1
|
Wang L, Mu Q, Zhang W, Zheng W, Zhu X, Yu Y, Wang Y, Xu W, Lu Z, Han X. Placental targeted drug delivery: a review of recent progress. NANOSCALE 2025; 17:8316-8335. [PMID: 40070242 DOI: 10.1039/d4nr05338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The placenta plays a crucial role in mediating nutrient and gas exchange between the mother and fetus during pregnancy. Targeting therapeutic agents to the placenta presents significant opportunities for treating placental disorders and enhancing fetal outcomes. However, the unique structural complexity and selective permeability of the placenta pose substantial challenges for effective drug delivery. This review provides a comprehensive overview of current strategies for placental targeting, including lipid nanoparticle (LNP) delivery systems, targeted peptide modifications, specific antibody targeting of placental receptors, and the use of viral vectors. We critically analyze the advantages and limitations of each approach, emphasizing recent advancements in enhancing targeting specificity and delivery efficiency. By consolidating the latest research developments, this review aims to foster further innovation in placental drug delivery methods and contribute significantly to the advancement of therapeutic strategies for placental disorders, ultimately improving outcomes for both mother and fetus.
Collapse
Affiliation(s)
- Linjian Wang
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Qiuqiu Mu
- Third Affliated Hospital of Wenzhou Medical University, WanSong Road No. 108, Ruian, Wenzhou, Zhejiang, 325200, China
| | - Wenjing Zhang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Weiqian Zheng
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiaojun Zhu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Ying Yu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - YuPeng Wang
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Wenli Xu
- Department of Obstetrics, Haining Maternal and Child Health Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No. 309, East Shuiyueting Road, Xiashi Street, Haining, Zhejiang, 314400, China
| | - Zhimin Lu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| | - Xiujun Han
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Xueshi Road No. 1, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
2
|
Huang J, Li S, Sung JY, Qiao S, Zeng X, Zhou J. Transfer of Antioxidant Capacity Through Placenta and Colostrum: β-Carotene and Superoxide Dismutase Collaboratively Enhance Integrated Breeding of Sows and Piglets. Antioxidants (Basel) 2025; 14:359. [PMID: 40227407 PMCID: PMC11939707 DOI: 10.3390/antiox14030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Sows and piglets face heightened oxidative stress during gestation and lactation, yet strategies to simultaneously mitigate these challenges remain underexplored. This study investigated the effects of β-carotene and superoxide dismutase (SOD) supplementation on 140 Landrace × Yorkshire sows (parity 3-5) randomly assigned to (1) a control; (2) long-term low-dose treatment (25 mg/kg β-carotene, 4 mg/kg SOD, or both) throughout gestation-lactation; or (3) short-term high-dose treatment (100 mg/kg β-carotene, 14 mg/kg SOD, or both) administered 7 days pre/post-weaning and farrowing. Our data indicate that the antioxidants enhanced the productive performance of both sows and piglets, with the most pronounced effect observed in the long-term, low-dose combined administration of β-carotene and SOD. The composite antioxidants significantly improved the systemic antioxidant capacity in sows, while concurrently reducing the cortisol and lipopolysaccharide concentrations in the serum. This enhancement contributed to elevations in serum progesterone and prolactin levels at day 40 of gestation and farrowing, respectively, ultimately increasing the number of weaned piglets and decreasing the backfat loss. In addition, the compound antioxidants improved the serum antioxidant indices of piglets, increased the growth hormone concentrations, and improved the litter weight gain. Mechanistically, the placental upregulation of CAT, GPX1, and GLUT3, alongside Claudin1, Occludin, and ZO-1 expression, underpinned improved nutrient transport and barrier function. These findings demonstrate that β-carotene and SOD synergistically transfer antioxidant capacity via placental and colostrum pathways, offering a viable strategy for integrated sow-piglet management.
Collapse
Affiliation(s)
- Jun Huang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Shengkai Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
| | - Jung Yeol Sung
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shiyan Qiao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Xiangfang Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| | - Junyan Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.H.); (S.L.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Q.); (X.Z.)
| |
Collapse
|
3
|
Zheng D, Jiang J, Shen A, Zhong Y, Zhang Y, Xiu J. Maternal Hypertension Aggravates Vascular Dysfunction After Injury in Male Adult Offspring Through Transgenerational Transmission of N 6-Methyladenosine. Hypertension 2025; 82:255-266. [PMID: 39687988 DOI: 10.1161/hypertensionaha.124.23373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Whether maternal hypertension contributes to the enhanced susceptibility to vascular remodeling in adult offspring through epigenetic mechanisms remains unclear. We aimed to address this gap in the literature using a transgenerational mouse model. METHODS Gestational hypertension was induced in pregnant mice using chronic angiotensin II infusion. Blood pressure was monitored using the tail-cuff method. Two months post-delivery, an N6-methyladenosine epitranscriptomic microarray analysis was performed on the carotid arteries of second-generation mice. A unilateral carotid artery injury model was used to study the postinjury vascular response in vivo. Furthermore, carotid ultrasonography, immunohistochemistry, and molecular biological parameters were assessed in adult offspring. RESULTS Exposure to maternal hypertension decreased the birth weight of live pups and increased the fetal death rate. Compared with normal offspring, adult offspring with hypertension had wire-induced injury that led to greater vascular remodeling, which was associated with aggravated inflammation imbalance, fibrosis, and oxidative stress. In addition, aberrant N6-methyladenosine methylation, increased N6-methyladenosine levels, and increased METTL3 (methyltransferase-like 3) expression were detected in the vessels of offspring with hypertension. Maternal METTL3 deficiency increased the birth weight of live pups with hypertension, improved vascular dysfunction, and alleviated vascular inflammation in adult offspring with hypertension after injury. CONCLUSIONS Maternal hypertension can induce transgenerational transmission of enhanced susceptibility to vascular remodeling, and the possible underlying mechanism is associated with altered METTL3-mediated N6-methyladenosine methylation. Therefore, this study reveals the role of epigenetic effects across generations and provides new insights into vascular remodeling causes.
