported here is sufficient in magnitude, duration and toxicity to consolidate the bicontinuous cubic structures formed by (C16Im)2(C4O)-based lipoplexes as valuable therapeutic agents in the field of gene delivery.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| | - Martina Semenzato
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anais Franco-Romero
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Elena Junquera
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Emilio Aicart
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Luca Scorrano
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
28
|
Dong T, Zhang X, Liu Y, Xu S, Chang H, Chen F, Pan L, Hu S, Wang M, Lu M. Opa1 Prevents Apoptosis and Cisplatin-Induced Ototoxicity in Murine Cochleae. Front Cell Dev Biol 2021; 9:744838. [PMID: 34621753 PMCID: PMC8490775 DOI: 10.3389/fcell.2021.744838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023] Open
Abstract
Optic atrophy1 (OPA1) is crucial for inner mitochondrial membrane (IMM) fusion and essential for maintaining crista structure and mitochondrial morphology. Optic atrophy and hearing impairment are the most prevalent clinical features associated with mutations in the OPA1 gene, but the function of OPA1 in hearing is still unknown. In this study, we examined the ability of Opa1 to protect against cisplatin-induced cochlear cell death in vitro and in vivo. Our results revealed that knockdown of Opa1 affects mitochondrial function in HEI-OC1 and Neuro 2a cells, as evidenced by an elevated reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. The dysfunctional mitochondria release cytochrome c, which triggers apoptosis. Opa1 expression was found to be significantly reduced after cell exposed to cisplatin in HEI-OC1 and Neuro 2a cells. Loss of Opa1 aggravated the apoptosis and mitochondrial dysfunction induced by cisplatin treatment, whereas overexpression of Opa1 alleviated cisplatin-induced cochlear cell death in vitro and in explant. Our results demonstrate that overexpression of Opa1 prevented cisplatin-induced ototoxicity, suggesting that Opa1 may play a vital role in ototoxicity and/or mitochondria-associated cochlear damage.
Collapse
Affiliation(s)
- Tingting Dong
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejie Zhang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqing Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Xu
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haishuang Chang
- Shanghai Ninth People's Hospital, Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqiu Chen
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulu Pan
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wang
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopaedics, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Overexpression of MnSOD Protects against Cold Storage-Induced Mitochondrial Injury but Not against OMA1-Dependent OPA1 Proteolytic Processing in Rat Renal Proximal Tubular Cells. Antioxidants (Basel) 2021; 10:antiox10081272. [PMID: 34439520 PMCID: PMC8389209 DOI: 10.3390/antiox10081272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
Kidneys from deceased donors undergo cold storage (CS) preservation before transplantation. Although CS is a clinical necessity for extending organ quality preservation, CS causes mitochondrial and renal injury. Specifically, many studies, including our own, have shown that the triggering event of CS-induced renal injury is mitochondrial reactive oxygen species (mROS). Here, we explored the role of OMA1-depedent OPA1 proteolytic processing in rat kidney proximal tubular epithelial (NRK) cells in an in vitro model of renal CS (18 h), followed by rewarming (6 h) (CS + RW). The involvement of mROS was evaluated by stably overexpressing manganese superoxide dismutase (MnSOD), an essential mitochondrial antioxidant enzyme, in NRK cells. Western blots detected rapid OPA1 proteolytic processing and a decrease in ATP-dependent cell viability in NRK cells subjected to CS + RW compared to control cells. Small interfering RNA (siRNA) knockdown of OMA1 reduced proteolytic processing of OPA1, suggesting that OMA1 is responsible for OPA1 proteolytic processing during CS + RW-induced renal injury. Overexpression of MnSOD during CS + RW reduced cell death, mitochondrial respiratory dysfunction, and ATP-dependent cell viability, but it did not prevent OMA1-dependent OPA1 processing. These data show for the first time that OMA1 is responsible for proteolytically cleaving OPA1 in a redox-independent manner during renal cell CS.
Collapse
|
30
|
Chao de la Barca JM, Fogazza M, Rugolo M, Chupin S, Del Dotto V, Ghelli AM, Carelli V, Simard G, Procaccio V, Bonneau D, Lenaers G, Reynier P, Zanna C. Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity. Hum Mol Genet 2021; 29:1319-1329. [PMID: 32202296 PMCID: PMC7254852 DOI: 10.1093/hmg/ddaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Mario Fogazza
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France.,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Dominique Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
31
|
Red Light Irradiation In Vivo Upregulates DJ-1 in the Retinal Ganglion Cell Layer and Protects against Axotomy-Related Dendritic Pruning. Int J Mol Sci 2021; 22:ijms22168380. [PMID: 34445085 PMCID: PMC8395066 DOI: 10.3390/ijms22168380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13–15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/−) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/− retinas. Immunohistochemistry revealed that aged Opa1+/− RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/− RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.
