1
|
Qin YJ, Zhang YC, Lin Y, Hong Y, Sun X, Xu F, Chen C. Autonomic nervous system imbalance in diabetic mouse choroids. Tissue Cell 2025; 94:102798. [PMID: 39970774 DOI: 10.1016/j.tice.2025.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE We investigated neurohomeostasis and its possible underlying mechanisms in the choroids of diabetic mice. METHODS Streptozotocin-induced diabetic mice were used in this study. Choroidal nerve fiber alterations were observed via transmission electron microscopy (TEM). The levels of epinephrine and acetylcholine in the choroid were determined via ultra-high-performance liquid chromatography-tandem mass spectrometry. Tyrosine hydroxylase (TH), choline acetyl transferase (ChAT), and neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) levels were evaluated by western blot or quantitative real-time polymerase chain reaction. In addition, immunofluorescence staining were used to analyze the changes in key enzymes (TH, dopamine beta-hydroxylase (DβH), and CGRP) in the superior cervical sympathetic ganglia (SCG) and trigeminal ganglia (TG). RESULTS TEM revealed a loose myelin sheath around nerve fibers, axon atrophy, and cytoplasmic vacuoles in Schwann cells in diabetic choroids. Lower epinephrine levels were observed in diabetic mice. Although no difference was found in acetylcholine level, the epinephrine-to-acetylcholine ratio was greatly decreased. Decreased TH and increased ChAT, nNOS, VIP, NPY, and CGRP were found in diabetic choroids. Fewer TH-positive and DβH-positive neuronal cells were found in the SCGs of diabetic mice. More CGRP-positive and fewer TH-positive neuronal cells were observed in the TG of diabetic mice. CONCLUSIONS Altered markers of the sympathetic, parasympathetic and sensory systems were present in diabetic mouse choroids. An imbalanced choroidal nervous system might explain the initiation of choroidal neovascularization in diabetic patients.
Collapse
Affiliation(s)
- Yuan-Jun Qin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Yong-Chao Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Research Institute of Plastic and Aesthetic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Yunru Lin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China; Zhuhai Aier Eye Hospital, Zhuhai, Guangdong Province, China.
| | - Yiyi Hong
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Zhang D, Sun H. Immunological factors in pediatric generalized and focal epilepsy: interplay with anti-seizure medications. BMC Pediatr 2025; 25:210. [PMID: 40097944 PMCID: PMC11912692 DOI: 10.1186/s12887-025-05540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Pediatric epilepsy presents challenges in treatment optimization, with a significant proportion of patients experiencing inadequate seizure control despite anti-seizure medications (ASMs) therapy. Recent research has indicated the involvement of neuroinflammation and immune-mediated mechanisms in epilepsy pathogenesis, suggesting a potential interplay between immunological factors and ASMs responsiveness. This study aimed to investigate the role of immunological factors in pediatric generalized, focal epilepsy and their interaction with ASMs mechanisms to understand their potential influence on treatment outcomes. METHODS A retrospective cohort study was conducted involving 136 pediatric epilepsy patients, categorized into Anti-seizure medications Insensitive Group (n = 67) and Anti-seizure medications Sensitive Group (n = 69). Immunoglobulin levels and immunological factors, including cytokines, were assessed before treatment. Seizure characteristics and ASMs levels were also analyzed. Associations between immunological factors, seizure characteristics, and ASMs sensitivity was evaluated. RESULTS The study revealed significant differences in immunological factors, including interleukin-6 (IL-6), IL-1β and IL-10 levels, between the insensitive and sensitive groups. Furthermore, seizure frequency, drug-resistant seizures, seizure severity, seizure-free period, and status epilepticus all demonstrated significant correlations with the sensitivity to ASMs, with negative correlations for seizure frequency, drug-resistant seizures, seizure severity, and positive correlations for seizure-free period and status epilepticus. CONCLUSION The study highlights the complex interplay between immune function, seizure characteristics, and ASMs mechanisms, underscoring the need for a comprehensive understanding of the immunological modulation of drug response in pediatric epilepsy. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Dongyan Zhang
- Department of Pediatrics II, Maternity & Child Care Center of Qinhuangdao, No. 452 Hongqi North Road, Haigang District, Qinhuangdao City, Hebei Province, 066000, P. R. China.
