1
|
Ding J, Xu Z, Liang R, Xie S. Association Between Dietary Inflammatory Index and Triglyceride Glucose-Body Mass Index with Iron Deficiency in Reproductive Age Women: Evidence from NHANES 2005-2018. Int J Womens Health 2025; 17:355-367. [PMID: 39959754 PMCID: PMC11827504 DOI: 10.2147/ijwh.s507765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/02/2025] [Indexed: 02/18/2025] Open
Abstract
Background & Aims There is a growing focus on the role of dietary factors and metabolic conditions in the evolution and progression of iron deficiency (ID), yet few studies have examined the underlying mechanisms. Dietary Inflammatory Index (DII) is a metric that gauges the inflammatory potential of an overall diet. This study explores the association between DII and triglyceride glucose-body mass index (TyG-BMI) with ID in reproductive-age women. Methods This analysis utilized data from 2311 reproductive-age women in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. ID was identified using serum ferritin and transferrin receptor (TfR). The association between DII, TyG-BMI and ID was assessed using weighted logistic regression, linear regression and restricted cubic spline (RCS) models, with receiver operating characteristic (ROC) curve analysis for diagnostic power. Mediation effects of TyG-BMI were further explored by causal mediation analysis. Results Among reproductive-age women, both DII and TyG-BMI were significantly positively associated with ID (DII: OR = 1.32, 95% CI 1.19, 1.48; TyG-BMI: OR = 1.13, 95% CI 1.02, 1.35). There is a close relationship between the DII index and TfR (β= 1.17, 95% CI 1.03, 1.13). RCS analysis indicated that the relationships were mostly linear (P-overall < 0.05, P-nonlinear > 0.05). Furthermore, TyG-BMI mediated 5.19%, 12.83%, and 5.63% of the associations between DII and ID, Ferritin, and transferrin receptor (TfR), respectively. Conclusion The findings suggest that targeted interventions to enhance dietary practices, nutritional intake, and overall metabolic well-being may result in substantial amelioration of ID among reproductive women.
Collapse
Affiliation(s)
- Jia Ding
- Department of Hematopathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhehao Xu
- Department of General Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruiyun Liang
- Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuangfeng Xie
- Department of Hematopathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 PMCID: PMC11682651 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
3
|
Ye S, Hou X, Song K, Wang L, Shi Y, Kang Z. Association between dietary inflammatory index and adolescent myopia based on the National Health and Nutrition Examination Survey. Sci Rep 2024; 14:28048. [PMID: 39543180 PMCID: PMC11564647 DOI: 10.1038/s41598-024-78629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
The prevalence of adolescent myopia is remarkably increasing. Previous studies have indicated that an unhealthy diet is a risk factor for myopia. However, the link between diet-related inflammation and myopia is unclear. To explore their correlation, we used dietary inflammation index (DII) that is a parameter to quantify the inflammatory potential of diet, to reveal the relationship between DII and myopia in adolescents. We extracted sociodemographic data, information of diets and eye refractive status of adolescents from National Health and Nutrition Examination Survey (NHANES) for period 1999-2008. Dietary intake data was used to calculate DII scores, which were then categorized into quartiles. Multivariable regression models and subgroup analyses were conducted to investigate the association between DII and myopia. Subsequently, smoothed curve analyses were conducted to discern the trend of correlation between DII and myopia across diverse population. A total of 7191 juveniles aged at 12 to 18 years with complete information were included in our study, consisting 3367 participants with diagnosis of myopia. Among these participants, a trend towards an increasing prevalence of myopia was observed with a higher DII. After adjusting for all covariates, stratified logistic regression analyses showed that among the population aged in 16 to 18 years old or with 9-11th grade educational level, the prevalence of myopia was significantly increased with higher DII score (OR = 1.06, 95% CI = 1.01, 1.11, P = 0.006; OR = 1.06, 95% CI = 1.01, 1.11, P = 0.010). In the two subgroups, participants in the highest quartile of DII had a 31.00% higher risk of myopia and a higher 27.00% risk of myopia respectively, compared to those in the lowest quartile of DII. Our results revealed an increasing trend in the prevalence of myopia with increased DII score in adolescents. Particularly, DII was positively associated with the risk of myopia among the population aged in 16 to 18 years old and with 9-11th grade educational level.
Collapse
Affiliation(s)
- Shanshan Ye
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Hou
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Song
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Wang
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yipeng Shi
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zefeng Kang
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Pi D, Liang Z, Pan J, Zhen J, Zheng C, Fan W, Song Q, Pan M, Yang Q, Zhang Y. Tanshinone IIA Inhibits the Endoplasmic Reticulum Stress-Induced Unfolded Protein Response by Activating the PPARα/FGF21 Axis to Ameliorate Nonalcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:1026. [PMID: 39334685 PMCID: PMC11428933 DOI: 10.3390/antiox13091026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a critical stage in the progression of nonalcoholic fatty liver disease (NAFLD). Tanshinone IIA (TIIA) is a tanshinone extracted from Salvia miltiorrhiza; due to its powerful anti-inflammatory and antioxidant biological activities, it is commonly used for treating cardiovascular and hepatic diseases. A NASH model was established by feeding mice a methionine and choline-deficient (MCD) diet. Liver surface microblood flow scanning, biochemical examination, histopathological examination, cytokine analysis through ELISA, lipidomic analysis, transcriptomic analysis, and Western blot analysis were used to evaluate the therapeutic effect and mechanism of TIIA on NASH. The results showed that TIIA effectively reduced lipid accumulation, fibrosis, and inflammation and alleviated endoplasmic reticulum (ER) stress. Lipidomic analysis revealed that TIIA normalized liver phospholipid metabolism in NASH mice. A KEGG analysis of the transcriptome revealed that TIIA exerted its effect by regulating the PPAR signalling pathway, protein processing in the ER, and the NOD-like receptor signalling pathway. These results suggest that TIIA alleviates NASH by activating the PPARα/FGF21 axis to negatively regulate the ER stress-induced unfolded protein response (UPR).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (D.P.); (Z.L.); (J.P.); (J.Z.); (C.Z.); (W.F.); (Q.S.)
| |
Collapse
|
5
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Moradi A, Aslani MR, Mirshekari Jahangiri H, Naderi N, Aboutaleb N. Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5015-5027. [PMID: 38183448 DOI: 10.1007/s00210-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MI/R) has been found to be one of the important risk factors for global cardiac mortality and morbidity. The study was conducted to inquire into the protective effect of 4-methylumbilliferon (4-MU) against MI/R in rats and clarify its potential underlying mechanism. Animals were divided into four groups (n = 15) including sham, MI/R, MI/R + vehicle, and MI/R + 4-MU. MI/R was established in Wistar rats by occluding the left anterior descending (LAD) coronary artery for 30 min. 4-MU (25 mg/kg) was injected intraperitoneally before the induction of reperfusion. Cardiac function, fibrosis, oxidant/antioxidant markers, and inflammatory cytokines were evaluated using echocardiography, ELISA, and Western blot assay. As a result of MI/R induction, a decrease in left ventricular contractile function occurred along with increased cardiac fibrosis and tissue damage. The serum levels of TNF-α, IL-1β, and IL-18 increased, while IL-10 decreased. Oxidant/antioxidant changes were evident with increased MDA levels and decreased GSH, SOD, and CAT in the MI/R group. Furthermore, the protein levels of TLR4, NF-κB, and NLRP3 were significantly increased in the heart tissue of MI/R group. Treatment with 4-MU significantly prevented the reduction of cardiac contractile function and its pathological changes as a result of MI/R by inhibiting the increase of serum inflammatory factors and improving the oxidant/antioxidant balance probably through the TLR4/NF-κB/NLRP3 axis. The results of a current study showed that 4-MU had a potential ability to attenuate the cardiac injury by reducing oxidative stress and inflammation in a TLR4/NF-κB/NLRP3-dependent mechanism.