Collapse
Affiliation(s)
- Dezhong Zheng
- Department of Cardiology, Nanfang Hospital (D.Z., J.X., J.J., Y. Zhong, Y. Zhang), Southern Medical University, Guangzhou, China
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University (D.Z., A.S.), Southern Medical University, Guangzhou, China
| | - Jiayi Jiang
- Department of Cardiology, Nanfang Hospital (D.Z., J.X., J.J., Y. Zhong, Y. Zhang), Southern Medical University, Guangzhou, China
| | - Anna Shen
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University (D.Z., A.S.), Southern Medical University, Guangzhou, China
| | - Yixiang Zhong
- Department of Cardiology, Nanfang Hospital (D.Z., J.X., J.J., Y. Zhong, Y. Zhang), Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Cardiology, Nanfang Hospital (D.Z., J.X., J.J., Y. Zhong, Y. Zhang), Southern Medical University, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital (D.Z., J.X., J.J., Y. Zhong, Y. Zhang), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Chen Y, Yi ZT, Yu HL, Wu XY, Wang JP, Nie C, Li H, Li SH, Yan QL, He TW, Chen MC, Yang XY, Wen JY, Lv LJ. Does preeclampsia impact the gut microbiota of preterm offspring during early infancy? J Transl Med 2025; 23:84. [PMID: 39828685 PMCID: PMC11744873 DOI: 10.1186/s12967-025-06120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Preeclampsia (PE) is a pregnancy complication characterized by high blood pressure and organ damage. This study investigates the differences in the gut microbiota between preterm neonates born to mothers with PE and those born to mothers without PE (PR), aiming to understand how maternal health conditions like PE influence neonatal gut microbiota. The early gut microbiota plays a crucial role in neonatal health, and disturbances in its development can have long-term consequences. Fecal samples were collected from preterm neonates of PE and PR mothers at 2 and 6 weeks postpartum and analyzed using shotgun metagenomic sequencing. We found that PE significantly affected the gut microbial composition of preterm neonates, particularly at 2 weeks postpartum. The gut microbial diversity in the PE_2 group was notably lower compared to the PR_2 group, with no significant difference observed between the PR_6 and PE_6 groups. At the phylum level, Firmicutes and Proteobacteria were predominant, with significant differences observed, particularly a lower abundance of Actinobacteria in the PE_2 group. At the genus level, Escherichia, Enterococcus, and Klebsiella were more prevalent in the PE_2 group, whereas Bifidobacterium and Cutibacterium dominated the PR_2 group. The gut virome analysis showed no significant differences among the groups. Functional analysis revealed distinct metabolic pathway activities across the groups, suggesting that early disturbances due to PE impact the establishment of healthy gut microbiota. These findings underscore the substantial influence of maternal health on the early development of the neonatal gut microbiota and highlight the potential long-term health consequences. Additionally, the differences in metabolic pathways further emphasize the impact of preeclampsia on gut microbiota functionality.
Collapse
Affiliation(s)
- Yang Chen
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Zhou-Ting Yi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | | | - Xiao-Yan Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Jun-Ping Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chuan Nie
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hui Li
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | | | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Tian-Wen He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Min-Chai Chen
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xin-Yue Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ji-Ying Wen
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Li-Juan Lv
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Du S, Zhou J, Ao X, Zhu Y. Effects of in ovo feeding of vitamin C on embryonic development, hatching process, and chick rectal temperature of broiler embryos. Front Vet Sci 2025; 11:1505801. [PMID: 39840329 PMCID: PMC11747523 DOI: 10.3389/fvets.2024.1505801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/05/2024] [Indexed: 01/23/2025] Open
Abstract
Maternal nutritional status plays a crucial role in embryonic development and has persistent effects on postnatal chicks. Vitamin C (VC) plays an important role in embryonic and postnatal development involved in nutri-epigenetics. The present study was conducted to investigate the effects of in ovo feeding (IOF) of VC on embryonic development, egg hatching time, and chick rectal temperature. Trial 1 was conducted under normal incubation conditions without the IOF procedure and was designed to analyze the characteristics of embryonic development and establish the scoring standards for yolk absorption and the rupture of the shell membrane. The results showed that the relative weight of the embryo and residual yolk and the organ indexes were reliable indicators of embryonic development. Yolk absorption was scored 0, 1, 2, 3, and 4, with a higher score indicating more complete absorption. In addition, the rupture of the shell membrane was divided into two cases: YES and NO. Trial 2 included three groups, control (CON), normal saline (NS), and vitamin C (VC), and was designed to detect the effects of IOF of VC on the indicators in trial 1, as well as the plasma biochemical indicators. At embryonic age 11 (E11), each egg in the CON group was non-injected, each egg in the NS group was injected with 0.1 mL of sterile normal saline, and each egg in the VC group was injected with 0.1 mL of sterile normal saline containing 3 mg vitamin C. The whole day of E21 was evenly divided into three time periods: early (incubation hours 480-488), middle (incubation hours 488-496), and late (incubation hours 496-504). Among the CON, NS, and VC groups, the percentages of the early-hatched chicks (egg hatching time) were 29.31, 12.00, and 33.90%, respectively. The proportions of early and middle hatched chicks in these groups were 51.72, 42.00, and 38.27%, respectively. The rectal temperature of chicks was lower (p < 0.05) in the VC group than in the CON and NS groups. Compared to the NS group, the plasma biochemical indicators in the VC group showed significantly lower levels of alkaline phosphatase (ALP), total protein (TP), albumin (ALB), GLB, total bilirubin (TBIL), TBA, uric acid (UA), high-density lipoprotein cholesterol (HDL-C), and corticosterone (CORT) (p < 0.05). Additionally, alanine aminotransferase (ALT) had an increasing trend (p = 0.059) in the VC group. In conclusion, our data demonstrated that VC accelerated the hatching process and reduced chicks' rectal temperature, which may be related to the improvement of liver function and changes in metabolism, as indicated by blood biochemical indicators.
Collapse
Affiliation(s)
- Shan Du
- Techlex Food Co., Ltd., Chengdu, China
| | | | - Xiang Ao
- Techlex Food Co., Ltd., Chengdu, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yufei Zhu
- DAYU Bioengineering (Xi'an) Industrial Development Research Institute, Xi’an, China
- Shanxi Dayu Bioengineering Co., Ltd., Yuncheng, China
| |
Collapse
|
6
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
7
|
Majumder S, Moriarty KL, Lee Y, Crombleholme TM. Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application. J Clin Med 2024; 13:5647. [PMID: 39337133 PMCID: PMC11432969 DOI: 10.3390/jcm13185647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In the last three decades, gene therapy has demonstrated significant progress. Over 700 active investigational new drug (IND) applications have been reported. Research on in utero gene therapy has advanced, but ethical and safety concerns persist. A novel approach under investigation is placental gene therapy, which holds promise for targeting diseases associated with placental dysfunction, such as fetal growth restriction (FGR) and preeclampsia. One of the underlying causes of placental insufficiency in these conditions is reduced placental growth factor-driven angiogenesis and endothelial cell dysfunction during fetal development. Studies have explored the overexpression of growth factor transgenes like IGF-1 to address FGR, yielding promising outcomes in animal models. Furthermore, intra-placental gene transfer, instead of systemic delivery of gene therapy vectors, has the potential to treat and cure these disorders. However, challenges and limitations akin to in utero gene therapy persist, including the risk of in utero infection, potential impairment of the mother's future fertility, the risk of germline integration, and possible off-target effects of gene transfer in the fetus or the mother. Consequently, additional research and deliberation within the scientific and medical communities are warranted to fully comprehend the potential benefits and risks of placental gene therapy.