| | - Hongan Sun
- Department of Rehabilitation, Qinhuangdao Jianyi Hospital, Qinhuangdao, China
| |
Collapse
|
3
|
Aidil-Carvalho F, Caulino-Rocha A, Ribeiro JA, Cunha-Reis D. Mismatch novelty exploration training shifts VPAC 1 receptor-mediated modulation of hippocampal synaptic plasticity by endogenous VIP in male rats. J Neurosci Res 2024; 102:e25333. [PMID: 38656542 DOI: 10.1002/jnr.25333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.
Collapse
Affiliation(s)
- Fatima Aidil-Carvalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI-Instituto de Biossistemas e Ciências Integrativas, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- BioISI-Instituto de Biossistemas e Ciências Integrativas, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Nascimento C, Guerreiro-Pinto V, Pawlak S, Caulino-Rocha A, Amat-Garcia L, Cunha-Reis D. Impaired Response to Mismatch Novelty in the Li 2+-Pilocarpine Rat Model of TLE: Correlation with Hippocampal Monoaminergic Inputs. Biomedicines 2024; 12:631. [PMID: 38540244 PMCID: PMC10968540 DOI: 10.3390/biomedicines12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Novelty detection, crucial to episodic memory formation, is impaired in epileptic patients with mesial temporal lobe resection. Mismatch novelty detection, that activates the hippocampal CA1 area in humans and is vital for memory reformulation and reconsolidation, is also impaired in patients with hippocampal lesions. In this work, we investigated the response to mismatch novelty, as occurs with the new location of known objects in a familiar environment, in the Li2+-pilocarpine rat model of TLE and its correlation with hippocampal monoaminergic markers. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks at the time of behavioural testing showed impaired spatial learning in the radial arm maze, as described. Concurrently, SRS rats displayed impaired exploratory responses to mismatch novelty, yet novel object recognition was not significantly affected in SRS rats. While the levels of serotonin and dopamine transporters were mildly decreased in hippocampal membranes from SRS rats, the levels on the norepinephrine transporter, tyrosine hydroxylase and dopamine-β-hydroxylase were enhanced, hinting for an augmentation, rather than an impairment in noradrenergic function in SRS animals. Altogether, this reveals that mismatch novelty detection is particularly affected by hippocampal damage associated to the Li2+-pilocarpine model of epilepsy 4-8 weeks after the onset of SRSs and suggests that deficits in mismatch novelty detection may substantially contribute to cognitive impairment in MTLE. As such, behavioural tasks based on these aspects of mismatch novelty may prove useful in the development of cognitive therapy strategies aiming to rescue cognitive deficits observed in epilepsy.