Collapse
|
32
|
Del Dotto V, Carelli V. Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Front Neurol 2021; 12:681326. [PMID: 34177786 PMCID: PMC8220150 DOI: 10.3389/fneur.2021.681326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
33
|
Abstract
Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.
Collapse
Affiliation(s)
- Tierney Baum
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
34
|
Douida A, Batista F, Boto P, Regdon Z, Robaszkiewicz A, Tar K. Cells Lacking PA200 Adapt to Mitochondrial Dysfunction by Enhancing Glycolysis via Distinct Opa1 Processing. Int J Mol Sci 2021; 22:ijms22041629. [PMID: 33562813 PMCID: PMC7914502 DOI: 10.3390/ijms22041629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The conserved Blm10/PA200 proteins are proteasome activators. Previously, we identified PA200-enriched regions in the genome of SH-SY5Y neuroblastoma cells by chromatin immunoprecipitation (ChIP) and ChIP-seq analysis. We also found that selective mitochondrial inhibitors induced PA200 redistribution in the genome. Collectively, our data indicated that PA200 regulates cellular homeostasis at the transcriptional level. In the present study, our aim is to investigate the impact of stable PA200 depletion (shPA200) on the overall transcriptome of SH-SY5Y cells. RNA-seq data analysis reveals that the genetic ablation of PA200 leads to overall changes in the transcriptional landscape of SH-SY5Y neuroblastoma cells. PA200 activates and represses genes regulating metabolic processes, such as the glycolysis and mitochondrial function. Using metabolic assays in live cells, we showed that stable knockdown of PA200 does not change basal respiration. Spare respiratory capacity and proton leak however are slightly, yet significantly, reduced in PA200-deficient cells by 99.834% and 84.147%, respectively, compared to control. Glycolysis and glycolytic capacity show a 42.186% and 26.104% increase in shPA200 cells, respectively, compared to control. These data suggest a shift from oxidative phosphorylation to glycolysis especially when cells are exposed to oligomycin-induced stress. Furthermore, we observed a preserved long and compact tubular mitochondrial morphology after inhibition of ATP synthase by oligomycin, which might be associated with the glycolytic change of shPA200 cells. The present study also demonstrates that the proteolytic cleavage of Opa1 is affected, and that the level of OMA1 is significantly reduced in shPA200 cells upon oligomycin-induced mitochondrial insult. Together, these findings suggest a role for PA200 in the regulation of metabolic changes in response to selective inhibition of ATP synthase in an in vitro cellular model.
Collapse
Affiliation(s)
- Abdennour Douida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (A.D.); (Z.R.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Frank Batista
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Pal Boto
- Stem Cell Differentiation Laboratory, Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (A.D.); (Z.R.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (A.D.); (Z.R.)
- Correspondence: ; Tel.: +36-52-412-345
| |
Collapse
|
35
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
36
|
Maloney DM, Chadderton N, Millington-Ward S, Palfi A, Shortall C, O'Byrne JJ, Cassidy L, Keegan D, Humphries P, Kenna P, Farrar GJ. Optimized OPA1 Isoforms 1 and 7 Provide Therapeutic Benefit in Models of Mitochondrial Dysfunction. Front Neurosci 2020; 14:571479. [PMID: 33324145 PMCID: PMC7726421 DOI: 10.3389/fnins.2020.571479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.
Collapse
Affiliation(s)
- Daniel M Maloney
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Naomi Chadderton
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Arpad Palfi
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ciara Shortall
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - James J O'Byrne
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorraine Cassidy
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - David Keegan
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Humphries
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paul Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Gwyneth Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Aleo SJ, Del Dotto V, Fogazza M, Maresca A, Lodi T, Goffrini P, Ghelli A, Rugolo M, Carelli V, Baruffini E, Zanna C. Drug repositioning as a therapeutic strategy for neurodegenerations associated with OPA1 mutations. Hum Mol Genet 2020; 29:3631-3645. [PMID: 33231680 PMCID: PMC7823107 DOI: 10.1093/hmg/ddaa244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a ‘drug repurposing’ approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients’ fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.
