1
|
Geneidy AK, Abdelnaby MA, Habib DA, Elbedaiwy HM, Shoueir KR. Green synthesis of a lactoferrin-infused silver nanoparticle gel for enhanced wound healing. Sci Rep 2025; 15:15243. [PMID: 40307339 PMCID: PMC12043868 DOI: 10.1038/s41598-025-94450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
The study analyzed the benefits of nano-silver (AgNPs) in reducing side effects and enhancing efficacy, highlighting the advantages compared to silver ions. The study examined the production of AgNPs-lactoferrin complexes (AgNPs-LTF) using bovine lactoferrin (LTF) at 1, 2, and 4 mM concentrations. The objective was to create an AgNPs-LTF gel with Carbopol as the base and assess its effectiveness in enhancing wound healing in rats. UV-Vis, PL, FTIR, and XRD analyses confirmed the synthesis of AgNPs. Microscopic examinations (TEM and SEM) showed mainly spherical AgNPs in the AgNPs-LTF samples, with diameters between 11 and 27 nm. The AgNPs-LTF gel with biologically processed AgNPs demonstrated effective infection control and enhanced wound healing outcomes. In Sprague-Dawley rats, the 4 mM AgNPs-LTF gel demonstrated significant wound closure, achieving complete closure by day 10, exceeding the healing rates of both the LTF and control groups. The AgNPs-LTF complex demonstrated high robustness and exceeded the performance of native LTF, exhibiting similar toxicity levels to AgNPs. The study shows the effectiveness of AgNPs-LTF gel in wound treatment, indicating its potential as a viable treatment option.
Collapse
Affiliation(s)
- Ahmed K Geneidy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maii A Abdelnaby
- Department of Pharmacy Technology, Faculty of Technological Health Sciences, Borg Al Arab Technological University, Alexandria, Egypt
- Ministry of Health and Population, Health Affairs Directorate, Alexandria, Egypt
| | - Doaa A Habib
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Alsalam University, Kafr El Zayat, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| |
Collapse
|
2
|
Ding H, Qin J, Li Y, Dai L, Xu F, Liu Z, Shi X, Guan W, Sang J. Lactoferrin alleviates oxidative stress and endoplasmic reticulum stress induced by autoimmune thyroiditis by modulating the mTOR pathway in the thyroid. J Endocrinol Invest 2025; 48:861-876. [PMID: 39576556 DOI: 10.1007/s40618-024-02505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/05/2025]
Abstract
Autoimmune thyroiditis (AITD) is a prevalent autoimmune disorder characterized by the immune system's attack on thyroid tissue, potentially leading to thyroid dysfunction, with a current lack of effective treatment modalities. Lactoferrin, a crucial functional dietary component obtainable from food sources, primarily exists in mammalian milk. We aim to investigate whether dietary supplementation with lactoferrin can protect the thyroid in Experimental Autoimmune Thyroiditis (EAT) rats. Our study reveals significantly elevated levels of oxidative stress (OS) and endoplasmic reticulum stress (ERS) in the AITD. Lactoferrin markedly reduces OS and infiltration of inflammatory cells in the thyroid tissue of EAT rats. Furthermore, lactoferrin inhibits ERS levels in the thyroid of EAT rats and alleviates cellular apoptosis. In vivo and in vitro experiments elucidate that its protective effect is primarily achieved through the inhibition of mTOR signaling pathway activation. In summary, lactoferrin, a nutrient readily obtainable from food sources, appears to be effective in mitigating thyroid damage in AITD.