Collapse
Affiliation(s)
- Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Hu H, Cai Y, Shi Y, Zhang S, Yu X, Ma T, Liao S. Dimethyl fumarate covalently modifies Cys673 of NLRP3 to exert anti-inflammatory effects. iScience 2024; 27:109544. [PMID: 38585664 PMCID: PMC10995871 DOI: 10.1016/j.isci.2024.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in various chronic inflammation-driven human diseases. However, no drugs specifically targeting NLRP3 inflammasome have been approved by the Food and Drug Administration (FDA) of the United States. In our current study, we showed that dimethyl fumarate (DMF) efficiently suppressed the activation of the NLRP3 inflammasome induced by multiple agonists and covalently modified Cys673 of NLRP3, thereby impeding the interaction between NLRP3 and NEK7. The inhibitory effect of DMF was nullified by anaplerosis of the Cys673 mutant (but not the wild-type) NLRP3 in Nlrp3-/- THP-1 cells. In vivo experiments, DMF demonstrated protective effects in the dextran sodium sulfate (DSS)-induced ulcerative colitis of WT mice, but not in Nlrp3-/- mice. In summary, our study identified DMF as a direct covalent inhibitor of NLRP3 and a potential candidate for the treatment of NLRP3 inflammasome-mediated diseases.
Collapse
Affiliation(s)
- Huiting Hu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuqian Cai
- Center for Analysis and Testing, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuanfang Shi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shengyu Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shanting Liao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
8
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Sasso E, Baticic L, Sotosek V. Postprandial Dysmetabolism and Its Medical Implications. Life (Basel) 2023; 13:2317. [PMID: 38137918 PMCID: PMC10744591 DOI: 10.3390/life13122317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
An unbalanced diet increases the risk of developing a variety of chronic diseases and cancers, leading to higher morbidity and mortality rates worldwide. Low-grade systemic chronic inflammation mediated by the activation of the innate immune system is common to all these pathologies. Inflammation is a biological response of the body and a normal part of host defense to combat the effects of bacteria, viruses, toxins and macronutrients. However, when the innate immune system is constantly activated, it can promote the development of low-grade systemic chronic inflammation, which could play an important role in the development of chronic diseases and cancer. Since most chronic inflammatory diseases are associated with diet, a balanced healthy diet high in anti-inflammatory food components could prevent chronic diseases and cancer. The cells of the body's immune system produce chemokines and cytokines which can have pro-inflammatory and tumor-promoting as well as anti-inflammatory and tumor-fighting functions. A challenge in the future will be to assess whether polymorphisms in immune-related genes may play a role in promoting pro-inflammatory activity. Thanks to this duality, future research on immune regulation could focus on how innate immune cells can be modified to convert a pro-inflammatory and tumor-friendly microenvironment into an anti-inflammatory and anti-tumor one. This review describes inflammatory responses mediated by the innate immune system in various diseases such as hyperglycemia and/or hyperlipemia, obesity, type II diabetes, cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Emanuel Sasso
- Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
10
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
12
|
Cardozo LFMF, Borges NA, Ribeiro M, Yee-Moon Wang A, Mafra D. Protect the Kidneys and Save the Heart Using the Concept of Food as Medicine. J Ren Nutr 2023; 33:S110-S117. [PMID: 37676185 DOI: 10.1053/j.jrn.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic kidney disease is a significant risk factor for cardiovascular disease. In addition to traditional risk factors, such as hypertension, dyslipidemia, diabetes and smoking, patients with chronic kidney disease have a uremic phenotype marked by premature aging, mitochondrial dysfunction, persistent low-grade inflammation, gut dysbiosis and oxidative stress. These complications contribute to abnormal vascular and myocardial remodeling processes, resulting in accelerated vascular calcification, cellular and organ senescence and a high risk of cardiovascular disease. Nonpharmacological strategies, such as increasing physical activity and a healthy diet, may slow the progression of kidney disease and consequently protect the heart. Thus, a deep promotion and advocacy of nutritional guidance based on scientific data is needed. This narrative review discusses how nutritional interventions may delay progressive organ damage in the kidney-heart axis.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF) Rio de Janeiro (RJ), Brazil
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil; Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro-RJ, Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ)
| | - Angela Yee-Moon Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF) Rio de Janeiro (RJ), Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ).
| |
Collapse
|
13
|
Yang F, Huangfu N, Shen J, Su P, Zhu L, Cui H, Yuan S. Apolipoprotein B and interleukin 1 receptor antagonist: reversing the risk of coronary heart disease. Front Endocrinol (Lausanne) 2023; 14:1278273. [PMID: 37941911 PMCID: PMC10628700 DOI: 10.3389/fendo.2023.1278273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Aims Epidemiological evidence for the link of interleukin 1 (IL-1) and its inhibition with cardiovascular diseases (CVDs) remains controversial. We aim to investigate the cardiovascular effects of IL-1 receptor antagonist (IL-1Ra) and underlying mechanisms. Methods Genetic variants identified from a genome-wide association study involving 30,931 individuals were used as instrumental variables for the serum IL-1Ra concentrations. Genetic associations with CVDs and cardiometabolic risk factors were obtained from international genetic consortia. Inverse-variance weighted method was utilized to derive effect estimates, while supplementary analyses employing various statistical approaches. Results Genetically determined IL-1Ra level was associated with increased risk of coronary heart disease (CHD; OR, 1.07; 95% CI: 1.03-1.17) and myocardial infarction (OR, 1.13; 95% CI: 1.04-1.21). The main results remained consistent in supplementary analyses. Besides, IL-1Ra was associated with circulating levels of various lipoprotein lipids, apolipoproteins and fasting glucose. Interestingly, observed association pattern with CHD was reversed when adjusting for apolipoprotein B (OR, 0.84; 95%CI: 0.71-0.99) and slightly attenuated on accounting for other cardiometabolic risk factors. Appropriate lifestyle intervention was found to lower IL-1Ra concentration and mitigate the heightened CHD risk it posed. Conclusion Apolipoprotein B represents the key driver, and a potential target for reversal of the causal link between serum IL-1Ra and increased risk of CHD/MI. The combined therapy involving IL-1 inhibition and lipid-modifying treatment aimed at apolipoprotein B merit further exploration.
Collapse
Affiliation(s)
- Fangkun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Zhejiang, China
| | - Ning Huangfu
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Zhejiang, China
| | - Jiaxi Shen
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Zhejiang, China
| | - Pengpeng Su
- School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lujie Zhu
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Zhejiang, China
| | - Hanbin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Zhejiang, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Kong C, Duan C, Zhang Y, Shi C, Luo Y. Changes in Lipids and Proteins of Common Carp ( Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN). Foods 2023; 12:2741. [PMID: 37509833 PMCID: PMC10379316 DOI: 10.3390/foods12142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely predict common carp (Cyprinus carpio) nutritional quality change during frozen storage, here, we first determined lipid oxidation and hydrolysis and protein denaturation of common carp fillets during 17 weeks of frozen preservation at 261 K, 253 K, and 245 K. Results showed that the content of thiobarbituric acid reactive substances (TBARS) and free fatty acids (FFA) were significantly increased. However, salt-soluble protein (SSP) content, Ca2+-ATPase activity, and total sulfhydryl (SH) content kept decreasing during frozen storage, with SSP content decreasing by 64.82%, 38.14%, and 11.24%, respectively, Ca2+-ATP enzyme activity decreasing to 12.50%, 18.52%, and 28.57% Piμmol/mg/min, and SH values decreasing by 70.71%, 64.92%, and 56.51% at 261 K, 253 K, and 245 K, respectively. The values at 261 K decreased more than that at 253 K and 245 K (p < 0.05). Ca2+-ATPase activity was positively correlated (r = 0.96) with SH content. Afterwards, based on the results of the above chemical experiments, we developed a radial basis function neural network (RBFNN) to predict the modification of lipid and protein of common carp fillets during frozen storage. Results showed that all the relative errors of experimental and predicted values were within ±10%. In summary, the quality of common carp can be well protected at 245 K, and the established RBFNN could effectively predict the quality of the common carp under frozen conditions at 261-245 K.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Zhao L, Sun Y, Liu Y, Yan Z, Peng W. A J-shaped association between Dietary Inflammatory Index (DII) and depression: A cross-sectional study from NHANES 2007-2018. J Affect Disord 2023; 323:257-263. [PMID: 36462606 DOI: 10.1016/j.jad.2022.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Growing evidence indicates that depression is more common in people who partake in a pro-inflammatory diet. The objective of our study was to assess the association between the Dietary Inflammatory Index (DII) and depression through a cross-sectional study of the National Health and Nutrition Examination Survey from 2007 to 2018. METHODS We used weighted multivariable logistic regression models with subgroup analysis to explore the relationship between DII and depression. Generalized additive models were used to test whether there was a nonlinear association. Then, we constructed a two-piece linear regression model and performed a recursive algorithm to calculate the inflection point. RESULTS The study enrolled a total of 30,627 individuals from the United States. In the regression model with full confounding variables adjusted, the OR (95 % CI) for the association between DII and depression was 1.05 (1.04, 1.06). A J-shaped association was found between DII and depression, with a turning point of 2.74. After the turning point, the OR (95 % CI) was 1.60 (1.51, 1.69). Only the interaction in the cardiovascular disease (CVD) analysis was statistically significant. CONCLUSION Our study highlighted a J-shaped association between DII and depression in a nationally representative sample of adults from the United States.