Collapse
Affiliation(s)
- Sanjukta Majumder
- Molecular Fetal Therapy Laboratory, Fetal Care Center at Connecticut Children's Medical Center, Suite F254, 282 Washington Street, Hartford, CT 06106, USA
- Fetal Surgery Section, Division of Pediatric General and Thoracic Surgery, Department of Surgery, UConn Health, Farmington, CT 06030, USA
| | - Kristen Lee Moriarty
- Molecular Fetal Therapy Laboratory, Fetal Care Center at Connecticut Children's Medical Center, Suite F254, 282 Washington Street, Hartford, CT 06106, USA
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Farmington, CT 06030, USA
| | - Youngmok Lee
- Department of Pediatrics, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Timothy M Crombleholme
- Molecular Fetal Therapy Laboratory, Fetal Care Center at Connecticut Children's Medical Center, Suite F254, 282 Washington Street, Hartford, CT 06106, USA
- Fetal Surgery Section, Division of Pediatric General and Thoracic Surgery, Department of Surgery, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
8
|
Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, Phull AR. Preeclampsia: A comprehensive review. Clin Chim Acta 2024; 563:119922. [PMID: 39142550 DOI: 10.1016/j.cca.2024.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnancy and a prominent cause of neonatal and maternal mortality and morbidity. PE affects approximately 5-10% of pregnancies worldwide, posing significant risks to perinatal and maternal health. It is characterized by a variety of interconnected pathological cascades contributing to the stimulation of intravascular inflammation, oxidative stress (OS), endothelial cell activation, and syncytiotrophoblast stress that converge on a common pathway, ultimately resulting in disease progression. The present study was designed and executed to review the existing scientific literature, specifically focusing on the etiology (gestational diabetes mellitus and maternal obesity, insulin resistance, metabolic syndrome, maternal infection, periodontal disease, altered microbiome, and genetics), clinical presentations (hypertension, blood disorders, proteinuria, hepatic dysfunction, renal dysfunction, pulmonary edema, cardiac dysfunction, fetal growth restrictions, and eclampsia), therapeutic clinical biomarkers (creatinine, albuminuria, and cystatin C) along with their associations and mechanisms in PE. In addition, this study provides insights into the potential of nanomedicines for targeting these mechanisms for PE management and treatment. Inflammation, OS, proteinuria, and an altered microbiome are prominent biomarkers associated with progression and PE-related pathogenesis. Understanding the molecular mechanisms, exploring suitable markers, targeted interventions, comprehensive screening, and holistic strategies are critical to decreasing the incidence of PE and promoting maternal-fetal well-being. The present study comprehensively reviewed the etiology, clinical presentations, therapeutic biomarkers, and preventive potential of nanomedicines in the treatment and management of PE.
Collapse
Affiliation(s)
- Majida Ali
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Jaffer Khan Jamali Road, H-8/4, Islamabad, Pakistan
| | - Mehwish Memon
- Department of Biochemistry, Ibn e Sina University, Mirpur Khas, Pakistan
| | - Fozia Chandio
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Quratulain Shaikh
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, South Korea.
| | - Abdul-Rehman Phull
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Sindh, Pakistan.
| |
Collapse
|
9
|
Cui J, Yang Z, Ma R, He W, Tao H, Li Y, Zhao Y. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep 2024; 20:1501-1511. [PMID: 38814409 PMCID: PMC11319408 DOI: 10.1007/s12015-024-10739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.
Collapse
Affiliation(s)
- Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ya'nan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Warrington JP, Collins HE, Davidge ST, do Carmo JM, Goulopoulou S, Intapad S, Loria AS, Sones JL, Wold LE, Zinkhan EK, Alexander BT. Guidelines for in vivo models of developmental programming of cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H221-H241. [PMID: 38819382 PMCID: PMC11380980 DOI: 10.1152/ajpheart.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.
Collapse
Grants
- 20YVNR35490079 American Heart Association (AHA)
- R01HL139348 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135158 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54GM115428 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG057046 HHS | NIH | National Institute on Aging (NIA)
- P20 GM104357 NIGMS NIH HHS
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 GM149404 NIGMS NIH HHS
- P20GM104357 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM135002 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL163003 NHLBI NIH HHS
- R01HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK121411 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Excellence Faculty Support Grant Jewish Heritage Fund
- P30GM149404 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P30GM14940 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 23SFRNPCS1067044 American Heart Association (AHA)
- R01 HL146562 NHLBI NIH HHS
- R56HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U54 GM115428 NIGMS NIH HHS
- 1R01HL163076 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL51971 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- FS154313 CIHR
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, Kentucky, United States
| | - Sandra T Davidge
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jussara M do Carmo
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, Loma Linda, California, United States
- Department of Gynecology, and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Suttira Intapad
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jenny L Sones
- Equine Reproduction Laboratory, Department of Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Erin K Zinkhan
- Department of Pediatrics, University of Utah and Intermountain Health, Salt Lake City, Utah, United States
- Intermountain Health, Salt Lake City, Utah, United States
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
11
|
Yaguchi C, Ueda M, Mizuno Y, Fukuchi C, Matsumoto M, Furuta-Isomura N, Itoh H. Association of Placental Pathology with Physical and Neuronal Development of Infants: A Narrative Review and Reclassification of the Literature by the Consensus Statement of the Amsterdam Placental Workshop Group. Nutrients 2024; 16:1786. [PMID: 38892717 PMCID: PMC11174896 DOI: 10.3390/nu16111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The placenta is the largest fetal organ, which connects the mother to the fetus and supports most aspects of organogenesis through the transport of nutrients and gases. However, further studies are needed to assess placental pathology as a reliable predictor of long-term physical growth or neural development in newborns. The Consensus Statement of the Amsterdam Placental Workshop Group (APWGCS) on the sampling and definition of placental lesions has resulted in diagnostic uniformity in describing the most common pathological lesions of the placenta and contributed to the international standardization of descriptions of placental pathology. In this narrative review, we reclassified descriptions of placental pathology from previously published papers according to the APWGCS criteria and comparatively assessed the relationship with infantile physical and/or neural development. After reclassification and reevaluation, placental pathology of maternal vascular malperfusion, one of the APWGCS criteria, emerged as a promising candidate as a universal predictor of negative infantile neurodevelopmental outcomes, not only in term and preterm deliveries but also in high-risk groups of very low birthweight newborns. However, there are few studies that examined placental pathology according to the full categories of APWGCS and also included low-risk general infants. It is necessary to incorporate the assessment of placental pathology utilizing APWGCS in the design of future birth cohort studies as well as in follow-up investigations of high-risk infants.