Collapse
Affiliation(s)
- Haoran Ding
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Jiabo Qin
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yixuan Li
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Linghui Dai
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Fazhan Xu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Zhijian Liu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Xianbiao Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jianfeng Sang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
- Division of Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Kurenkova AD, Serejnikova NB, Sheleg SA, Fayzullin AL, Denisov NE, Igrunkova AV, Sadchikova ER, Antoshin AA, Timashev PS. Lactoferrin Stimulates Chondrogenesis and Promotes Healing of the Auricular Elastic Cartilage. Int J Mol Sci 2025; 26:1956. [PMID: 40076584 PMCID: PMC11900435 DOI: 10.3390/ijms26051956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Ear reconstruction surgeries for congenital deformities and trauma are common, highlighting the need for improved cartilage regeneration. Lactoferrin (LF), a natural and cost-effective protein, is promising due to its anti-inflammatory, antimicrobial, and prochondrogenic properties. This study investigates the effects of LF on the viability, proliferation, and chondrogenesis of rabbit auricular chondrocytes. For in vitro studies, auricular chondrocytes were cultured for three passages, after which 3D pellets were formed. LF significantly increased chondrocyte metabolic activity by 1.5 times at doses of 10 and 500 μg/mL. At passage 3, LF at concentrations of 10 and 100 μg/mL increased cell proliferation rates by 2- and 1.5-fold, respectively. Immunohistochemical staining of the pellets demonstrated that LF at 10 μg/mL increased the amount of sex-determining region Y-Box Transcription Factor 9 (Sox9)+ cells by 30%, while at 100 μg/mL, it doubled the type II collagen deposits. For in vivo studies, a rabbit ear defect model was utilized. On post-operative day 60, the LF-treated group exhibited more mature cartilage regeneration, with a higher density of elastic fibers. By day 90 post-surgery, LF application led to the restoration of normal elastic cartilage throughout the defect. These findings suggest that LF promotes auricular chondrocytes chondrogenesis and could be beneficial for tissue engineering of the elastic cartilage.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Sofia A. Sheleg
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Nikolai E. Denisov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Alexandra V. Igrunkova
- Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), 11, Building 10, Mokhovaya St., 125009 Moscow, Russia
| | - Elena R. Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia;
| | - Artem A. Antoshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
4
|
Shafqat A, Li M, Zakirullah, Liu F, Tong Y, Fan J, Fan H. A comprehensive review of research advances in the study of lactoferrin to treat viral infections. Life Sci 2025; 361:123340. [PMID: 39730037 DOI: 10.1016/j.lfs.2024.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Lactoferrin (Lf) is a naturally occurring glycoprotein known for its antiviral and antibacterial properties and is present in various physiological fluids. Numerous studies have demonstrated its antiviral effectiveness against multiple viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (IFV), herpes simplex virus (HSV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Lf, a vital component of the mucosal defense system, plays a crucial role in inhibiting viral infection by binding to both host cells and viral particles, such as the Hepatitis C virus (HCV). This interaction enables Lf to keep viral particles away from their target cells, emphasizing its significance as a fundamental element of mucosal defense against viral infections. Additionally, Lf has the ability to modulate cytokine expression and enhance cellular immune responses. In the innate immune system, Lf serves as a unique iron transporter and helps suppress various pathogens like bacteria, fungi, and viruses. This article summarises the potential antiviral properties of Lf against various viruses, along with its other mentioned functions. The advancement of Lf-based therapies supports the homology of food and medicine, providing a promising avenue to address viral infections and other public health challenges.
Collapse
Affiliation(s)
- Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation, Guangzhou, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Li J, Fan R, Zhang Z, Zhao L, Han Y, Zhu Y, Duan JA, Su S. Role of gut microbiota in rheumatoid arthritis: Potential cellular mechanisms regulated by prebiotic, probiotic, and pharmacological interventions. Microbiol Res 2025; 290:127973. [PMID: 39541714 DOI: 10.1016/j.micres.2024.127973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects joints and multiple organs and systems, which is long-lasting and challenging to cure and significantly impacting patients' quality of life. Alterations in the composition of intestinal flora in both preclinical and confirmed RA patients indicate that intestinal bacteria play a vital role in RA immune function. However, the mechanism by which the intestinal flora is regulated to improve the condition of RA is not fully understood. This paper reviews the methods of regulating gut microbiota and its metabolites through prebiotics, probiotics, and pharmacological interventions, and discusses their effects on RA. Additionally, it explores the potential predictive role of cellular therapy mechanisms of intestinal flora in treating RA. These findings suggest that restoring the ecological balance of intestinal flora and regulating intestinal barrier function may enhance immune system function, thereby improving rheumatoid arthritis. This offers new insights into its treatment.
Collapse
Affiliation(s)
- Jiashang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoying Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhe Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihui Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Akdaşçi E, Eker F, Duman H, Singh P, Bechelany M, Karav S. Lactoferrin as a Versatile Agent in Nanoparticle Applications: From Therapeutics to Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2018. [PMID: 39728554 PMCID: PMC11728633 DOI: 10.3390/nano14242018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics. Lactoferrin (Lf) is a glycoprotein recognized for its significant multifunctional properties, such as antimicrobial, antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. Its activity has a broad distribution in the human body, with Lf receptors present in multiple regions. Current research shows that Lf is utilized in NP technology as a surface material, encapsulated biomolecule, and even as an NP itself. Due to the abundance of Lf receptors in various regions, Lf can be employed as a surface material in NPs for targeted delivery strategies, particularly in crossing the BBB and targeting specific cancers. Furthermore, Lf can be synthesized in an NP structure, positioning it as a strong candidate in future NP-related applications. In this article, we explore the highlighted and underexplored areas of Lf applications in NPs research.