Collapse
Affiliation(s)
- Leiyong Zhao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyan Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
16
|
Lázaro I, Bobi J, Cofán M, Kapravelou G, Amor AJ, Surra J, Gómez-Guerrero C, Ortega E, Osada J, Dantas AP, Sala-Vila A. Walnut inclusion in a palm oil-based atherogenic diet promotes traits predicting stable atheroma plaque in Apoe-deficient mice. Front Nutr 2023; 10:1079407. [PMID: 36845063 PMCID: PMC9944036 DOI: 10.3389/fnut.2023.1079407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction The lower rates of cardiovascular disease in Southern Europe could be partially explained by the low prevalence of lipid-rich atheroma plaques. Consumption of certain foods affects the progression and severity of atherosclerosis. We investigated whether the isocaloric inclusion of walnuts within an atherogenic diet prevents phenotypes predicting unstable atheroma plaque in a mouse model of accelerated atherosclerosis. Methods Apolipoprotein E-deficient male mice (10-week-old) were randomized to receive a control diet (9.6% of energy as fat, n = 14), a palm oil-based high-fat diet (43% of energy as fat, n = 15), or an isocaloric diet in which part of palm oil was replaced by walnuts in a dose equivalent to 30 g/day in humans (n = 14). All diets contained 0.2% cholesterol. Results After 15 weeks of intervention, there were no differences in size and extension in aortic atherosclerosis among groups. Compared to control diet, palm oil-diet induced features predicting unstable atheroma plaque (higher lipid content, necrosis, and calcification), and more advanced lesions (Stary score). Walnut inclusion attenuated these features. Palm oil-based diet also boosted inflammatory aortic storm (increased expression of chemokines, cytokines, inflammasome components, and M1 macrophage phenotype markers) and promoted defective efferocytosis. Such response was not observed in the walnut group. The walnut group's differential activation of nuclear factor kappa B (NF-κB; downregulated) and Nrf2 (upregulated) in the atherosclerotic lesion could explain these findings. Conclusion The isocaloric inclusion of walnuts in an unhealthy high-fat diet promotes traits predicting stable advanced atheroma plaque in mid-life mice. This contributes novel evidence for the benefits of walnuts, even in an unhealthy dietary environment.
Collapse
Affiliation(s)
- Iolanda Lázaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain,*Correspondence: Iolanda Lázaro,
| | - Joaquim Bobi
- Experimental Cardiology, Institut Clínic Cardiovascular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Montserrat Cofán
- CIBER de Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain,Translational Research in Diabetes, Lipids and Obesity, IDIBAPS, Barcelona, Spain
| | - Garyfallia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center for Biomedical Research, Center for Research in Sport and Health (IMUDS), Universidad de Granada, Granada, Spain
| | - Antonio J. Amor
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joaquin Surra
- CIBER de Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain,Department of Producción Animal, Escuela Politécnica Superior de Huesca, Huesca, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain,CIBER de Diabetes y Enfermedades Metabólicas, ISCIII, Madrid, Spain
| | - Emilio Ortega
- CIBER de Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain,Translational Research in Diabetes, Lipids and Obesity, IDIBAPS, Barcelona, Spain,Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jesus Osada
- CIBER de Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain,Department of Bioquímica y Biología Molecular y Celular, Facultad Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Paula Dantas
- Experimental Cardiology, Institut Clínic Cardiovascular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain,Aleix Sala-Vila,
| |
Collapse
|
17
|
Hollan I. Lessons from Cardiac and Vascular Biopsies from Patients with and without Inflammatory Rheumatic Diseases. Rheum Dis Clin North Am 2023; 49:129-150. [PMID: 36424021 DOI: 10.1016/j.rdc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feiring Heart Biopsy Study enables searching for potential pathogenetic mechanisms, therapeutic targets, and biomarkers through the assessment of clinical data and multiple blood and tissue samples from patients with and without inflammatory rheumatic diseases (IRDs), undergoing coronary artery bypass grafting. Some of our findings, for example, more inflammation (including the presence of immune cells and expression of proinflammatory cytokines) in vessels and the heart, and the presence of certain bacteria and autoantigens in vessels, could contribute to the increased risk of ischemia, aneurysms, and/or cardiac dysfunction in IRDs. Furthermore, some of the detected factors could be involved in the pathomechanisms of these conditions in general.
Collapse
Affiliation(s)
- Ivana Hollan
- Department of Health Sciences, Norwegian University of Science and Technology Teknologivegen 22, 2815 Gjøvik, Norway.
| |
Collapse
|
18
|
Zhou N, Xie ZP, Liu Q, Xu Y, Dai SC, Lu J, Weng JY, Wu LD. The dietary inflammatory index and its association with the prevalence of hypertension: A cross-sectional study. Front Immunol 2023; 13:1097228. [PMID: 36741368 PMCID: PMC9893776 DOI: 10.3389/fimmu.2022.1097228] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Aims We aim to investigate the association of the Dietary Inflammatory Index (DII) with the prevalence of hypertension in a large multiracial population in the United States. Methods Participants from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were included in this cross-sectional study. Dietary information was obtained and used to calculate DII. Blood pressures of participants were measured by experienced examiners. The NHANES used the method of "stratified multistage probability sampling," and this study is a weight analysis following the NHANES analytic guidance. Weight logistic regression analysis was adopted to investigate the association of hypertension with DII. Least Absolute Shrinkage and Selection Operator (LASSO) regression was carried out to screen the most important dietary factors associated with the risk of hypertension. Moreover, a nomogram model based on key dietary factors was established; the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic power of the nomogram model for screening hypertension risk. Results A total of 45,023 participants were included in this study, representing 191 million residents in the United States. Participants with hypertension had an elevated DII compared with those without hypertension. Weight logistic regression showed that an increment of DII was strongly associated with hypertension after adjusting for confounding factors. The nomogram model, based on key dietary factors screened by LASSO regression, showed a favorable discriminatory power with an area under the curve (AUC) of 78.5% (95% CI: 78.5%-79.3%). Results of the sensitivity analysis excluding participants who received any drug treatment were consistent with those in the main analysis. Conclusion An increment of DII is associated with the risk of hypertension. For better prevention and treatment of hypertension, more attention should be paid to controlling dietary inflammation.