Collapse
|
12
|
Xie Z, Sun S, Ji H, Miao M, He W, Song X, Cao W, Wu Q, Liang H, Yuan W. Prenatal exposure to per- and polyfluoroalkyl substances and DNA methylation in the placenta: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132845. [PMID: 37898083 DOI: 10.1016/j.jhazmat.2023.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological studies regarding the relationship between per- and polyfluoroalkyl substances (PFAS) and DNA methylation were limited. We investigated the associations of maternal PFAS concentrations with placental DNA methylation and examined the mediating role of methylation changes between PFAS and infant development. We measured the concentrations of 11 PFAS in maternal plasma during early pregnancy and infant development at six months of age. We analyzed genome-wide DNA methylation in 16 placental samples using reduced representation bisulfite sequencing. Additionally, we measured DNA methylation levels using bisulfite amplicon sequencing in 345 mother-infant pairs for five candidate genes, including carbohydrate sulfotransferase 7 (CHST7), fibroblast growth factor 13 (FGF13), insulin receptor substrate 4 (IRS4), paired like homeobox 2Ap (PHOX2A), and plexin domain containing 1 (PLXDC1). We found that placental DNA methylation profiles related to PFOA mainly enriched in angiogenesis and neuronal signaling pathways. PFOA was associated with hypomethylation of IRS4 and PLXDC1, and PFNA was associated with PLXDC1 hypomethylation. There were positive associations of CHST7 methylation with PFTrDA and IRS4 methylation with PFDoA and PFTrDA. PLXDC1 hypomethylation mediated the association between PFOA and suspected developmental delay in infants. Future studies with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
13
|
Gumina DL, Su EJ. Mechanistic insights into the development of severe fetal growth restriction. Clin Sci (Lond) 2023; 137:679-695. [PMID: 37186255 PMCID: PMC10241202 DOI: 10.1042/cs20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Fetal growth restriction (FGR), which most commonly results from suboptimal placental function, substantially increases risks for adverse perinatal and long-term outcomes. The only "treatment" that exists is delivery, which averts stillbirth but does not improve outcomes in survivors. Furthermore, the potential long-term consequences of FGR to the fetus, including cardiometabolic disorders, predispose these individuals to developing FGR in their future pregnancies. This creates a multi-generational cascade of adverse effects stemming from a single dysfunctional placenta, and understanding the mechanisms underlying placental-mediated FGR is critically important if we are to improve outcomes and overall health. The mechanisms behind FGR remain unknown. However, placental insufficiency derived from maldevelopment of the placental vascular systems is the most common etiology. To highlight important mechanistic interactions within the placenta, we focus on placental vascular development in the setting of FGR. We delve into fetoplacental angiogenesis, a robust and ongoing process in normal pregnancies that is impaired in severe FGR. We review cellular models of FGR, with special attention to fetoplacental angiogenesis, and we highlight novel integrin-extracellular matrix interactions that regulate placental angiogenesis in severe FGR. In total, this review focuses on key developmental processes, with specific focus on the human placenta, an underexplored area of research.
Collapse
Affiliation(s)
- Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| | - Emily J Su
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| |
Collapse
|
14
|
Lodefalk M, Chelslín F, Patriksson Karlsson J, Hansson SR. Placental Changes and Neuropsychological Development in Children-A Systematic Review. Cells 2023; 12:cells12030435. [PMID: 36766778 PMCID: PMC9913696 DOI: 10.3390/cells12030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Placental dysfunction may increase the offspring's later-life disease risk. The objective of this systematic review was to describe associations between pathological placental changes and neuropsychological outcomes in children after the neonatal period. The inclusion criteria were human studies; original research; direct placental variables; neuropsychological outcomes; and analysis between their associations. The exclusion criterion was the offspring's age-0-28 days or >19 years. The MEDLINE and EMBASE databases were last searched in May 2022. We utilized the ROBINS-I for the risk of bias assessment and performed a narrative synthesis. In total, 3252 studies were identified, out of which 16 were included (i.e., a total of 15,862 participants). Half of the studies were performed on children with neonatal complications, and 75% of the studies reported an association between a placental change and an outcome; however, following the completion of the funnel plots, a risk of publication bias was indicated. The largest study described a small association between placental size and a risk of psychiatric symptoms in boys only. Inconsistency between the studies limited the evidence in this review. In general, no strong evidence was found for an association between pathological placental changes and childhood neuropsychological outcomes after the neonatal period. However, the association between placental size and mental health in boys indicates a placental sexual dimorphism, thereby suggesting an increased vulnerability for male fetuses.
Collapse
Affiliation(s)
- Maria Lodefalk
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
- Correspondence:
| | - Felix Chelslín
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Johanna Patriksson Karlsson
- University Health Care Research Centre, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden
- Department of Obstetrics and Gynecology, Skåne University Hospital, 214 28 Malmö, Sweden
| |
Collapse
|
15
|
Jiang L, Tang K, Magee LA, von Dadelszen P, Ekeroma A, Li X, Zhang E, Bhutta ZA. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol 2022; 18:760-775. [PMID: 36109676 PMCID: PMC9483536 DOI: 10.1038/s41574-022-00734-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Two important maternal cardiometabolic disorders (CMDs), hypertensive disorders in pregnancy (HDP) (including pre-eclampsia) and gestational diabetes mellitus (GDM), result in a large disease burden for pregnant individuals worldwide. A global consensus has not been reached about the diagnostic criteria for HDP and GDM, making it challenging to assess differences in their disease burden between countries and areas. However, both diseases show an unevenly distributed disease burden for regions with a low income or middle income, or low-income and middle-income countries (LMICs), or regions with lower sociodemographic and human development indexes. In addition to many common clinical, demographic and behavioural risk factors, the development and clinical consequences of maternal CMDs are substantially influenced by the social determinants of health, such as systemic marginalization. Although progress has been occurring in the early screening and management of HDP and GDM, the accuracy and long-term effects of such screening and management programmes are still under investigation. In addition to pharmacological therapies and lifestyle modifications at the individual level, a multilevel approach in conjunction with multisector partnership should be adopted to tackle the public health issues and health inequity resulting from maternal CMDs. The current COVID-19 pandemic has disrupted health service delivery, with women with maternal CMDs being particularly vulnerable to this public health crisis.
Collapse
Affiliation(s)
- Li Jiang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
| | - Kun Tang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Laura A Magee
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Peter von Dadelszen
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Alec Ekeroma
- Department of Obstetrics and Gynecology, Wellington School of Medicine, University of Otago, Wellington, New Zealand
- National University of Samoa, Apia, Samoa
| | - Xuan Li
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Enyao Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada.
- Center of Excellence in Women and Child Health, the Aga Khan University, Karachi, Pakistan.
- Institute for Global Health & Development, the Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
16
|
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev 2022; 89:540-553. [PMID: 36094907 PMCID: PMC10947605 DOI: 10.1002/mrd.23644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.