Collapse
Affiliation(s)
- Carlos Nascimento
- Unidade de Fisiologia Clínica e Translacional, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vasco Guerreiro-Pinto
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Seweryn Pawlak
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Laia Amat-Garcia
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Cunha-Reis D, Vaz SH, Correia-de-Sá P. Editorial: Cellular and molecular targets in epileptogenesis focusing on disease prevention. Front Cell Neurosci 2023; 17:1251038. [PMID: 37502463 PMCID: PMC10369337 DOI: 10.3389/fncel.2023.1251038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- Diana Cunha-Reis
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Henriques Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| |
Collapse
|
7
|
Carvalho-Rosa JD, Rodrigues NC, Silva-Cruz A, Vaz SH, Cunha-Reis D. Epileptiform activity influences theta-burst induced LTP in the adult hippocampus: a role for synaptic lipid raft disruption in early metaplasticity? Front Cell Neurosci 2023; 17:1117697. [PMID: 37228704 PMCID: PMC10203237 DOI: 10.3389/fncel.2023.1117697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Non-epileptic seizures are identified as a common epileptogenic trigger. Early metaplasticity following seizures may contribute to epileptogenesis by abnormally altering synaptic strength and homeostatic plasticity. We now studied how in vitro epileptiform activity (EA) triggers early changes in CA1 long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in rat hippocampal slices and the involvement of lipid rafts in these early metaplasticity events. Two forms of EA were induced: (1) interictal-like EA evoked by Mg2+ withdrawal and K+ elevation to 6 mM in the superfusion medium or (2) ictal-like EA induced by bicuculline (10 μM). Both EA patterns induced and LTP-like effect on CA1 synaptic transmission prior to LTP induction. LTP induced 30 min post EA was impaired, an effect more pronounced after ictal-like EA. LTP recovered to control levels 60 min post interictal-like EA but was still impaired 60 min after ictal-like EA. The synaptic molecular events underlying this altered LTP were investigated 30 min post EA in synaptosomes isolated from these slices. EA enhanced AMPA GluA1 Ser831 phosphorylation but decreased Ser845 phosphorylation and the GluA1/GluA2 ratio. Flotillin-1 and caveolin-1 were markedly decreased concomitantly with a marked increase in gephyrin levels and a less prominent increase in PSD-95. Altogether, EA differentially influences hippocampal CA1 LTP thorough regulation of GluA1/GluA2 levels and AMPA GluA1 phosphorylation suggesting that altered LTP post-seizures is a relevant target for antiepileptogenic therapies. In addition, this metaplasticity is also associated with marked alterations in classic and synaptic lipid raft markers, suggesting these may also constitute promising targets in epileptogenesis prevention.
Collapse
Affiliation(s)
- José D. Carvalho-Rosa
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nádia C. Rodrigues
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Armando Silva-Cruz
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H. Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
8
|
Voelkl K, Schulz-Trieglaff EK, Klein R, Dudanova I. Distinct histological alterations of cortical interneuron types in mouse models of Huntington’s disease. Front Neurosci 2022; 16:1022251. [PMID: 36225731 PMCID: PMC9549412 DOI: 10.3389/fnins.2022.1022251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Huntington’s disease (HD) is a debilitating hereditary motor disorder caused by an expansion of the CAG triplet repeat in the Huntingtin gene. HD causes neurodegeneration particularly in the basal ganglia and neocortex. In the cortex, glutamatergic pyramidal neurons are known to be severely affected by the disease, but the involvement of GABAergic interneurons remains unclear. Here, we use a combination of immunostaining and genetic tracing to investigate histological changes in three major cortical interneuron types — parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) interneurons — in the R6/2 and zQ175DN mouse models of HD. In R6/2 mice, we find a selective reduction in SST and VIP, but not PV-positive cells. However, genetic labeling reveals unchanged cell numbers for all the interneuron types, pointing to molecular marker loss in the absence of cell death. We also observe a reduction in cell body size for all three interneuron populations. Furthermore, we demonstrate progressive accumulation of mutant Huntingtin (mHTT) inclusion bodies in interneurons, which occurs faster in SST and VIP compared to PV cells. In contrast to the R6/2 model, heterozygous zQ175DN knock-in HD mice do not show any significant histological changes in cortical cell types at the age of 12 months, apart from the presence of mHTT inclusions, which are abundant in pyramidal neurons and rare in interneurons. Taken together, our findings point to differential molecular changes in cortical interneuron types of HD mice.