Collapse
Affiliation(s)
- Nan Zhou
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Zhi-Ping Xie
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Qing Liu
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Yun Xu
- Department of Anesthesiology, Huadong Sanatorium, Wuxi, China
| | - Si-Cheng Dai
- Health Examination Center, Huadong Sanatorium, Wuxi, China
| | - Juan Lu
- Department of Anesthesiology, Huadong Sanatorium, Wuxi, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| | - Jia-Yi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| | - Li-Da Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Juan Lu, ; Li-Da Wu, ; Jia-Yi Weng,
| |
Collapse
|
19
|
Al-Shawadfy MG, Kamel GAM, Abd-Allah ARA. Crosstalk among apoptosis, inflammation, and autophagy in relation to melatonin protective effect against contrast-induced nephropathy in rats. Can J Physiol Pharmacol 2022; 100:858-867. [PMID: 36017872 DOI: 10.1139/cjpp-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contrast medium (CM) is a chemical substance that is used for imaging anatomical boundaries and to explore normal and abnormal physiological findings; the use of CM was associated with kidney injury and acute renal failure. Melatonin (M) possesses antioxidant, anti-inflammatory, and antiapoptotic effects in addition to autophagy modulation. This study aimed to investigate the protective effect of M against contrast-induced nephropathy (CIN) and its impact on the crosstalk between inflammasome, apoptosis, and autophagy in CIN. Male albino rats received M (10, 20, and 40 mg/kg/day, intraperitoneally) for 3 days. One hour after the last administration, rats were subjected to CIN induction (10 mg/kg indomethacin, double doses of l-NAME 10 mg/kg, i.v., and meglumine diatrizoate 60% 6 mL/kg, i.v.). CIN-induced kidney damage was evidenced through elevated kidney function biomarkers and induced renal histopathological changes. Pretreatment with M caused a significant decrease in nephrotoxicity biomarkers and histopathological alterations. Moreover, CIN-induced oxidative stress, NLRP3 inflammasome, and apoptosis were attenuated by M. Furthermore, M modulates autophagy in CIN rats. M inhibits CIN-induced NLRP3-inflammasome activation and apoptosis as well as enhances autophagy.
Collapse
Affiliation(s)
- Marwa Gamal Al-Shawadfy
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Gellan Alaa Mohamed Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Adel R A Abd-Allah
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11754, Egypt
| |
Collapse
|
20
|
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai G, Van Tassell BW, Abbate A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther 2022; 236:108053. [PMID: 34906598 PMCID: PMC9187780 DOI: 10.1016/j.pharmthera.2021.108053] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1β and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Stefano Toldo
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Eleonora Mezzaroma
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Leo F Buckley
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicola Potere
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Benjamin W Van Tassell
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy and Outcome Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
21
|
Liao Y, Liu K, Zhu L. Emerging Roles of Inflammasomes in Cardiovascular Diseases. Front Immunol 2022; 13:834289. [PMID: 35464402 PMCID: PMC9021369 DOI: 10.3389/fimmu.2022.834289] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are known as the leading cause of morbidity and mortality worldwide. As an innate immune signaling complex, inflammasomes can be activated by various cardiovascular risk factors and regulate the activation of caspase-1 and the production and secretion of proinflammatory cytokines such as IL-1β and IL-18. Accumulating evidence supports that inflammasomes play a pivotal role in the progression of atherosclerosis, myocardial infarction, and heart failure. The best-known inflammasomes are NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes, among which NLRP3 inflammasome is the most widely studied in the immune response and disease development. This review focuses on the activation and regulation mechanism of inflammasomes, the role of inflammasomes in cardiovascular diseases, and the research progress of targeting NLRP3 inflammasome and IL-1β for related disease intervention.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Yan S, Meng L, Guo X, Chen Z, Zhang Y, Li Y. Identification of ITGAX and CCR1 as potential biomarkers of atherosclerosis via Gene Set Enrichment Analysis. J Int Med Res 2022; 50:3000605211039480. [PMID: 35287505 PMCID: PMC8928411 DOI: 10.1177/03000605211039480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective Atherosclerosis (AS) is a life-threatening disease in aging populations worldwide. However, the molecular and gene regulation mechanisms of AS are still unclear. This study aimed to identify gene expression differences between atheroma plaques and normal tissues in humans. Methods The expression profiling dataset GSE43292 was obtained from the Gene Expression Omnibus (GEO) dataset. The differentially expressed genes (DEGs) were identified between the atheroma plaques and normal tissues via GEO2R, and functional annotation of the DEGs was performed by GSEA. STRING and MCODE plug-in of Cytoscape were used to construct a protein–protein interaction (PPI) network and analyze hub genes. Finally, quantitative polymerase chain reaction (qPCR) was performed to verify the hub genes. Results Overall, 134 DEGs were screened. Functional annotation demonstrated that these DEGs were mainly enriched in sphingolipid metabolism, apoptosis, lysosome, and more. Six hub genes were identified from the PPI network: ITGAX, CCR1, IL1RN, CXCL10, CD163, and MMP9. qPCR analysis suggested that the relative expression levels of the six hub genes were significantly higher in AS samples. Conclusions We used bioinformatics to identify six hub genes: ITGAX, CCR1, IL1RN, CXCL10, CD163, and MMP9. These hub genes are potential promising diagnostic and therapeutic targets for AS.
Collapse
Affiliation(s)
- Sheng Yan
- Department of Vascular Surgery, 117555Beijing Hospital, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, P.R. China
| | - Lingbing Meng
- Neurology Department, 117555Beijing Hospital, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing, P. R. China
| | - Xiaoyong Guo
- Internal Medicine Department, 12485Anhui Medical University, Anhui Medical University, Meishan Road, Hefei, Anhui, P. R. China
| | - Zuoguan Chen
- Department of Vascular Surgery, 117555Beijing Hospital, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, P.R. China
| | - Yuanmeng Zhang
- Internal Medicine Department, 154516Jinzhou Medical University, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, Liaoning, P.R. China
| | - Yongjun Li
- Department of Vascular Surgery, 117555Beijing Hospital, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
23
|
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev 2022; 38:e3502. [PMID: 34614543 DOI: 10.1002/dmrr.3502] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MS) is a chronic non-infective syndrome characterised clinically by a set of vascular risk factors that include insulin resistance, hypertension, abdominal obesity, impaired glucose metabolism, and dyslipidaemia. These risk factors are due to a pro-inflammatory state, oxidative stress, haemodynamic dysfunction, and ischaemia, which overlap in 'dysmetabolic' patients. This review aimed to evaluate the relationship between the traditional components of MS with cardiovascular disease (CVD), inflammation, and oxidative stress. MEDLINE-PubMed, EMBASE, and Cochrane databases were searched. Chronic low-grade inflammatory states and metaflammation are often accompanied by metabolic changes directly related to CVD incidence, such as diabetes mellitus, hypertension, and obesity. Moreover, the metaflammation is characterised by an increase in the serum concentration of pro-inflammatory cytokines, mainly interleukin-1 β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), originating from the chronically inflamed adipose tissue and associated with oxidative stress. The increase of reactive oxygen species overloads the antioxidant systems causing post-translational alterations of proteins, lipids, and DNA leading to oxidative stress. Hyperglycaemia contributes to the increase in oxidative stress and the production of advanced glycosylation end products (AGEs) which are related to cellular and molecular dysfunction. Oxidative stress and inflammation are associated with cellular senescence and CVD. CVD should not be seen only as being triggered by classical MS risk factors. Atherosclerosis is a multifactorial pathological process with several triggering and aetiopathogenic mechanisms. Its medium and long-term repercussions, however, invariably constitute a significant cause of morbidity and mortality. Implementing preventive and therapeutic measures against oxy-reductive imbalances and metaflammation states has unquestionable potential for favourable clinical outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- João Leonardo Silveira Rossi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - University of Marília, Marília, São Paulo, Brazil
- School of Food and Technology of Marilia, Marilia, São Paulo, Brazil
| | - Renan Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, Texas, USA
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
24
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
25
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
26
|
Abstract
The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a macromolecular structure responsible for the inflammatory response to injury or infection. Several types of heart disease are linked to the activity of the NLRP3 inflammasome and its cytokines, interleukin-1β (IL-1β), and IL-18. Recent pieces of evidence collected from human samples, together with experimental animal models, demonstrate a causative role for the pathogenesis and progression of heart failure (HF). Preclinical research showed that NLRP3 inhibition is a viable strategy to reduce adverse cardiac remodeling and improve left ventricular function in HF. Early phase clinical studies proved to be safe and effective supporting the potential benefit of blocking the NLRP3 inflammasome pathway in patients with HF.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA, USA.,VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
27
|
Cao F, Huang C, Cheng J, He Z. β-arrestin-2 alleviates rheumatoid arthritis injury by suppressing NLRP3 inflammasome activation and NF- κB pathway in macrophages. Bioengineered 2021; 13:38-47. [PMID: 34787064 PMCID: PMC8805973 DOI: 10.1080/21655979.2021.2003678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disorder that inflicts damage to the joints of the hands and wrist. The aim of this study was to investigate the protective effect of β-Arrestin-2 (βArr2) on RA in vivo and in vitro. The βArr2 adenovirus (βArr2-Ad) or the control (Con-Ad) was injected into the ankle joint cavity of collagen-induced arthritis (CIA) mice. According to the results, an improvement was shown in the symptoms and pathological injury of RA after an upregulation of βArr2. Correspondingly, the inflammatory response was attenuated, as evidenced by the decreased serum pro-inflammatory cytokines levels and NF-κB pathway-related proteins. Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3) inflammasome activation was inhibited in CIA mice treated with βArr2-Ad injection, as reflected by the diminished IL-18 level and declined protein levels of inflammasome components in the ankle joint. Likewise, the anti-inflammatory effect of macrophages was also validated by in vitro experiments. In summary, βArr2 effectively ameliorates ankle inflammation in CIA mice via NF-κB/NLRP3 inflammasome, providing theoretical and clinical basis for RA therapy.