Collapse
Affiliation(s)
- Serena J Aleo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy
| | - Mario Fogazza
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna 40139, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna 40126, Italy
| |
Collapse
|
38
|
Yuan R, Ding X, Tan X, Hou Y. Loss of FZO1 gene results in changes of cell dynamics in fission yeast. Int J Mol Med 2020; 46:2194-2206. [PMID: 33125111 PMCID: PMC7595653 DOI: 10.3892/ijmm.2020.4752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fission and fusion dynamics are critical cellular processes, and abnormalities in these processes are associated with severe human disorders, such as Beckwith-Wiedemann syndrome, neurodegenerative diseases, Charcot-Marie-Tooth disease type 6, multiple symmetric lipomatosis and microcephaly. Fuzzy onions protein 1 (Fzo1p) regulates mitochondrial outer membrane fusion. In the present study, Schizosaccharomyces pombe (S. pombe) was used to explore the effect of FZO1 gene deletion on cell dynamics in mitosis. The mitochondrial morphology results showed that the mitochondria appeared to be fragmented and tubular in wild-type cells; however, they were observed to accumulate in fzo1Δ cells. The FZO1 gene deletion was demonstrated to result in slow proliferation, sporogenesis defects, increased microtubule (MT) number and actin contraction defects in S. pombe. The FZO1 gene deletion also affected the rate of spindle elongation and phase time at the metaphase and anaphase, as well as spindle MT organization. Live-cell imaging was performed on mutant strains to observe three distinct kinetochore behaviors (normal, lagging and mis-segregation), as well as abnormal spindle breakage. The FZO1 gene deletion resulted in coenzyme and intermediate metabolite abnormalities as determined via metabolomics analysis. It was concluded that the loss of FZO1 gene resulted in deficiencies in mitochondrial dynamics, which may result in deficiencies in spindle maintenance, chromosome segregation, spindle breakage, actin contraction, and coenzyme and intermediate metabolite levels.
Collapse
Affiliation(s)
- Rongmei Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiumei Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
39
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
40
|
Romagnoli M, La Morgia C, Carbonelli M, Di Vito L, Amore G, Zenesini C, Cascavilla ML, Barboni P, Carelli V. Idebenone increases chance of stabilization/recovery of visual acuity in OPA1-dominant optic atrophy. Ann Clin Transl Neurol 2020; 7:590-594. [PMID: 32243103 PMCID: PMC7187718 DOI: 10.1002/acn3.51026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
We previously documented that idebenone treatment in OPA1‐Dominant Optic Atrophy (OPA1‐DOA) led to some degrees of visual improvement in seven patients. We here present the results of a cohort study, which investigated the effect of off‐label idebenone administration in a larger OPA1‐DOA group compared with untreated patients. Inclusion criteria were: OPA1‐DOA clinical and molecular diagnosis, baseline visual acuity (VA) greater than/equal to counting fingers and treatment duration greater than 7 months. We found a significant difference between the last visit and baseline VA in favor of stabilization/recovery in idebenone‐treated as compared to untreated patients. This effect was retained after controlling for confounders.
Collapse
Affiliation(s)
- Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | - Giulia Amore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy
| | | | - Piero Barboni
- IRCCS Ospedale San Raffaele, Milan, Italy.,Studio Oculistico d'Azeglio, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
41
|
Li D, Wang J, Jin Z, Zhang Z. Structural and evolutionary characteristics of dynamin-related GTPase OPA1. PeerJ 2019; 7:e7285. [PMID: 31328044 PMCID: PMC6622160 DOI: 10.7717/peerj.7285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022] Open
Abstract
OPA1 is a dynamin-related GTPase that controls mitochondrial fusion, cristae remodeling, energetics and mtDNA maintenance. However, the molecular architecture of OPA1 is poorly understood. Here we modeled the structure of human OPA1 by the threading approach. We found that the C-terminal region of the OPA1 protein had multiple functional domains, while the N-terminal region was rich in alpha helices and did not include specific domains. For the short soluble forms of OPA1, we observed that there were obvious hydrophobic regions near the two cleavage sites and the N-terminal was positively charged after cleavage. The blue native analysis revealed that the protein could form stable homodimers. In addition, the evolutionary conservation of the C-terminal region, where most of the known mutated disease-related sites were located, was significantly higher than that of the N-terminal region. These findings provided new insights into the structure and biochemical function of OPA1.