Collapse
Affiliation(s)
- Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (E.A.); (F.E.); (H.D.)
| |
Collapse
|
7
|
Hu C, Shen W, Xia Y, Yang H, Chen X. Lactoferrin: Current situation and future prospects. FOOD BIOSCI 2024; 62:105183. [DOI: 10.1016/j.fbio.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Zou Y, Chen Y, Meng Q, Wang Y, Zhang Y. Cow Milk Fatty Acid and Protein Composition in Different Breeds and Regions in China. Molecules 2024; 29:5142. [PMID: 39519783 PMCID: PMC11547715 DOI: 10.3390/molecules29215142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cow milk is rich in proteins, fats, carbohydrates, and minerals; however, its precise nutrient content varies based on various factors. In the current study, we evaluated the differences in the fatty acid and protein contents of milk and the factors associated with these differences. To achieve this, samples were collected from seven types of cows in different regions. These included samples from three dairy breeds: Chinese Holstein milk from Beijing, China (BH), Chinese Holstein milk (HH) and Jersey milk (JS) from Hebei province, China; and four dairy/meat breeds: Sanhe milk (SH) from Inner Mongolia Autonomous Region, China, Xinjiang brown milk (XH) and Simmental milk (SI) from Xinjiang Uygur Autonomous Region, China, and Shu Xuanhua milk (SX) from Sichuan province, China. Breed significantly affects total fat, fatty acid, and protein contents. Additionally, geographic region significantly affects the contents of different fatty acids, α-lactalbumin, and lactoferrin. JS has the highest total fat and casein contents. XH samples contain significantly higher unsaturated fatty acid content than BH samples and do not differ significantly from JS. Additionally, the low β-lactoglobulin and high lactoferrin contents in XH samples may be favorable for the growth and development of infants. Our results may inform the development of dairy products from different cow breeds and advance the process of accurate breed identification.
Collapse
Affiliation(s)
- Yunxia Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| | - Yifei Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| | - Qingyong Meng
- College of Biological Science, China Agricultural University, Beijing 100193, China;
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (Y.C.)
| |
Collapse
|
9
|
Li T, Liu Y, Cao J, Pan C, Ding R, Zhao J, Liu J, He D, Jia J, Cheng X. LTF ameliorates cartilage endplate degeneration by suppressing calcification, senescence and matrix degradation through the JAK2/STAT3 pathway. J Cell Mol Med 2024; 28:e18267. [PMID: 39392081 PMCID: PMC11467740 DOI: 10.1111/jcmm.18267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 10/12/2024] Open
Abstract
Intervertebral disc degeneration (IDD)-induced cervical and lumbar herniations are debilitating diseases. The function of intervertebral disc (IVD) mainly depends on the cartilage endplate (CEP), which provides support and waste removal. Therefore, IDD stems from the degeneration of CEP. Our study shows that the expression of lactotransferrin (LTF), an iron-binding protein, is significantly decreased in degenerated human and rat CEP tissues. In addition, we found that LTF knockdown promoted calcification, senescence, and extracellular matrix (ECM) degradation in human endplate chondrocytes. Furthermore, the in vivo experiment results confirmed that the JAK2/STAT3 pathway inhibitor AG490 significantly reversed these effects. In addition to investigating the role and mechanism of LTF in CEP degeneration, this study provides a theoretical basis and experimental evidence to improve IDD treatment.
Collapse
Affiliation(s)
- Tao Li
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yuchi Liu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jian Cao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Chongzhi Pan
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Rui Ding
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiangminghao Zhao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jiahao Liu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Dingwen He
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| | - Jingyu Jia
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| | - Xigao Cheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Orthopedics of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangChina
| |
Collapse
|
10
|
Li B, Zhang B, Zhang F, Liu X, Zhang Y, Peng W, Teng D, Mao R, Yang N, Hao Y, Wang J. Interaction between Dietary Lactoferrin and Gut Microbiota in Host Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7596-7606. [PMID: 38557058 DOI: 10.1021/acs.jafc.3c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.