Collapse
Affiliation(s)
- Feng Cao
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Cheng Huang
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Jiwei Cheng
- Department of Orthopedics, No. 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Zhaochun He
- Department of Rheumatoid Immunity, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 2021; 47:933-951. [PMID: 34388275 DOI: 10.1002/biof.1777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Basil Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, Australia
- National Institute of Complementary Medicine, Western Sydney University, Westmead, Australia
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran, Iran
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
29
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
30
|
Li L, Xing C, Zhou J, Niu L, Luo B, Song M, Niu J, Ruan Y, Sun X, Lei Y. Airborne particulate matter (PM 2.5) triggers ocular hypertension and glaucoma through pyroptosis. Part Fibre Toxicol 2021; 18:10. [PMID: 33663554 PMCID: PMC7934500 DOI: 10.1186/s12989-021-00403-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Particulate matter (PM) is strongly linked to human health and has detrimental effects on the eye. Studies have, however, focused on the ocular surface, with limited research on the impact of PM2.5 on intraocular pressure (IOP). Methods To investigate the impact of PM2.5 on IOP and the associated mechanism, C57BL/6 mouse eyes were topically exposed to a PM2.5 suspension for 3 months, and human trabecular meshwork (HTM) cells were subjected to various PM2.5 concentrations in vitro. Cell viability, NLRP3/caspase-1, IL-1β, and GSDMD expression, reactive oxygen species (ROS) production and cell contractility were measured by western blot, ELISA, cell counting kit-8, ROS assay kit or a cell contractility assay. ROS scavenger N-acetyl-L-cysteine (NAC) and caspase-1 inhibitor VX-765 were used to intervene in PM2.5-induced damages. Results The results revealed that the IOP increased gradually after PM2.5 exposure, and upregulations of the NLRP3 inflammasome, caspase-1, IL-1β, and GSDMD protein levels were observed in outflow tissues. PM2.5 exposure decreased HTM cell viability and affected contraction. Furthermore, elevated ROS levels were observed as well as an activation of the NLRP3 inflammasome and downstream inflammatory factors caspase-1 and IL-1β. NAC improved HTM cell viability, inhibited the activation of the NLRP3 inflammasome axis, and HTM cell contraction by scavenging ROS. VX-765 showed similar protection against the PM2.5 induced adverse effects. Conclusion This study provides novel evidence that PM2.5 has a direct toxic effect on intraocular tissues and may contribute to the initiation and development of ocular hypertension and glaucoma. This occurs as a result of increased oxidative stress and the subsequent induction of NLRP3 inflammasome mediated pyroptosis in trabecular meshwork cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00403-4.
Collapse
Affiliation(s)
- Liping Li
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Chao Xing
- Experimental Research Center, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China
| | - Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Maomao Song
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Jingping Niu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
31
|
Mezzaroma E, Abbate A, Toldo S. NLRP3 Inflammasome Inhibitors in Cardiovascular Diseases. Molecules 2021; 26:976. [PMID: 33673188 PMCID: PMC7917621 DOI: 10.3390/molecules26040976] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Mezzaroma
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
- Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA; (E.M.); (A.A.)
| |
Collapse
|
32
|
Alschuler L, Chiasson AM, Horwitz R, Sternberg E, Crocker R, Weil A, Maizes V. Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore (NY) 2020; 18:140-148. [PMID: 33358750 PMCID: PMC7756157 DOI: 10.1016/j.explore.2020.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
The majority of individuals infected with SARS-CoV-2 have mild-to-moderate COVID-19 disease. Convalescence from mild-to-moderate (MtoM) COVID-19 disease may be supported by integrative medicine strategies. Integrative Medicine (IM) is defined as healing-oriented medicine that takes account of the whole person, including all aspects of lifestyle. Integrative medicine strategies that may support recovery from MtoM COVID-19 are proposed given their clinically studied effects in related conditions. Adoption of an anti-inflammatory diet, supplementation with vitamin D, glutathione, melatonin, Cordyceps, Astragalus and garlic have potential utility. Osteopathic manipulation, Qigong, breathing exercises and aerobic exercise may support pulmonary recovery. Stress reduction, environmental optimization, creative expression and aromatherapy can provide healing support and minimize enduring trauma. These modalities would benefit from clinical trials in people recovering from COVID-19 infection.
Collapse
Affiliation(s)
- Lise Alschuler
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States.
| | - Ann Marie Chiasson
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Randy Horwitz
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Esther Sternberg
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Robert Crocker
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Andrew Weil
- Andrew Weil Center for Integrative Medicine, United States; University of Arizona, United States
| | - Victoria Maizes
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| |
Collapse
|
33
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
34
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Baragetti A, Catapano AL, Magni P. Multifactorial Activation of NLRP3 Inflammasome: Relevance for a Precision Approach to Atherosclerotic Cardiovascular Risk and Disease. Int J Mol Sci 2020; 21:E4459. [PMID: 32585928 PMCID: PMC7352274 DOI: 10.3390/ijms21124459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic low-grade inflammation, through the specific activation of the NACHT leucine-rich repeat- and PYD-containing (NLRP)3 inflammasome-interleukin (IL)-1β pathway, is an important contributor to the development of atherosclerotic cardiovascular disease (ASCVD), being triggered by intracellular cholesterol accumulation within cells. Within this pathological context, this complex pathway is activated by a number of factors, such as unhealthy nutrition, altered gut and oral microbiota, and elevated cholesterol itself. Moreover, evidence from autoinflammatory diseases, like psoriasis and others, which are also associated with higher cardiovascular disease (CVD) risk, suggests that variants of NLRP3 pathway-related genes (like NLRP3 itself, caspase recruitment domain-containing protein (CARD)8, caspase-1 and IL-1β) may carry gain-of-function mutations leading, in some individuals, to a constitutive pro-inflammatory pattern. Indeed, some reports have recently associated the presence of specific single nucleotide polymorphisms (SNPs) on such genes with greater ASCVD prevalence. Based on these observations, a potential effective strategy in this context may be the identification of carriers of these NLRP3-related SNPs, to generate a genomic score, potentially useful for a better CVD risk prediction, and, possibly, for personalized therapeutic approaches targeted to the NLRP3-IL-1β pathway.
Collapse
Affiliation(s)
- Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- SISA, Center for the Study of Atherosclerosis, Bassini Hospital, 20092 Cinisello Balsamo, Italy
| | - Alberico Luigi Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (A.B.); (A.L.C.)