Collapse
Affiliation(s)
- Dandan Li
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jinlan Wang
- Physical Examination Office of Shandong Province, Health Commission of Shandong Province, Jinan, China
| | - Zichen Jin
- Department of Chemistry, University of Minnesota, Minnesota, MN, USA
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
42
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
43
|
Zhang X, Huang W, Fan Y, Sun Y, Ge X. Role of GTPases in the regulation of mitochondrial dynamics in Parkinson's disease. Exp Cell Res 2019; 382:111460. [PMID: 31194975 DOI: 10.1016/j.yexcr.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria are highly dynamic organelle that undergo frequent fusion and division, and the balance of these opposing processes regulates mitochondrial morphology, distribution, and function. Mitochondrial fission facilitates the replication and distribution of mitochondria during cell division, whereas the fusion process including inner and outer mitochondrial membrane fusion allows the exchange of intramitochondrial material between adjacent mitochondria. Despite several GTPase family proteins have been implicated as key modulators of mitochondrial dynamics, the mechanisms by which these proteins regulate mitochondrial homeostasis and function remain not clearly understood. Neuronal function and survival are closely related to mitochondria dynamics, and disturbed mitochondrial fission/fusion may influence neurotransmission, synaptic maintenance, neuronal survival and function. Recent studies have shown that mitochondrial dysfunction caused by aberrant mitochondrial dynamics plays an essential role in the pathogenesis of both sporadic and familial Parkinson's disease (PD). Collectively, we review the molecular mechanism of known GTPase proteins in regulating mitochondrial fission and fusion, but also highlight the causal role for mitochondrial dynamics in PD pathogenesis.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | - Wenmin Huang
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yiyun Fan
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Ying Sun
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqun Ge
- Department of Pharmacology, Medical College, Yangzhou University, Yangzhou, 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
44
|
Del Dotto V, Fogazza M, Musiani F, Maresca A, Aleo SJ, Caporali L, La Morgia C, Nolli C, Lodi T, Goffrini P, Chan D, Carelli V, Rugolo M, Baruffini E, Zanna C. Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3496-3514. [PMID: 30293569 DOI: 10.1016/j.bbadis.2018.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/19/2022]
Abstract
OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA) and the syndromic form DOA "plus". Over 370 OPA1 mutations have been identified so far, although their pathogenicity is not always clear. We have analyzed one novel and a set of known OPA1 mutations to investigate their impact on protein functions in primary skin fibroblasts and in two "ad hoc" generated cell systems: the MGM1/OPA1 chimera yeast model and the Opa1-/- MEFs model expressing the mutated human OPA1 isoform 1. The yeast model allowed us to confirm the deleterious effects of these mutations and to gain information on their dominance/recessivity. The MEFs model enhanced the phenotypic alteration caused by mutations, nicely correlating with the clinical severity observed in patients, and suggested that the DOA "plus" phenotype could be induced by the combinatorial effect of mitochondrial network fragmentation with variable degrees of mtDNA depletion. Overall, the two models proved to be valuable tools to functionally assess and define the deleterious mechanism and the pathogenicity of novel OPA1 mutations, and useful to testing new therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy
| | - Mario Fogazza
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Chiara La Morgia
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Cecilia Nolli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology (CALTECH), Pasadena, CA 91125, USA
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40139 Bologna, Italy; IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
45
|
Li F, Lang F, Wang Y, Zhai C, Zhang C, Zhang L, Hao E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol 2018; 120:104-111. [PMID: 29803697 DOI: 10.1016/j.fct.2018.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Cyanidin, an anthocyanin pigment, demonstrates anti-oxidant and anti-inflammatory properties. Here, we examined the mechanistic role of cyanidin in endotoxin induced myocardial injury in inflammation and oxidative stress. In lipopolysaccharide (LPS) induced myocardial injury model, cyanidin ameliorated cardiac injury (Lactate dehydrogenase or LDH, Creatine Kinase or CK, cardiac troponin I or cTnI and cardiac myosin light chains 1 or cMLC1), cell death (caspase 3 activity and PARP activity), and improved cardiac function (ejection fraction or EF and end diastolic left ventricular inner dimension or LVID). Cyanidin also attenuated endotoxin induced myocardial injury by modulating inflammatory cytokines (Tumor necrosis factor alpha or TNFα, Interleukin-1 beta or IL-1β, macrophage inflammatory protein 2 or MIP-2 and chemokine (C-C motif) ligand 2 also known as monocyte chemoattractant protein 1 or MCP1) and oxidative stress (protein nitration). Cyanidin modulated redox homeostasis through intracellular oxidized/reduced glutathione. The most striking properties of cyanidin in endotoxin induced mediated myocardial injury was the modulation of mitochondria, its oxidative damage and associated factor Opa1 and Trx1. Thus, our study demonstrated that cyanidin as a constituent of our food chain may be beneficial and has therapeutic potential in sepsis treatment or other myocardial oxidative and/or inflammation induced injuries.
Collapse
Affiliation(s)
- Fang Li
- Department of Health, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, China
| | - Yidan Wang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chunxiao Zhai
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chuanbei Zhang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Liping Zhang
- Intensive Care Unit of Neurosurgery Linyi People's Hospital, China
| | - Enkui Hao
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China.
| |
Collapse
|