Collapse
Affiliation(s)
- Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
17
|
Huang C, Wei K, Lee PMY, Qin G, Yu Y, Li J. Maternal hypertensive disorder of pregnancy and mortality in offspring from birth to young adulthood: national population based cohort study. BMJ 2022; 379:e072157. [PMID: 36261141 PMCID: PMC9580246 DOI: 10.1136/bmj-2022-072157] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine the association of maternal hypertensive disorder of pregnancy (HDP) with overall and cause specific mortality in offspring from birth to young adulthood. DESIGN Nationwide population based cohort study. SETTING Danish national health registers. PARTICIPANTS All 2 437 718 individuals live born in Denmark, 1978-2018, with follow-up from date of birth until date of death, emigration, or 31 December 2018, whichever came first. MAIN OUTCOME MEASURES The primary outcome was all cause mortality. Secondary outcomes were 13 specific causes of death in offspring from birth to young adulthood (age 41 years). Cox regression was used to assess the association, taking into consideration several potential confounders. The role of timing of onset and severity of pre-eclampsia, maternal history of diabetes, and maternal education were also studied. RESULTS 102 095 mothers had HDP: 67 683 with pre-eclampsia, 679 with eclampsia, and 33 733 with hypertension. During follow-up to 41 years (median 19.4 (interquartile range 9.7-28.7) years), deaths occurred in 781 (58.94 per 100 000 person years) offspring born to mothers with pre-eclampsia, 17 (133.73 per 100 000 person years) born to mothers with eclampsia, 223 (44.38 per 100 000 person years) born to mothers with hypertension, and 19 119 (41.99 per 100 000 person years) born to mothers with no HDP. The difference in cumulative incidence in overall mortality between cohorts exposed and unexposed to maternal HDP was 0.37% (95% confidence interval 0.11% to 0.64%), and the population attributable fraction for maternal HDP was estimated as 1.09% (95% confidence interval 0.77% to 1.41%). Maternal HDP was associated with a 26% (hazard ratio 1.26, 95% confidence interval 1.18 to 1.34) higher risk of all cause mortality in offspring. The corresponding estimates for maternal pre-eclampsia, eclampsia, and hypertension were 1.29 (1.20 to 1.38), 2.88 (1.79 to 4.63), and 1.12 (0.98 to 1.28). Increased risks were also observed for several cause specific mortalities, such as deaths from conditions originating in the perinatal period (2.04, 1.81 to 2.30), cardiovascular diseases (1.52, 1.08 to 2.13), digestive system diseases (2.09, 1.27 to 3.43), and endocrine, nutritional, and metabolic diseases (1.56, 1.08 to 2.27). The increased risks were more pronounced among offspring of mothers with early onset and severe pre-eclampsia (6.06, 5.35 to 6.86) or with both HDP and diabetes history (1.57, 1.16 to 2.14) or HDP and low education level (1.49, 1.34 to 1.66). CONCLUSION Maternal HDP, particularly eclampsia and severe pre-eclampsia, is associated with increased risks of overall mortality and various cause specific mortalities in offspring from birth to young adulthood.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Kecheng Wei
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Priscilla Ming Yi Lee
- Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Guoyou Qin
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Jiong Li
- Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Du M, Chen Y, Dong M, Liang Z, Chen D. Down-Regulation of PLAC1 in the Placenta of Gestational Diabetes Mellitus Patients and its Clinical Significance. CLIN EXP OBSTET GYN 2022; 49. [DOI: 10.31083/j.ceog4910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Abstract
Background: Placenta-specific 1 (PLAC1) is specifically expressed in the placenta and plays a fundamental role in placenta function. Aberrant expression of PLAC1 has been reported in pregnancy-related disorders; however, its expression in gestational diabetes mellitus (GDM) has not been clearly elucidated. This study aimed to investigate the expression of PLAC1 in the placenta of GDM patients, and its relationship with clinical characteristics. Methods: This was a case-control study. Placental tissues were collected from 37 GDM patients (GDM group) and 38 pregnant women with normal glucose tolerance (control group), matched with respect to maternal age and gestational weeks. We examined the expression of PLAC1 in the placenta of both groups and determined its association with clinical indicators. The localization of PLAC1 was confirmed by immunohistochemistry analyses. Results: PLAC1 expression was significantly lower in the placenta of GDM patients. For the control group, PLAC1 was positively correlated with pre-pregnancy body mass index (BMI), BMI at delivery, the fasting insulin, triglyceride levels, and homeostasis model assessment during delivery. In the case of GDM patients, there was no correlation between PLAC1 and these indices. Additionally, PLAC1 protein was mainly expressed in the cytoplasm of syncytiotrophoblasts and chorionic stromal cells. Conclusions: The expression of PLAC1 was reduced in the GDM placenta, which provides insight into the pathophysiological changes occurring in the placenta of these patients.
Collapse
Affiliation(s)
- Mengkai Du
- Departments of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Yanmin Chen
- Departments of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Minyue Dong
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Zhaoxia Liang
- Departments of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| | - Danqing Chen
- Departments of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Chandrasekar V, Singh AV, Maharjan RS, Dakua SP, Balakrishnan S, Dash S, Laux P, Luch A, Singh S, Pradhan M. Perspectives on the Technological Aspects and Biomedical Applications of Virus‐Like Particles/Nanoparticles in Reproductive Biology: Insights on the Medicinal and Toxicological Outlook. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Ajay Vikram Singh
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Romi Singh Maharjan
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | | | | | - Sagnika Dash
- Obstetrics and Gynecology Apollo Clinic Qatar 23656 Doha Qatar
| | - Peter Laux
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR) Department of Chemical and Product Safety Max-Dohrn-Straße 8-10 10589 Berlin Germany
| | - Suyash Singh
- Department of Neurosurgery All India Institute of Medical Sciences Raebareli UP 226001 India
| | - Mandakini Pradhan
- Department of Fetal Medicine Sanjay Gandhi Post Graduate Institute of Medical Sciences Reabareli Road Lucknow UP 226014 India
| |
Collapse
|
20
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
21
|
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022; 10:845779. [PMID: 35402416 PMCID: PMC8987505 DOI: 10.3389/fbioe.2022.845779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a significant role during pregnancy. Placental dysfunction contributes to major obstetric complications, such as fetal growth restriction and preeclampsia. Currently, there is no effective treatment for placental dysfunction in the perinatal period, and prophylaxis is often delivered too late, at which point the disease manifestation cannot be prevented. However, with recent integration of nanoscience and medicine to perform elaborate experiments on the human placenta, it is expected that novel and efficient nanotherapies will be developed to resolve the challenge of managing placental dysfunction. The advent of nanomedicine has enabled the safe and targeted delivery of drugs using nanoparticles. These smart nanoparticles can load the necessary therapeutic substances that specifically target the placenta, such as drugs, targeting molecules, and ligands. Packaging multifunctional molecules into specific delivery systems with high targeting ability, diagnosis, and treatment has emerged as a novel theragnostic (both therapeutic and diagnostic) approach. In this review, the authors discuss recent advances in nanotechnology for placental dysfunction treatment. In particular, the authors highlight potential candidate nanoparticle-loaded molecules that target the placenta to improve utero-placental blood flow, and reduce reactive oxygen species and oxidative stress. The authors intend to provide basic insight and understanding of placental dysfunction, potential delivery targets, and recent research on placenta-targeted nanoparticle delivery systems for the potential treatment of placental dysfunction. The authors hope that this review will sensitize the reader for continued exploration of novel nanomedicines.