- IRCCS Multimedica Hospital, 20099 Milan, Italy
| |
Collapse
|
36
|
Mullis C, Swartz TH. NLRP3 Inflammasome Signaling as a Link Between HIV-1 Infection and Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2020; 7:95. [PMID: 32596261 PMCID: PMC7301651 DOI: 10.3389/fcvm.2020.00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023] Open
Abstract
36.9 million people worldwide are living with HIV-1. The disease remains incurable and HIV-infected patients have increased risk of atherosclerosis. Inflammation is a key driver of atherosclerosis, but no targeted molecular therapies have been developed to reduce cardiovascular risk in people with HIV-1 (PWH). While the mechanism is unknown, there are several important inflammatory signaling events that are implicated in the development of chronic inflammation in PWH and in the inflammatory changes that lead to atherosclerosis. Here we describe the pro-inflammatory state of HIV-1 infection that leads to increased risk of cardiovascular disease, the role of the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome in HIV-1 infection, the role of the NLRP3 inflammasome in cardiovascular disease (CVD), and outline a model whereby HIV-1 infection can lead to atherosclerotic disease through NLRP3 inflammasome activation. Our discussion highlights the literature supporting HIV-1 infection as a stimulator of the NLRP3 inflammasome as a driver of atherosclerosis.
Collapse
Affiliation(s)
- Caroline Mullis
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
37
|
Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci 2020; 253:117727. [PMID: 32371063 DOI: 10.1016/j.lfs.2020.117727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS To unravel the underlying mechanism of hepatic inflammation during type 2 diabetes (T2DM), we established the diabetic rat model by feeding with high fructose diet for twenty weeks and studied the involvement of inflammasome in the liver of these rats. MATERIALS AND METHODS Male SD rats weighing 180-200 g were divided in four groups: 1) Control (Con group) rats were fed with corn starch diet, 2) diabetic (Dia group) rats were fed with 65% of fructose, 3) diabetic along with resveratrol (10 mg/kg/day); p.o. (Dia + Resv group) and 4) diabetic along with metformin (300 mg/kg/day); p.o. (Dia + Met group), for twenty weeks. We evaluated the establishment of T2DM in fructose fed rats and the effect of resveratrol and metformin treatment on different diabetic parameters in these rats. Further we investigated the role of NLRP3 inflammasome on T2DM induced liver inflammation and effect of resveratrol and metformin treatment on NLRP3 inflammasome driven inflammatory response. KEY FINDINGS Rats from Dia group; manifested insulin resistance, hyperinsulinemia, hyperglycemia, elevated uric acid along with hypertriglyceridemia after fructose feeding for twenty weeks. Mostly, above parameters were attenuated in resveratrol and metformin treated groups. Expression of NLRP3 inflammasome components in liver were increased in Dia group rats with elevated transcript levels of pro-inflammatory cytokines. Histopathological examination revealed increase in glycogen content and fibrosis in Dia group rats; which was considerably reduced with resveratrol and metformin treatment. SIGNIFICANCE Our study suggests that management of inflammation may be considered as an alternative approach to prevent liver tissue injury during chronic diabetic condition.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- Immunology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pankaj K Bagul
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Sanjay Kumar Banerjee
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| |
Collapse
|
38
|
NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293206. [PMID: 32377298 PMCID: PMC7180412 DOI: 10.1155/2020/4293206] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
Materials The NLRP3 inflammasome controls the activation of the proteolytic enzyme caspase-1. Caspase-1 in turn regulates the maturation of the proinflammasome cytokines IL-1β and IL-18, which leads to an inflammatory response. We made a mini-review on the association of regulatory mechanisms of NLRP3 inflammasome with the development of cardiovascular diseases systematically based on the recent research studies. Discussion. The inflammasome plays an indispensable role in the development of atherosclerosis, coronary heart diseases (CHD), and heart ischemia-reperfusion (I/R) injury, and NLRP3 inflammasome may become a new target for the prevention and treatment of cardiovascular diseases. Effective regulation of NLRP3 may help prevent or even treat cardiovascular diseases. Conclusion This mini-review focuses on the association of regulatory mechanisms of NLRP3 inflammasome with the development of cardiovascular diseases, which may supply some important clues for future therapies and novel drug targets for cardiovascular diseases.
Collapse
|
39
|
Yuan S, Lin A, He QQ, Burgess S, Larsson SC. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: A two-sample Mendelian randomization study. Int J Cardiol 2020; 313:99-104. [PMID: 32223966 PMCID: PMC7611848 DOI: 10.1016/j.ijcard.2020.03.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Whether thyroid dysfunction plays a causal role in the development of cancer remains inconclusive. We conducted a two-sample Mendelian randomization study to investigate the associations between genetic predisposition to thyroid dysfunction and 22 site-specific cancers. Single-nucleotide polymorphisms associated with four traits of thyroid function were selected from a genome-wide association meta-analysis with up to 72,167 European-descent individuals. Summary-level data for breast cancer and 21 other cancers were extracted from the Breast Cancer Association Consortium (122,977 breast cancer cases and 105,974 controls) and UK Biobank (367,643 individuals). For breast cancer, a meta-analysis was performed using data from both sources. Genetically predicted thyroid dysfunction was associated with breast cancer, with similar patterns of associations in the Breast Cancer Association Consortium and UK Biobank. The combined odds ratios of breast cancer were 0.94 (0.91–0.98; p = 0.007) per genetically predicted one standard deviation increase in TSH levels, 0.96 (0.91–1.00; p = 0.053) for genetic predisposition to hypothyroidism, 1.04 (1.01–1.07; p = 0.005) for genetic predisposition to hyperthyroidism and 1.07 (1.02–1.12; p = 0.003) per genetically predicted one standard deviation increase in free thyroxine levels. Genetically predicted TSH levels and hypothyroidism were inversely with thyroid cancer; the odds ratios were 0.47 (0.30-0.73; p = 0.001) and 0.70 (0.51-0.98; p = 0.038), respectively. Our study provides evidence of a causal association between thyroid dysfunction and breast cancer (mainly ER-positive tumors) risk. The role of TSH and hypothyroidism for thyroid cancer and the associations between thyroid dysfunction and other cancers need further exploration.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Ang Lin
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Qi-Qiang He
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Pakiet A, Jakubiak A, Mierzejewska P, Zwara A, Liakh I, Sledzinski T, Mika A. The Effect of a High-Fat Diet on the Fatty Acid Composition in the Hearts of Mice. Nutrients 2020; 12:nu12030824. [PMID: 32245049 PMCID: PMC7146498 DOI: 10.3390/nu12030824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The Western diet can lead to alterations in cardiac function and increase cardiovascular risk, which can be reproduced in animal models by implementing a high-fat diet (HFD). However, the mechanism of these alterations is not fully understood and may be dependent on alterations in heart lipid composition. The aim of this study was to evaluate the effect of an HFD on the fatty acid (FA) composition of total lipids, as well as of various lipid fractions in the heart, and on heart function. C57BL/6 mice were fed an HFD or standard laboratory diet. The FA composition of chow, serum, heart and skeletal muscle tissues was measured by gas chromatography–mass spectrometry. Cardiac function was evaluated by ultrasonography. Our results showed an unexpected increase in polyunsaturated FAs (PUFAs) and a significant decrease in monounsaturated FAs (MUFAs) in the heart tissue of mice fed the HFD. For comparison, no such effects were observed in skeletal muscle or serum samples. Furthermore, we found that the largest increase in PUFAs was in the sphingolipid fraction, whereas the largest decrease in MUFAs was in the phospholipid and sphingomyelin fractions. The hearts of mice fed an HFD had an increased content of triacylglycerols. Moreover, the HFD treatment altered aortic flow pattern. We did not find significant changes in heart mass or oxidative stress markers between mice fed the HFD and standard diet. The above results suggest that alterations in FA composition in the heart may contribute to deterioration of heart function. A possible mechanism of this phenomenon is the alteration of sphingolipids and phospholipids in the fatty acid profile, which may change the physical properties of these lipids. Since phospho- and sphingolipids are the major components of cell membranes, alterations in their structures in heart cells can result in changes in cell membrane properties.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Agnieszka Jakubiak
- Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Mierzejewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland;
| | - Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
| | - Ivan Liakh
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.P.); (A.Z.)