Collapse
Affiliation(s)
- Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Bo Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Fuli Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Weifeng Peng
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Da Teng
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ruoyu Mao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Na Yang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ya Hao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Jianhua Wang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Wu W, Shao Y, Wu Y, Gong Y, Guan X, Liu B, Lu Y. New Horizons of Covalent Complex of Plant-Derived Recombinant Human Lactoferrin (OsrhLF) Combined with Different Polyphenols: Formation, Physicochemical Properties, and Gastrointestinal Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2777-2788. [PMID: 38262965 DOI: 10.1021/acs.jafc.3c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Four typical dietary polyphenols ((-)-epigallocatechin gallate (EGCG), quinic acid (QA), caffeic acid (CA), and ferulic acid (FA)) were covalently prepared with rice recombinant human lactoferrin (OsrhLF) and bovine lactoferrin (bLF), and their structure and physicochemical properties were investigated, different lycopene emulsions were made by ultrasonic emulsification to analyze gastrointestinal fate. The results indicated that the covalent modification polyphenols changed the secondary/tertiary structure of LF, significantly improving the surface hydrophilicity, thermal stability, and antioxidant activity of LF. Compared with the bLF group, the OsrhLF group was more hydrophilic and the thermal denaturation temperature of the OsrhLF-CA reached 104.4 °C. LF-polyphenol emulsions significantly enhanced the photochemical stability and bioavailability of lycopene and achieved effective encapsulation and protection of lycopene compared to free lycopene, and the OsrhLF-EGCG reached 58.94% lycopene bioavailability. In short, OsrhLF does not differ much from bLF in terms of physicochemical properties and has a strong potential in the field of dietary supplements.
Collapse
Affiliation(s)
- Wanrong Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China
| | - Yeting Wu
- College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Guan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Baixue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), Wuhan 430070, China
| |
Collapse
|
12
|
Antoshin A, Gostev M, Khristidis Y, Giliazova A, Voloshin S, Blagushina N, Smirnova O, Diachkova E, Istranova E, Usanova A, Solodov N, Fayzullin A, Ivanova E, Sadchikova E, Vergara Bashkatova MN, Drakina O, Tarasenko S, Timashev P. Electrophoretically Co-Deposited Collagen-Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. Int J Mol Sci 2023; 24:17330. [PMID: 38139159 PMCID: PMC10743871 DOI: 10.3390/ijms242417330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.
Collapse
Affiliation(s)
- Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Mikhail Gostev
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nataliia Blagushina
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Anna Usanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nikolai Solodov
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Ivanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia
| | | | - Olga Drakina
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Svetlana Tarasenko
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
13
|
Arias-Rodríguez LI, Pablos JL, Vallet-Regí M, Rodríguez-Mendiola MA, Arias-Castro C, Sánchez-Salcedo S, Salinas AJ. Enhancing Osteoblastic Cell Cultures with Gelatin Methacryloyl, Bovine Lactoferrin, and Bioactive Mesoporous Glass Scaffolds Loaded with Distinct Parsley Extracts. Biomolecules 2023; 13:1764. [PMID: 38136635 PMCID: PMC10741674 DOI: 10.3390/biom13121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The increasing interest in innovative solutions for addressing bone defects has driven research into the use of Bioactive Mesoporous Glasses (MBGs). These materials, distinguished by their well-ordered mesoporous structure, possess the capability to accommodate plant extracts with well-established osteogenic properties, including bovine lactoferrin (bLF), as part of their 3D scaffold composition. This harmonizes seamlessly with the ongoing advancements in the field of biomedicine. In this study, we fabricated 3D scaffolds utilizing MBGs loaded with extracts from parsley leaves (PL) and embryogenic cultures (EC), rich in bioactive compounds such as apigenin and kaempferol, which hold potential benefits for bone metabolism. Gelatin Methacryloyl (GelMa) served as the polymer, and bLF was included in the formulation. Cytocompatibility, Runx2 gene expression, ALP enzyme activity, and biomineralization were assessed in preosteoblastic MC3T3-E1 cell cultures. MBGs effectively integrated PL and EC extracts with loadings between 22.6 ± 0.1 and 43.6 ± 0.3 µM for PL and 26.3 ± 0.3 and 46.8 ± 0.4 µM for EC, ensuring cell viability through a release percentage between 28.3% and 59.9%. The incorporation of bLF in the 3D scaffold formulation showed significant differences compared to the control in all assays, even at concentrations below 0.2 µM. Combinations, especially PL + bLF at 0.19 µM, demonstrated additive potential, with superior biomineralization compared to EC. In summary, this study highlights the effectiveness of MBGs in incorporating PL and EC extracts, along with bLF, into 3D scaffolds. The results underscore cytocompatibility, osteogenic activity, and biomineralization, offering exciting potential for future in vivo applications.