Collapse
Affiliation(s)
- Kerstin Voelkl
- Department of Molecules–Signaling–Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | | - Rüdiger Klein
- Department of Molecules–Signaling–Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Irina Dudanova
- Department of Molecules–Signaling–Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- *Correspondence: Irina Dudanova,
| |
Collapse
|
9
|
Serpa A, Bento M, Caulino-Rocha A, Pawlak S, Cunha-Reis D. Opposing reduced VPAC 1 and enhanced VPAC 2 VIP receptors in the hippocampus of the Li 2+-pilocarpine rat model of temporal lobe epilepsy. Neurochem Int 2022; 158:105383. [PMID: 35787395 DOI: 10.1016/j.neuint.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
VIP binding sites are upregulated in mesial temporal lobe epilepsy (MTLE) patients, also suffering from severe cognitive deficits. Although altered VIP and VIP receptor levels were described in rodent models of epilepsy, the VIP receptor subtype(s) were never identified. We now investigated how VPAC1 and VPAC2 receptor levels change in the Li2+-pilocarpine rat model of MTLE. Cognitive decline and altered synaptic plasticity as estimated from phosphorylation of AMPA GluA1 subunit on Ser831 and Ser845 and AMPA GluA1/GluA2 ratio was also probed. Animals showing spontaneous recurrent seizures (SRSs) for at least 4 weeks showed impaired learning in the radial arm maze (RAM) and presented decreased VPAC1 and increased VPAC2 receptor levels. In addition, SRSs rats showed increased AMPA GluA1 phosphorylation in Ser831 and Ser845, marked decrease in GluA1 levels and a milder decrease in GluA2 levels. Consequently, the GluA1/GluA2 ratio was also decreased in SRSs rats. Altered VIP receptor levels may differentially prevent or contribute to MTLE pathology, since VPAC1 receptors promote the endogenous control of LTP, mediate endogenous VIP neuroprotection against altered synaptic plasticity following epileptiform activity, and mediate anti-inflammatory actions in microglia, while VPAC2 receptors mediate VIP endogenous neuroprotection against neonatal excitotoxicity and prevent reactive astrogliosis. This discovery imposes a different mindset for considering VIP receptors as therapeutic targets in MTLE, allowing a differential targeting of the cellular events contributing to epileptogenesis.
Collapse
Affiliation(s)
- André Serpa
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; BioISI - Instituto de Biossistemas e Ciências Integratives, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marta Bento
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; BioISI - Instituto de Biossistemas e Ciências Integratives, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Caulino-Rocha
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; BioISI - Instituto de Biossistemas e Ciências Integratives, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Seweryn Pawlak
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; BioISI - Instituto de Biossistemas e Ciências Integratives, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Diana Cunha-Reis
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; BioISI - Instituto de Biossistemas e Ciências Integratives, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
10
|
Caulino-Rocha A, Rodrigues NC, Ribeiro JA, Cunha-Reis D. Endogenous VIP VPAC 1 Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. BIOLOGY 2022; 11:biology11050627. [PMID: 35625355 PMCID: PMC9138116 DOI: 10.3390/biology11050627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Regulation of synaptic plasticity through control of disinhibition is an important process in the prevention of excessive plasticity in both physiological and pathological conditions. Interneuron-selective interneurons, such as the ones expressing VIP in the hippocampus, may play a crucial role in this process. In this paper we showed that endogenous activation of VPAC1—not VPAC2 receptors—exerts an inhibitory control of long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in the hippocampus, through a mechanism dependent on GABAergic transmission. This suggests that VPAC1-mediated modulation of synaptic transmission at GABAergic synapses to interneurons will ultimately influence NMDA-dependent LTP expression by modulating inhibitory control of pyramidal cell dendrites and postsynaptic depolarization during LTP induction. Accordingly, the transduction pathways mostly involved in this effect were the ones involved in TBS-induced LTP expression like NMDA receptor activation and CaMKII activity. In addition, the actions of endogenous VIP through VPAC1 receptors may indirectly influence the control of dendritic excitability by Kv4.2 channels. Abstract Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.