Collapse
Affiliation(s)
- Huabo Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| |
Collapse
|
22
|
Ueda M, Tsuchiya KJ, Yaguchi C, Furuta-Isomura N, Horikoshi Y, Matsumoto M, Suzuki M, Oda T, Kawai K, Itoh T, Matsuya M, Narumi M, Kohmura-Kobayashi Y, Tamura N, Uchida T, Itoh H. Placental pathology predicts infantile neurodevelopment. Sci Rep 2022; 12:2578. [PMID: 35173199 PMCID: PMC8850429 DOI: 10.1038/s41598-022-06300-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of present study was to investigate the association of placental pathological findings with infantile neurodevelopment during the early 40 months of life. 258 singleton infants were enrolled in the Hamamatsu Birth Cohort for Mothers and Children (HBC Study) whose placentas were saved in our pathological division. To assess the infantile neurodevelopment, we used Mullen Scales of Early Learning (gross motor, visual reception, fine motor, receptive language, expressive language) at 10, 14, 18, 24, 32, and 40 months. For obtaining placental blocks, we carried out random sampling and assessed eleven pathological findings using mixed modeling identified ‘Accelerated villous maturation’, ‘Maternal vascular malperfusion’, and ‘Delayed villous maturation’ as significant predictors of the relatively lower MSEL composite scores in the neurodevelopmental milestones by Mullen Scales of Early Learning. On the other hand, ‘Avascular villi’, ‘Thrombosis or Intramural fibrin deposition’, ‘Fetal vascular malperfusion’, and ‘Fetal inflammatory response’ were significant predictors of the relatively higher MSEL composite scores in the neurodevelopmental milestones by Mullen Scales of Early Learning. In conclusion, the present study is the first to report that some placental pathological findings are bidirectionally associated with the progression of infantile neurodevelopment during 10–40 months of age.
Collapse
Affiliation(s)
- Megumi Ueda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chizuko Yaguchi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Naomi Furuta-Isomura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshimasa Horikoshi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masako Matsumoto
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Misako Suzuki
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Oda
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenta Kawai
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiya Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Madoka Matsuya
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumi Narumi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukiko Kohmura-Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoaki Tamura
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshiyuki Uchida
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Itoh
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
23
|
Wu W, Tan QY, Xi FF, Ruan Y, Wang J, Luo Q, Dou XB, Hu TX. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp Ther Med 2022; 23:94. [PMID: 34976136 PMCID: PMC8674967 DOI: 10.3892/etm.2021.11017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
The placenta may play a key role in the activation of inflammation and initiation of insulin resistance (IR) during gestational diabetes mellitus (GDM) pathogenesis. Interleukin (IL)-1β and IL-18, regulated by NLR family pyrin domain containing-3 (NLRP3) inflammasome, are important inflammatory cytokines in the initiation of maternal IR during GDM. However, the mechanism responsible for the regulatory of NLRP3 inflammasome in placenta remains unknown. Hydrogen sulfide (H2S) exerts anti-inflammatory function partially via suppressing the activation of the NLPR3 inflammasome. The present study aimed to investigate the role of NLRP3 inflammasome, H2S synthetase cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS) in placenta in the pathogenesis of GDM. Clinical placenta samples were collected from pregnant women with GDM (n=16) and healthy pregnant women at term (n=16). Western blot analysis was performed to detect the protein expression levels of NLRP3, cleaved caspase-1, CBS and CSE in the placenta samples. Pearson's correlation analysis was performed to assess the correlation between NLRP3 inflammasome and H2S synthetase. Human placental cells were cultured and treated with different concentrations of NaHS (0, 10, 25 and 50 nmol/l) or L-cysteine (0, 0.25, 0.50 and 1.00 mmol/l). In addition, western blot analysis was performed to detect the protein expression levels of NLRP3 and cleaved caspase-1, while ELISA was performed to measure the production of IL-1β and IL-18 in the culture media. The results demonstrated that the expression levels of NLRP3 and cleaved caspase-1 increased, while the expression levels of CBS and CSE decreased in the placenta samples. In addition, the expression levels of NLRP3 and cleaved caspase-1 were inversely correlated with the expression levels of CBS and CSE. Notably, NaHS and L-cysteine significantly suppressed the expression levels of NLRP3 and cleaved caspase-1, and the production of IL-1 and IL-18 in human placental cells. Taken together, the results of the present study suggest that H2S synthetase deficiency in placenta may contribute to excessive activation of NLRP3 inflammasome in GDM.
Collapse
Affiliation(s)
- Wei Wu
- Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qing-Ying Tan
- Department of Endocrinology, Chinese PLA 903rd Hospital (Former Chinese PLA 117th Hospital), Hangzhou, Zhejiang 310013, P.R. China
| | - Fang-Fang Xi
- Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yun Ruan
- Department of Endocrinology, Chinese PLA 903rd Hospital (Former Chinese PLA 117th Hospital), Hangzhou, Zhejiang 310013, P.R. China
| | - Jing Wang
- Department of Endocrinology, Chinese PLA 903rd Hospital (Former Chinese PLA 117th Hospital), Hangzhou, Zhejiang 310013, P.R. China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiao-Bing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Tian-Xiao Hu
- Department of Endocrinology, Chinese PLA 903rd Hospital (Former Chinese PLA 117th Hospital), Hangzhou, Zhejiang 310013, P.R. China.,School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
24
|
Prenatal administration of IL-1Ra attenuate the neurodevelopmental impacts following non-pathogenic inflammation during pregnancy. Sci Rep 2021; 11:23404. [PMID: 34862457 PMCID: PMC8642433 DOI: 10.1038/s41598-021-02927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Prenatal inflammation negatively affects placental function, subsequently altering fetal development. Pathogen-associated molecular patterns (PAMPs) are used to mimics infections in preclinical models but rarely detected during pregnancy. Our group previously developed an animal model of prenatal exposure to uric acid (endogenous mediator), leading to growth restriction alongside IL-1-driven placental inflammation (Brien et al. in J Immunol 198(1):443–451, 2017). Unlike PAMPs, the postnatal impact of prenatal non-pathogenic inflammation is still poorly understood. Therefore, we investigated the effects of prenatal uric acid exposure on postnatal neurodevelopment and the therapeutic potential of the IL-1 receptor antagonist; IL-1Ra. Uric acid induced growth restriction and placental inflammation, which IL-1Ra protected against. Postnatal evaluation of both structural and functional aspects of the brain revealed developmental changes. Both astrogliosis and microgliosis were observed in the hippocampus and white matter at postnatal day (PND)7 with IL-1Ra being protective. Decreased myelin density was observed at PND21, and reduced amount of neuronal precursor cells was observed in the Dentate Gyrus at PND35. Functionally, motor impairments were observed as evaluated with the increased time to fully turn upward (180 degrees) on the inclined plane and the pups were weaker on the grip strength test. Prenatal exposure to sterile inflammation, mimicking most clinical situation, induced growth restriction with negative impact on neurodevelopment. Targeted anti-inflammatory intervention prenatally could offer a strategy to protect brain development during pregnancy.