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Correspondence: ; Tel.: +48-585-230-810
| |
Collapse
|
41
|
Fender AC, Kleeschulte S, Stolte S, Leineweber K, Kamler M, Bode J, Li N, Dobrev D. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic Res Cardiol 2020; 115:10. [PMID: 31912235 DOI: 10.1007/s00395-019-0771-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
The deleterious effects of diabetes in the heart are increasingly attributed to inflammatory signaling through the NLRP3 (NOD, LRR and PYD domains-containing protein 3) inflammasome. Thrombin antagonists reduce cardiac remodeling and dysfunction in diabetic mice, in part by suppressing fibrin-driven inflammation. The role of cellular thrombin receptor subtypes in this context is not known. We sought to determine the causal involvement of protease-activated receptors (PAR) in inflammatory signaling of the diabetic heart. Mice with diet-induced diabetes showed increased abundance of pro-caspase-1 and pro-interleukin (IL)-1β in the left ventricle (LV), indicating transcriptional NLRP3 inflammasome priming, and augmented cleavage of active caspase-1 and IL-1β, pointing to canonical NLRP3 inflammasome activation. Caspase-11 activation, which mediates non-canonical NLRP3 inflammasome signaling, was not augmented. Formation of the plasma membrane pore-forming protein N-terminal gasdermin D (GDSMD), a prerequisite for IL-1β secretion, was also higher in diabetic vs. control mouse LV. NLRP3, ASC and IL-18 expression did not differ between the groups, nor did expression of PAR1 or PAR2. PAR3 was nearly undetectable. LV abundance of PAR4 by contrast increased with diabetes and correlated positively with active caspase-1. Genetic deletion of PAR4 in mice prevented the diet-induced cleavage of caspase-1, IL-1β and GDSMD. Right atrial appendages from patients with type 2 diabetes also showed higher levels of PAR4, but not of PAR1 or PAR2, than non-diabetic atrial tissue, along with increased abundance of cleaved caspase-1, IL-1β and GSDMD. Human cardiac fibroblasts maintained in high glucose conditions to mimic diabetes also upregulated PAR4 mRNA and protein, and increased PAR4-dependent IL-1β transcription and secretion in response to thrombin, while PAR1 and PAR2 expressions were unaltered. In conclusion, PAR4 drives caspase-1-dependent IL-1β production through the canonical NLRP3 inflammasome pathway in the diabetic heart, providing mechanistic insights into diabetes-associated cardiac thromboinflammation. The emerging PAR4-selective antagonists may provide a feasible approach to prevent cardiac inflammation in patients with diabetes.
Collapse
Affiliation(s)
- Anke C Fender
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Sonja Kleeschulte
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Svenja Stolte
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Katja Leineweber
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Johannes Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Düsseldorf, Germany
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Medical Faculty, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| |
Collapse
|
42
|
Hu Y, Li Q, Pan Y, Xu L. Sal B Alleviates Myocardial Ischemic Injury by Inhibiting TLR4 and the Priming Phase of NLRP3 Inflammasome. Molecules 2019; 24:molecules24234416. [PMID: 31816891 PMCID: PMC6930479 DOI: 10.3390/molecules24234416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B is one of the main water-soluble components of Salvia miltiorrhiza Bge. Many reports have shown that it has significant anti-myocardial ischemia effect. However, the underlying mechanism remains unclear. Our present study demonstrated that Sal B could alleviate myocardial ischemic injury by inhibiting the priming phase of NLRP3 inflammasome. In vivo, serum c-troponin I (cTn), lactate dehydrogenase (LDH) levels, the cardiac function and infract size were examined. We found that Sal B could notably reduce the myocardial ischemic injury caused by ligation of the left anterior descending coronary artery. In vitro, Sal B down-regulated the TLR4/NF-κB signaling cascades in lipopolysaccharide (LPS)-stimulated H9C2 cells. Furthermore, Sal B reduced the expression levels of IL-1β and NLRP3 inflammasome in a dose-dependent manner. In short, our study provided evidence that Sal B could attenuate myocardial ischemic injury via inhibition of TLR4/NF-κB/NLRP3 signaling pathway. And in an upstream level, MD-2 may be the potential target.
Collapse
Affiliation(s)
| | | | | | - Li Xu
- Correspondence: ; Tel.: +86-13851572203
| |
Collapse
|
43
|
Adachi M, Watanabe M, Kurata Y, Inoue Y, Notsu T, Yamamoto K, Horie H, Tanno S, Morita M, Miake J, Hamada T, Kuwabara M, Nakasone N, Ninomiya H, Tsuneto M, Shirayoshi Y, Yoshida A, Nishimura M, Yamamoto K, Hisatome I. β-Adrenergic Blocker, Carvedilol, Abolishes Ameliorating Actions of Adipose-Derived Stem Cell Sheets on Cardiac Dysfunction and Remodeling After Myocardial Infarction. Circ J 2019; 83:2282-2291. [PMID: 31527337 DOI: 10.1253/circj.cj-19-0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Treatment of myocardial infarction (MI) includes inhibition of the sympathetic nervous system (SNS). Cell-based therapy using adipose-derived stem cells (ASCs) has emerged as a novel therapeutic approach to treat heart failure in MI. The purpose of this study was to determine whether a combination of ASC transplantation and SNS inhibition synergistically improves cardiac functions after MI. METHODS AND RESULTS ASCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ASC cells, mRNA levels of angiogenic factors under normoxia or hypoxia, and the effects of norepinephrine and a β-blocker, carvedilol, on the mRNA levels were determined. Hypoxia increased vascular endothelial growth factor (VEGF) mRNA in ASCs. Norepinephrine further increased VEGF mRNA; this effect was unaffected by carvedilol. VEGF promoted VEGF receptor phosphorylation and tube formation of human umbilical vein endothelial cells, which were inhibited by carvedilol. In in vivo studies using a rat MI model, transplanted ASC sheets improved contractile functions of MI hearts; they also facilitated neovascularization and suppressed fibrosis after MI. These beneficial effects of ASC sheets were abolished by carvedilol. The effects of ASC sheets and carvedilol on MI heart functions were confirmed by Langendorff perfusion experiments using isolated hearts. CONCLUSIONS ASC sheets prevented cardiac dysfunctions and remodeling after MI in a rat model via VEGF secretion. Inhibition of VEGF effects by carvedilol abolished their beneficial effects.
Collapse
Affiliation(s)
- Maya Adachi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Mai Watanabe
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University Faculty of Medicine
| | - Yumiko Inoue
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Tomomi Notsu
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kenshiro Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Hiromu Horie
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine
| | - Shogo Tanno
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Maki Morita
- Department of Plastic and Reconstructive Surgery, Tottori University Faculty of Medicine
| | - Junichiro Miake
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Toshihiro Hamada
- Department of Community-Based Family Medicine, Tottori University Faculty of Medicine
| | | | - Naoe Nakasone
- Department of Biological Regulation, Tottori University
| | | | - Motokazu Tsuneto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Akio Yoshida
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Motonobu Nishimura
- Department of Cardiovascular Surgery, Tottori University Faculty of Medicine
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| |
Collapse
|
44
|
Cruz-Pereira JS, Rea K, Nolan YM, O'Leary OF, Dinan TG, Cryan JF. Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu Rev Psychol 2019; 71:49-78. [PMID: 31567042 DOI: 10.1146/annurev-psych-122216-011613] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Depression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis. More recently, the gut microbiota has emerged as an important regulator of brain and behavior and also has been linked to depression. However, how this holy trinity of risk factors interact to maintain physiological homeostasis in the brain and body is not fully understood. In this review, we integrate the available data from animal and human studies on these three factors in the etiology and progression of depression. We also focus on the processes by which this microbiota-immune-stress matrix may influence centrally mediated events and on possible therapeutic interventions to correct imbalances in this triune.