Collapse
Affiliation(s)
- Ana Caulino-Rocha
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nádia Carolina Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
| | - Joaquim Alexandre Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Cunha-Reis
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Correspondence:
| |
Collapse
|
11
|
VIP alleviates sepsis-induced cognitive dysfunction as the TLR-4/NF-κB signaling pathway is inhibited in the hippocampus of rats. J Mol Histol 2022; 53:369-377. [PMID: 35239068 DOI: 10.1007/s10735-022-10068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/17/2023]
Abstract
Cognitive dysfunction caused by sepsis-associated encephalopathy (SAE) is still poorly understood. It is reported that vasoactive intestinal peptide (VIP) exerts its anti-inflammatory effects in multiple diseases, while its biological function in SAE remains unclear. We aimed to figure out whether VIP has influence on sepsis-induced neuroinflammation and cognitive dysfunction. To induce sepsis, rats were subjected to cecal ligation and puncture (CLP) operation. Morris water maze test and fear conditioning test were conducted to reveal cognitive dysfunctions. TUNEL assay was performed to evaluate apoptosis. We found out that the expression of VIP was downregulated in the hippocampus of septic rats. VIP was verified to attenuate sepsis-induced memory impairment following CLP. Additionally, we examined apoptosis and inflammation in rats' hippocampus. It is worth noting that VIP inhibited the apoptosis in the hippocampus and reduced the productions of proinflammatory cytokines TNF-α, IL-6 and IL-1β. Furthermore, our data confirmed that VIP was involved in regulating the TLR-4/NF-κB signaling. In conclusion, VIP inhibited neuroinflammation and cognitive impairment in hippocampus of septic rats through the TLR-4/NF-κB signaling pathway.
Collapse
|
12
|
Dudok B, Klein PM, Soltesz I. Toward Understanding the Diverse Roles of Perisomatic Interneurons in Epilepsy. Epilepsy Curr 2021; 22:54-60. [PMID: 35233202 PMCID: PMC8832350 DOI: 10.1177/15357597211053687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic
γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular
domains of postsynaptic excitatory cells that are critical for spike generation. With a
revolution in transcriptomics-based cell taxonomy driving the development of novel
transgenic mouse lines, selectively monitoring and modulating previously elusive
interneuron types is becoming increasingly feasible. Emerging evidence suggests that the
three types of hippocampal perisomatic interneurons, axo-axonic cells, along with
parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity
patterns in vivo, suggesting distinctive roles in regulating epileptic networks.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Taleb A, Zhou YP, Meng LT, Zhu MY, Zhang Q, Naveed M, Li LD, Wang P, Zhou QG, Meng F, Han F. New application of an old drug proparacaine in treating epilepsy via liposomal hydrogel formulation. Pharmacol Res 2021; 169:105636. [PMID: 33932606 DOI: 10.1016/j.phrs.2021.105636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Proparacaine (PPC) is a previously discovered topical anesthetic for ophthalmic optometry and surgery by blocking the central Nav1.3. In this study, we found that proparacaine hydrochloride (PPC-HCl) exerted an acute robust antiepileptic effect in pilocarpine-induced epilepsy mice. More importantly, chronic treatment with PPC-HCl totally terminated spontaneous recurrent seizure occurrence without significant toxicity. Chronic treatment with PPC-HCl did not cause obvious cytotoxicity, neuropsychiatric adverse effects, hepatotoxicity, cardiotoxicity, and even genotoxicity that evaluated by whole genome-scale transcriptomic analyses. Only when in a high dose (50 mg/kg), the QRS interval measured by electrocardiography was slightly prolonged, which was similar to the impact of levetiracetam. Nevertheless, to overcome this potential issue, we adopt a liposome encapsulation strategy that could alleviate cardiotoxicity and prepared a type of hydrogel containing PPC-HCl for sustained release. Implantation of thermosensitive chitosan-based hydrogel containing liposomal PPC-HCl into the subcutaneous tissue exerted immediate and long-lasting remission from spontaneous recurrent seizure in epileptic mice without affecting QRS interval. Therefore, this new liposomal hydrogel formulation of proparacaine could be developed as a transdermal patch for treating epilepsy, avoiding the severe toxicity after chronic treatment with current antiepileptic drugs in clinic.
Collapse
Affiliation(s)
- Abdoh Taleb
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ling-Tong Meng
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qiao Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Muhammad Naveed
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Qi-Gang Zhou
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China.
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China.
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|