Collapse
|
25
|
Camm EJ, Cross CM, Kane AD, Tarry-Adkins JL, Ozanne SE, Giussani DA. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J 2021; 35:e21477. [PMID: 33891326 DOI: 10.1096/fj.202002557rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
26
|
Spiroski AM, Niu Y, Nicholas LM, Austin-Williams S, Camm EJ, Sutherland MR, Ashmore TJ, Skeffington KL, Logan A, Ozanne SE, Murphy MP, Giussani DA. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J 2021; 35:e21446. [PMID: 33788974 PMCID: PMC7612077 DOI: 10.1096/fj.202002705r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
Mitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O2 ) pregnancy ± MitoQ (500 μM day-1 ) in the maternal drinking water. At 4 months of age, one cohort of male offspring was chronically instrumented with vascular catheters and flow probes to test in vivo cardiovascular function. In a second cohort, the heart was isolated and mounted onto a Langendorff preparation. To establish mechanisms linking gestational hypoxia with cardiovascular dysfunction and protection by MitoQ, we quantified the expression of antioxidant system, β-adrenergic signaling, and calcium handling genes in the fetus and adult, in frozen tissues from a third cohort. Maternal MitoQ in hypoxic pregnancy protected offspring against increased α1 -adrenergic reactivity of the cardiovascular system, enhanced reactive hyperemia in peripheral vascular beds, and sympathetic dominance, hypercontractility and diastolic dysfunction in the heart. Inhibition of Nfe2l2-mediated oxidative stress in the fetal heart and preservation of calcium regulatory responses in the hearts of fetal and adult offspring link molecular mechanisms to the protective actions of MitoQ treatment of hypoxic pregnancy. Therefore, these data show the efficacy of MitoQ in buffering mitochondrial stress through NADPH-induced oxidative damage and the prevention of programmed cardiovascular disease in adult offspring of hypoxic pregnancy.
Collapse
Affiliation(s)
- Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK
| | - Lisa M Nicholas
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Shani Austin-Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Megan R Sutherland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Angela Logan
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK.,Strategic Research Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
27
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
28
|
Pritchard N, Kaitu’u-Lino T, Harris L, Tong S, Hannan N. Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 2021; 27:280-304. [PMID: 33279994 PMCID: PMC9034208 DOI: 10.1093/humupd/dmaa049] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nanotechnology involves the engineering of structures on a molecular level. Nanomedicine and nano-delivery systems have been designed to deliver therapeutic agents to a target site or organ in a controlled manner, maximizing efficacy while minimizing off-target effects of the therapeutic agent administered. In both reproductive medicine and obstetrics, developing innovative therapeutics is often tempered by fears of damage to the gamete, embryo or developing foetus or of negatively impacting a woman's reproductive potential. Thus, nanomedicine delivery systems may provide alternative targeted intervention strategies, treating the source of the disease and minimizing long-term consequences for the mother and/or her foetus. OBJECTIVE AND RATIONALE This review summarizes the current state of nanomedicine technology in reproductive medicine and obstetrics, including safety, potential applications, future directions and the hurdles for translation. SEARCH METHODS A comprehensive electronic literature search of PubMed and Web of Science databases was performed to identify studies published in English up until February 2020. Relevant keywords were used to obtain information regarding use of nanoparticle technology in fertility and gene therapy, early pregnancy complications (ectopic pregnancy and gestational trophoblastic disease) and obstetric complications (preeclampsia, foetal growth restriction, preterm birth and gestational diabetes) and for selective treatment of the mother or foetus. Safety of specific nanoparticles to the gamete, embryo and foetus was also investigated. OUTCOMES Pre-clinical research in the development of nanoparticle therapeutic delivery is being undertaken in many fields of reproductive medicine. Non-hormonal-targeted nanoparticle therapy for fibroids and endometriosis may provide fertility-sparing medical management. Delivery of interventions via nanotechnology provides opportunities for gene manipulation and delivery in mammalian gametes. Targeting cytotoxic treatments to early pregnancy tissue provides an alternative approach to manage ectopic pregnancies and gestational trophoblastic disease. In pregnancy, nanotherapeutic delivery offers options to stably deliver silencing RNA and microRNA inhibitors to the placenta to regulate gene expression, opening doors to novel genetic treatments for preeclampsia and foetal growth restriction. Restricting delivery of teratogenic drugs to the maternal compartment (such as warfarin) may reduce risks to the foetus. Alternatively, targeted delivery of drugs to the foetus (such as those to treat foetal arrythmias) may minimize side effects for the mother. WIDER IMPLICATIONS We expect that further development of targeted therapies using nanoparticles in a reproductive setting has promise to eventually allow safe and directed treatments for conditions impacting the health and reproductive capacity of women and for the management of pregnancy and serious pregnancy complications.