Collapse
Affiliation(s)
- Joana S Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , ,
| | - Yvonne M Nolan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork T12 K8AF, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland; , , , , , .,Department of Anatomy and Neuroscience, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
45
|
Li X, Geng J, Zhao J, Ni Q, Zhao C, Zheng Y, Chen X, Wang L. Trimethylamine N-Oxide Exacerbates Cardiac Fibrosis via Activating the NLRP3 Inflammasome. Front Physiol 2019; 10:866. [PMID: 31354519 PMCID: PMC6634262 DOI: 10.3389/fphys.2019.00866] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Background/Aims: Gut microbiota has been reported to correlate with a higher mortality and worse prognosis of cardiovascular diseases. Trimethylamine N-oxide (TMAO) is a gut microbiota-dependent metabolite of specific dietary nutrients, which is linked to cardiac fibrosis. Recent reports have suggested that the activation of Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome contributed to cardiac fibrosis. However, whether TMAO mediates cardiac fibrosis via activating NLRP3 inflammasome remains unclear. Methods and Results: To determine the role of TMAO–mediated cardiac fibrosis, we established mouse models of doxorubicin (DOX)-induced cardiac fibrosis with or without TMAO in drinking water. TMAO exacerbated DOX-induced cardiac dysfunction, heart weight and cardiac fibrosis manifested by enhanced collagen accumulation, higher profibrotic levels and elevated inflammatory factors as well as NLRP3 inflammasome activation. Using primary cultured mouse cardiac fibroblast, our results indicated that TMAO promoted proliferation, migration and collagen secretion in a dose-dependent manner by TGF-β/Smad3 signaling. Furthermore, TMAO treatment induced NLRP3 inflammasome activation including oxidative stress in cultured cardiac fibroblast. Importantly, the silencing of NLRP3 presented a protection effect against cardiac fibrosis including cellular proliferation, migration and collagen deposition in vitro. Conclusion: Our data suggested that TMAO aggravated DOX-induced mouse cardiac fibrosis, at least in part, through activation of the NLRP3 inflammasome, providing a new potential target for preventing the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Xueling Li
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jin Geng
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jinxuan Zhao
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chenze Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yaru Zheng
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaomin Chen
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
46
|
Li H, Zhong X, Chen Z, Li W. Suppression of NLRP3 inflammasome improves alveolar bone defect healing in diabetic rats. J Orthop Surg Res 2019; 14:167. [PMID: 31146750 PMCID: PMC6543640 DOI: 10.1186/s13018-019-1215-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Excessive inflammatory response under hyperglycemia can impair alveolar bone defect healing under diabetic conditions. NLRP3 (NACHT [nucleotide-binding oligomerization], LRR [leucine-rich repeat], and PYD [pyrin domain] domains-containing protein 3) inflammasome has been considered to play a crucial role in the inflammatory response, but its correlation with the impaired alveolar bone repair in diabetes still remains unclarified. The objective of the current study is to investigate the effect of NLRP3 inflammasome inhibition by a lentiviral short hairpin RNA (shRNA) targeting NLRP3 on alveolar bone defect healing in diabetic rats. Methods Diabetes was induced in rats by high-fat diet and streptozotocin injection, and alveolar bone defects in both maxillae were created by surgery. Then, the lentiviral shRNA targeting NLRP3 was applied in the defect. Eight weeks after surgery, the alveolar bone regeneration was examined using hematoxylin and eosin (H&E) staining, and the gene expression in the bone healing site was detected using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis and western blot analysis. Results H&E staining showed that treatment with lentiviral shRNA targeting NLRP3 could increase the bone regeneration score in the alveolar bone defect of diabetic rats. Additionally, qRT-PCR analysis and western blot analysis of the bone defect demonstrated that this shRNA inhibited the expression of NLRP3, apoptosis-associated speck-like protein containing a CARD, caspase-1, and proinflammatory cytokine interleukin-1β and increased the expression of osteogenic markers Runt-related transcription factor 2 and osteocalcin. Conclusions Our findings suggested that inhibition of NLRP3 inflammasome could improve alveolar bone defect healing in diabetic rats. The beneficial effect may correlate with reduced proinflammatory cytokine production and increased osteogenic gene expression in hyperglycemia. Electronic supplementary material The online version of this article (10.1186/s13018-019-1215-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinghua Zhong
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Zhiyong Chen
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
47
|
Lee KR, Midgette Y, Shah R. Fish Oil Derived Omega 3 Fatty Acids Suppress Adipose NLRP3 Inflammasome Signaling in Human Obesity. J Endocr Soc 2019; 3:504-515. [PMID: 30788452 PMCID: PMC6371080 DOI: 10.1210/js.2018-00220] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
CONTEXT The NRLP3 inflammasome is a multiprotein danger-sensing complex that serves as a critical link between obesity-related adipose inflammation and insulin resistance and has been shown in animal models to be inhibited by fish oil-derived long chain omega-3 polyunsaturated fatty acids (n-3 PUFA). OBJECTIVE We conducted a clinical trial and in vitro experiments to test our hypothesis that n-3 PUFA suppress NLRP3 inflammasome in human obesity through downregulation of inflammasome gene expression in adipocytes and macrophages. DESIGN Placebo-controlled clinical trial and in vitro coculture experiments with primary human adipocytes (from biopsy specimens) and human THP-1 monocyte-derived macrophages treated with eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) vs vehicle control. SETTING General community, research laboratory. PATIENTS AND OTHER PARTICIPANTS Obese (body mass index ≥ 30 kg/m2), nondiabetic males and females age 18 to 50. N = 25. INTERVENTIONS Clinical trial: Eight-week treatment with 4 g Lovaza (EPA and DHA) or placebo. Cells culture: EPA and/or DHA at 100 µg/mL or vehicle control in culture medium. MAIN OUTCOME MEASURES Adipose tissue or adipocyte/macrophage mRNA expression of IL-1β and IL-18 and circulating IL-18 levels. RESULTS Treatment of obese human subjects with fish oil supplements reduced expression of adipose inflammatory genes including inflammasome-associated IL-18 and IL-1β and circulating IL-18 levels. Both EPA and DHA reduced inflammasome gene expression in obese human adipose and human adipocyte and macrophages. CONCLUSIONS N-3 PUFA reduce NLRP3 inflammasome in human adipose through downregulation of gene expression in adipocytes and monocytes/macrophages and has potential as nutritional therapeutic agent in prevention of obesity-related inflammation.
Collapse
Affiliation(s)
- Kailey Roberts Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yasmeen Midgette
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Qu X, Gao H, Tao L, Zhang Y, Zhai J, Sun J, Song Y, Zhang S. Astragaloside IV protects against cisplatin-induced liver and kidney injury via autophagy-mediated inhibition of NLRP3 in rats. J Toxicol Sci 2019; 44:167-175. [PMID: 30842369 DOI: 10.2131/jts.44.167] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiaoyu Qu
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Lina Tao
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Jinghui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Jingmeng Sun
- Department of Pharmacy, the First Hospital of Jilin University, China
- Changchun University of Chinese Medicine, China
| | - Yanqing Song
- Department of Pharmacy, the First Hospital of Jilin University, China
| | - Sixi Zhang
- Department of Pharmacy, the First Hospital of Jilin University, China
| |
Collapse
|
49
|
Jiang C, Jiang L, Li Q, Liu X, Zhang T, Dong L, Liu T, Liu L, Hu G, Sun X, Jiang L. Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology 2018; 410:26-40. [DOI: 10.1016/j.tox.2018.09.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
|
50
|
Qu X, Gao H, Tao L, Zhang Y, Zhai J, Song Y, Zhang S. Autophagy inhibition-enhanced assembly of the NLRP3 inflammasome is associated with cisplatin-induced acute injury to the liver and kidneys in rats. J Biochem Mol Toxicol 2018; 33:e22208. [PMID: 30291731 DOI: 10.1002/jbt.22228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/30/2022]
Abstract
The nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome has a key role in the inflammatory response. We found that cisplatin (7.5, 15 mg/kg, IV) could induce acute injury to the liver and kidneys of rats. Western blot and immunohistochemical analyses showed that expression of NLRP3, caspase-1 and interleukin-1β was upregulated significantly in a dose-dependent manner after cisplatin exposure. Autophagy could inhibit NLRP3 expression and assembly of the NLRP3 inflammasome. Expression of light chain 3 II/I and p62 suggested that autophagy was inhibited during injury to the liver and kidneys. These data suggested that cisplatin might activate NLRP3 by inhibiting autophagy in the liver and kidneys of rats.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Sixi Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|