Collapse
Affiliation(s)
- Laura Isabel Arias-Rodríguez
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Jesús L. Pablos
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Martha A. Rodríguez-Mendiola
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Carlos Arias-Castro
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory and Plant Biochemistry Laboratory of the National Technological Institute of Mexico Campus Tlajomulco, 10th km Tlajomulco Highway, Southern Metropolitan Circuit, Tlajomulco de Zúñiga 45640, Jalisco, Mexico; (L.I.A.-R.); (M.A.R.-M.); (C.A.-C.)
| | - Sandra Sánchez-Salcedo
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio J. Salinas
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid (UCM).12 de Octubre Hospital Research Institute, Imas12, 28040 Madrid, Spain; (J.L.P.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
14
|
Zhang Y, Shi L, Wang F, Wang L, Min N, Wen L, Xue Q. Screening for autophagy/hypoxia/ferroptosis/pyroptosis-related genes of tendon injury and repair in a rat model after celecoxib and lactoferrin treatment. J Orthop Surg Res 2023; 18:383. [PMID: 37231424 DOI: 10.1186/s13018-023-03856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tendon injuries are among the most common musculoskeletal disorders. Celecoxib possesses an effective anti-inflammatory activity in the tendon injury treatment. Lactoferrin has a great potential for the tendon regeneration. However, the efficacy of celecoxib combined with lactoferrin in the treatment of tendon injury has not been reported. In this study, we aimed to investigate the effect of celecoxib and lactoferrin on tendon injury and repair, and screen for the crucial genes associated with the tendon injury and repair. METHODS The rat tendon injury models were established and divided into four groups: normal control group (n = 10), tendon injury model group (n = 10), celecoxib treatment group (n = 10), and celecoxib + lactoferrin treatment group (n = 10). Then, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) in celecoxib treatment group and celecoxib + lactoferrin treatment group. Next, autophagy/hypoxia/ferroptosis/pyroptosis-related DEmRNAs were further identified. Subsequently, functional enrichment, protein-protein interaction (PPI) network and transcriptional regulatory network construction for these genes were performed. RESULTS The animal study demonstrated that combinational administration of celecoxib with lactoferrin rescued the harmful effects caused by celecoxib in the treatment of tendon injury. Compared to tendon injury model group, 945 DEmRNAs, 7 DEmiRNAs and 34 DElncRNAs were obtained in celecoxib treatment group, and 493 DEmRNAs, 8 DEmiRNAs and 21 DElncRNAs were obtained in celecoxib + lactoferrin treatment group, respectively. Subsequently, 376 celecoxib + lactoferrin treatment group-specific DEmRNAs were determined. Then, 25 DEmRNAs associated with autophagy/hypoxia/ferroptosis/pyroptosis were identified. CONCLUSIONS Several genes, such as, Ppp1r15a, Ddit4, Fos, Casp3, Tgfb3, Hspb1 and Hspa8, were identified to be associated with tendon injury and repair.
Collapse
Affiliation(s)
- Yaonan Zhang
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lei Shi
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fei Wang
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lin Wang
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Nan Min
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Liangyuan Wen
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| | - Qingyun Xue
- Orthopaedic Department, Beijing Hospital; National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
16
|
Chang Y, Ping A, Chang C, Betz VM, Cai L, Ren B. Lactoferrin Mediates Enhanced Osteogenesis of Adipose-Derived Stem Cells: Innovative Molecular and Cellular Therapy for Bone Repair. Int J Mol Sci 2023; 24:ijms24021749. [PMID: 36675267 PMCID: PMC9864243 DOI: 10.3390/ijms24021749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 μg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 μg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 μg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 μg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 μg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.