Collapse
Affiliation(s)
- Natasha Pritchard
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu’uhevaha Kaitu’u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Department of Obstetrics and Gynaecology, Diagnostics Discovery and Reverse Translation, University of Melbourne, Heidelberg, Victoria, Australia
| | - Lynda Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester, UK
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
29
|
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021; 43:246-264. [PMID: 33446335 PMCID: PMC11917529 DOI: 10.1016/j.clinthera.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, our understanding of the disrupted mechanisms that contribute to major obstetrical diseases, including preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, has increased exponentially. Common to many of these obstetric diseases is placental maldevelopment and dysfunction; the placenta is a significant component of the maternal-fetal interface involved in coordinating, facilitating, and regulating maternal and fetal nutrient, oxygen and waste exchange, and hormone and cytokine production. Despite the advances in our understanding of placental development and function, there are currently no treatments for placental maldevelopment and dysfunction. However, given the transient nature and accessibility from the maternal circulation, the placenta offers a unique opportunity to develop targeted therapeutics for routine obstetric practices. Furthermore, given the similar developmental paradigms between the placenta and cancer, there is an opportunity to appropriate current knowledge from advances in targeted therapeutics in cancer treatments. In this review, we highlight the similarities between early placental development and cancer and introduce a number of targeted therapies currently being explored in cancer and pregnancy. We also propose a number of new effectors currently being targeted in cancer research that have the potential to be targeted in the development of treatments for pregnancy complications. Finally, we describe a method for targeting the placenta using nonviral polymers that are capable of delivering plasmids, small interfering RNA, and other effector nucleic acids, which could ultimately improve fetal and maternal outcomes from complicated pregnancies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Hula N, Spaans F, Vu J, Quon A, Kirschenman R, Cooke CLM, Phillips TJ, Case CP, Davidge ST. Placental treatment improves cardiac tolerance to ischemia/reperfusion insult in adult male and female offspring exposed to prenatal hypoxia. Pharmacol Res 2021; 165:105461. [PMID: 33513355 DOI: 10.1016/j.phrs.2021.105461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult. To improve offspring cardiac outcomes, we have assessed the use of a placenta-targeted intervention during hypoxic pregnancies, by encapsulating the mitochondrial antioxidant MitoQ into nanoparticles (nMitoQ). We hypothesized that maternal nMitoQ treatment during hypoxic pregnancies improves cardiac tolerance to I/R insult in adult male and female offspring. Pregnant Sprague-Dawley rats were exposed to normoxia (21 % O2) or hypoxia (11 % O2) from gestational day 15-20, after injection with 100 μL saline or nMitoQ (125 μM) on GD15 (n=6-8/group). Male and female offspring were aged to 4 months. Both male and female offspring from hypoxic pregnancies showed reduced cardiac tolerance to I/R (assessed ex vivo using the isolated working heart technique) which was ameliorated by nMitoQ treatment. To identify potential molecular mechanisms for the changes in cardiac tolerance to I/R, cardiac levels/phosphorylation of proteins important for intracellular Ca2+ cycling were assessed with Western blotting. In prenatally hypoxic male offspring, improved cardiac recovery from I/R by nMitoQ was accompanied by increased cardiac phospholamban and phosphatase 2Ce levels, and a trend to decreased Ca2+/calmodulin-dependent protein kinase IIδ phosphorylation. In contrast, in female offspring, nMitoQ treatment in hypoxic pregnancies increased phospholamban and protein kinase Cε phosphorylation. Maternal nMitoQ treatment improves cardiac tolerance to I/R insult in adult offspring and thus has the potential to improve the later-life trajectory of cardiovascular health of adult offspring born from pregnancies complicated by prenatal hypoxia.
Collapse
Affiliation(s)
- Nataliia Hula
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Jennie Vu
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| | - Tom J Phillips
- Dementia Research Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS10 5NB, UK.
| | - Sandra T Davidge
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, T6G 2S2, Alberta, Canada.
| |
Collapse
|
31
|
Hosni A, El-Twab SA, Abdul-Hamid M, Prinsen E, AbdElgawad H, Abdel-Moneim A, Beemster GTS. Cinnamaldehyde mitigates placental vascular dysfunction of gestational diabetes and protects from the associated fetal hypoxia by modulating placental angiogenesis, metabolic activity and oxidative stress. Pharmacol Res 2021; 165:105426. [PMID: 33453370 DOI: 10.1016/j.phrs.2021.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
Gestational diabetes mellitus (GDM) is a major pregnancy-related disorder with an increasing prevalence worldwide. GDM is associated with altered placental vascular functions and has severe consequences for fetal growth. There is no commonly accepted medication for GDM due to safety considerations. Actions of the currently limited therapeutic options focus exclusively on lowering the blood glucose level without paying attention to the altered placental vascular reactivity and remodelling. We used the fat-sucrose diet/streptozotocin (FSD/STZ) rat model of GDM to explore the efficacy of cinnamaldehyde (Ci; 20 mg/kg/day), a promising antidiabetic agent for GDM, and glyburide/metformin-HCl (Gly/Met; 0.6 + 100 mg/kg/day), as a reference drug for treatment of GDM, on the placenta structure and function at term pregnancy after their oral intake one week before mating onward. Through genome-wide transcriptome, biochemical, metabolome, metal analysis and histopathology we obtained an integrated understanding of their effects. GDM resulted in maternal and fetal hyperglycemia, fetal hyperinsulinemia and placental dysfunction with subsequent fetal anemia, hepatic iron deficiency and high serum erythropoietin level, reflecting fetal hypoxia. Differentially-regulated genes were overrepresented for pathways of angiogenesis, metabolic transporters and oxidative stress. Despite Ci and Gly/Met effectively alleviated the maternal and fetal glycemia, only Ci offered substantial protection from GDM-associated placental vasculopathy and prevented the fetal hypoxia. This was explained by Ci's impact on the molecular regulation of placental angiogenesis, metabolic activity and redox signaling. In conclusion, Ci provides a dual impact for the treatment of GDM at both maternal and fetal levels through its antidiabetic effect and the direct placental vasoprotective action. Lack of Gly/Met effectiveness to restore it's impaired functionality demonstrates the vital role of the placenta in developing efficient medications for GDM.
Collapse
Affiliation(s)
- Ahmed Hosni
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt; Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Sanaa Abd El-Twab
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology and Cytology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Els Prinsen
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium; Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Physiology Research (IMPRES), Department of Biology, Faculty of Science, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
32
|
Ganguly E, Kirschenman R, Spaans F, Holody CD, Phillips TEJ, Case CP, Cooke CLM, Murphy MP, Lemieux H, Davidge ST. Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. FASEB J 2021; 35:e21338. [PMID: 33428278 DOI: 10.1096/fj.202002193r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.
Collapse
Affiliation(s)
- Esha Ganguly
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Claudia D Holody
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Paediatrics, University of Alberta, Edmonton, AB, Canada.,Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | | | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Hélène Lemieux
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Working towards precision medicine in developmental programming. Pediatr Res 2021; 89:1606-1607. [PMID: 33753895 PMCID: PMC8249231 DOI: 10.1038/s41390-021-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
|
34
|
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020; 100:75-80. [PMID: 32862059 PMCID: PMC7431318 DOI: 10.1016/j.placenta.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
During the period of pregnancy, several processes and physiological adaptations occur in the body and metabolism of pregnant woman. These physiological adaptations in pregnant woman end up leading to a suppression in immune system favoring obstetric complications to the mother, fetus and placental tissue. An effective pharmacological therapy for these complications is still a challenge, since some drugs during pregnancy can have deleterious and teratogenic effects. An emerging alternative to pharmacological therapy during pregnancy is drugs encapsulated in nanoparticles (NP), recent area called nano-obstetrics. NP have the advantage of drug targeting and reduction of side effects. Then, maternal, placental or fetal uptake can be expected, depending on the characteristics of NP. Inorganic NP, crossing placental barrier effectively, but have several nanotoxicological effects. While organic NP appear to have a better targeting capacity and have few toxicological effects, but the studies are still scarce. Thus, in this review, were examined questions related to use and impact of physicochemical aspects of inorganic and organic NP during pregnancy.
Collapse
Affiliation(s)
- Kelle Velasques Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|