Collapse
Affiliation(s)
- Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Ansong Ping
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Volker M. Betz
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital LMU Munich, 81377 Munich, Germany
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| | - Bin Ren
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| |
Collapse
|
17
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
Affiliation(s)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-114 Wrocław, Poland
| |
Collapse
|
18
|
Ong R, Cornish J, Wen J. Nanoparticular and other carriers to deliver lactoferrin for antimicrobial, antibiofilm and bone-regenerating effects: a review. Biometals 2022; 36:709-727. [PMID: 36512300 PMCID: PMC9745744 DOI: 10.1007/s10534-022-00455-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Bone and joint infections are a rare but serious problem worldwide. Lactoferrin’s antimicrobial and antibiofilm activity coupled with its bone-regenerating effects may make it suitable for improving bone and joint infection treatment. However, free lactoferrin (LF) has highly variable oral bioavailability in humans due to potential for degradation in the stomach and small intestine. It also has a short half-life in blood plasma. Therefore, encapsulating LF in nanocarriers may slow degradation in the gastrointestinal tract and enhance LF absorption, stability, permeability and oral bioavailability. This review will summarize the literature on the encapsulation of LF into liposomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric micro and nanoparticles and hydroxyapatite nanocrystals. The fabrication, characterization, advantages, disadvantages and applications of each system will be discussed and compared.
Collapse
Affiliation(s)
- Ray Ong
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jillian Cornish
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jingyuan Wen
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
19
|
Talian I, Laputková G, Schwartzová V. Identification of crucial salivary proteins/genes and pathways involved in pathogenesis of temporomandibular disorders. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Temporomandibular disorder (TMD) is a collective term for a group of conditions that lead to impairment of the function of the temporomandibular joint. The proteins/genes and signaling pathways associated with TMD are still poorly understood. The aim of this study was to identify key differentially expressed salivary proteins/genes (DEGs) associated with TMD progression using LC-MS/MS coupled with a bioinformatics approach. The protein–protein interaction network was obtained from the STRING database and the hub genes were identified using Cytoscape including cytoHubba and MCODE plug-ins. In addition, enrichment of gene ontology functions and the Reactome signaling pathway was performed. A total of 140 proteins/genes were differentially expressed. From cluster analysis, a set of 20 hub genes were significantly modulated: ALB, APOA1, B2M, C3, CAT, CLU, CTSD, ENO1, GSN, HBB, HP, HSPA8, LTF, LYZ, MMP9, S100A9, SERPINA1, TF, TPI1, and TXN. Two enriched signaling pathways, glycolysis and gluconeogenesis, and tryptophan signaling pathway involving the hub genes CAT, ENO1, and TPI1 have been identified. The rest of the hub genes were mainly enriched in the innate immune system and antimicrobial peptides signaling pathways. In summary, hub DEGs and the signaling pathways identified here have elucidated the molecular mechanisms of TMD pathogenesis.
Collapse
Affiliation(s)
- Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik , Košice , 040 11 , Slovak Republic
| | - Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik , Košice , 040 11 , Slovak Republic
| | - Vladimíra Schwartzová
- Clinic of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik and Louis Pasteur University Hospital , Košice , 041 90 , Slovak Republic
| |
Collapse
|
20
|
Li Y, Dong L, Mu Z, Liu L, Yang J, Wu Z, Pan D, Liu L. Research Advances of Lactoferrin in Electrostatic Spinning, Nano Self-Assembly, and Immune and Gut Microbiota Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10075-10089. [PMID: 35968926 DOI: 10.1021/acs.jafc.2c04241] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhishen Mu
- Inner Mongolia Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
21
|
Wang X, Liu F, An Q, Wang W, Cheng Z, Dai Y, Meng Q, Zhang Y. Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137478. [PMID: 35806481 PMCID: PMC9267821 DOI: 10.3390/ijms23137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin (Ltf), a naturally active glycoprotein, possesses anti-inflammatory, anti-microbial, anti-tumor, and immunomodulatory activities. Many published studies have indicated that Ltf modulates the proliferation of stem cells. However, the role of Ltf in the proliferation of satellite cells, an important cell type in muscle regeneration, has not yet been reported. Here, by using Ltf systemic knockout mice, we illustrate the role of Ltf in skeletal muscle. Results shows that Ltf deficiency impaired proliferation of satellite cells (SCs) and the regenerative capability of skeletal muscle. Mechanistic studies showed that ERK1/2 phosphorylation was significantly downregulated after Ltf deletion in SCs. Simultaneously, the cell cycle-related proteins cyclin D and CDK4 were significantly downregulated. Intervention with exogenous recombinant lactoferrin (R-Ltf) at a concentration of 1000 μg/mL promoted proliferation of SCs. In addition, intraperitoneal injection of Ltf effectively ameliorated the skeletal muscle of mice injured by 1.2% BaCl2 solution. Our results suggest a protective effect of Ltf in the repair of skeletal muscle damage. Ltf holds promise as a novel therapeutic agent for skeletal muscle injuries.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Fan Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
- Correspondence: ; Tel.: +86-010-6273-7465
| |
Collapse
|
22
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|