1
|
Okunlola FO, Okunlola AR, Adetuyi BO, Soliman MES, Alexiou A, Papadakis M, Fawzy MN, El-Saber Batiha G. Beyond the gut: Unraveling the multifaceted influence of microbiome on cardiovascular health. Clin Nutr ESPEN 2025; 67:71-89. [PMID: 40064239 DOI: 10.1016/j.clnesp.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Even while receiving adequate pharmacological treatment for their hypertension, people are nonetheless at greater risk for cardiovascular disease. There is growing evidence that the gut microbiota may have major positive and negative effects on blood pressure and illnesses related with it as more study into this topic is conducted. Trimethylamine n-oxide (TMAO) and short-chain fatty acids (SCFA) are two major by-products of the gut microbiota. TMAO is involved in the formation of other coronary artery diseases, including atherosclerosis and hypertension, while SCFAs play an important role in controlling blood pressure. Numerous investigations have confirmed the established link between dietary salt intake and hypertension. Reducing sodium in the diet is linked to lower rates of cardiovascular disease morbidity and mortality as well as lower rates of blood pressure and hypertension. In both human and animal research, high salt diets increase local and systemic tissue inflammation and compromise gut architecture. Given that the gut microbiota constantly interacts with the immune system and is required for the correct maturation of immune cells, it is scientifically conceivable that it mediates the inflammatory response. This review highlights the therapeutic possibilities for focusing on intestinal microbiomes as well as the potential functions of the gut microbiota and its metabolites in the development of hypertension.
Collapse
Affiliation(s)
- Felix Oladele Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Abimbola Rafiat Okunlola
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Babatunde Oluwafemi Adetuyi
- Department of Natural Sciences (Biochemistry Option), Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Nigeria.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
2
|
Liu X, Tong Y, Qin J, Zhao Y. Efficacy and safety of probiotic and synbiotic supplementation in metabolic syndrome: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2025:104100. [PMID: 40348630 DOI: 10.1016/j.numecd.2025.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
AIMS This review aims to address current research gaps and evaluate the effectiveness and safety of probiotic and synbiotic supplementation in patients with metabolic syndrome (MetS). DATA SYNTHESIS Four databases (PubMed, Cochrane, Embase, and Web of Science) were searched to find the randomized controlled trials published up to October 20, 2023. Anthropometric measurements, glucose, blood pressure and lipid metabolism were main outcomes, inflammatory markers, liver function, and etc. were the secondary outcomes. A meta-analysis was conducted by Review Manager 5.4 and STATA 15.0. In addition, sensitivity analysis and subgroup analysis were conducted to assess the stability of outcomes and potential sources of heterogeneity. Twenty-four full-text articles met the inclusion criteria, involving 1186 patients. The pooled analysis demonstrated significant reductions in body weight (WMD: -0.79 kg; p = 0.001), waist circumference (WMD: -1.04 cm; p = 0.0007), total cholesterol (SMD: -0.14; p = 0.03), triglyceride (SMD: -0.25; p = 0.0001), fasting blood glucose (SMD: -0.20; p = 0.003), and insulin levels (SMD: -0.17; p = 0.03). Additionally, the probiotic and synbiotic group showed increased high-density lipoprotein cholesterol (SMD: 0.15; p = 0.02). Subgroup analysis implied that age <50 years, intervention duration <12 weeks, and Asian patients may have better curative effects. No significant increase in adverse reactions was reported. CONCLUSIONS Probiotic and synbiotic supplementation can effectively improve body composition, lipid metabolism, and glucose metabolism in MetS patients without increasing adverse reactions. Further rigorous and long-term trials are required to validate these results and refine intervention details.
Collapse
Affiliation(s)
- Xinyue Liu
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Yuhan Tong
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Jinzhong Qin
- Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| | - Yurong Zhao
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
3
|
Wu S, Wang Y. Commentary: Effect of probiotics at different intervention time on glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2025; 16:1514969. [PMID: 40177630 PMCID: PMC11961410 DOI: 10.3389/fendo.2025.1514969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Shanshan Wu
- Clinical Laboratory Department, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yanhai Wang
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital Chuandong Hospital & Dazhou First People’s Hospital, Dazhou, Sichuan, China
- Clinical Laboratory Department, Hohhot First Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
4
|
Fallah F, Mahdavi R. Modulatory Effects of Multi-species/Multi-strain Synbiotic and L-carnitine Concomitant Supplementation on Atherogenic-Indices, Body Composition, Visceral Obesity, and Appetite in Metabolically Healthy Women with Obesity: A Double-Blind Randomized Controlled Clinical Trial. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10460-2. [PMID: 39921845 DOI: 10.1007/s12602-025-10460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Obesity, a chronic disease with pandemic proportions, is recognized as a major risk factor for cardiometabolic disorders due to its association with atherogenic dyslipidemia, a common characteristic attributed to visceral adiposity in patients with obesity. Atherogenic and visceral-obesity indices have been conceded as surrogate cardiovascular diseases (CVD) indicators surpassing the conventional markers due to stronger predictive power for obesity-induced cardiometabolic risk and CVD mortality rate. Nutraceuticals have been suggested as emerging approaches to counteract obesity-associated cardiometabolic disorders. Considering the evidence addressing the ameliorating effects of either L-carnitine or biotics on metabolic indices, also the reports addressing higher efficacy of concomitant supplementation versus single-therapies, this clinical trial was conducted to assess the effects of L-carnitine + multi-species/multi-strain synbiotic combined supplementation compared to L-carnitine mono-therapy on atherogenic-indices, body composition, visceral obesity, and appetite sensations in 46 metabolically healthy women with obesity, randomly assigned to co-supplementation (L-carnitine-tartrate (2 × 500 mg/dl) + synbiotic (one capsule/day)) or mono-therapy (L-carnitine-tartrate (2 × 500 mg/dl) + maltodextrin (one capsule/day)) groups for 8 weeks. L-carnitine + synbiotic co-supplementation led to a significantly greater reduction in atherogenic-indices including atherogenic-index-of-plasma (AIP), Castelli's-risk-index-I (CRI-I), Castelli's-risk-index-II (CRI-II), atherogenic-coefficient (AC), lipoprotein-combine index (LCI), systolic blood pressure (SBP), fat-mass (FM) weight/percent, visceral-adiposity index (VAI), waste-to-height ratio (WHtR), body-adiposity index (BAI), and appetite sensation scores compared to L-carnitine mono-therapy. L-carnitine + synbiotic combined supplementation was more efficient in improving atherogenic-indices as cardiovascular risk markers, body composition, visceral obesity, and appetite sensations in metabolically healthy women with obesity. Therefore, simultaneous supplementation of L-carnitine + synbiotic might be considered a promising approach to ameliorate cardiometabolic risk factors in healthy individuals with obesity. Further longer period studies are required to confirm these findings. (Iranian Registry of Clinical Trials (IRCT; https://irct.behdasht.gov.ir/trial/28048 ).
Collapse
Affiliation(s)
- Farnoush Fallah
- Student Research Committee, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Feitoza TG, de Lima Ponciano Costa B, Sampaio KB, Dos Santos Lima M, Garcia EF, de Albuquerque TMR, de Souza EL, Rodrigues NPA. An In Vitro Study of the Impacts of Sweet Potato Chips with Potentially Probiotic Levilactobacillus brevis and Lactiplantibacillus plantarum on Human Intestinal Microbiota : Impacts of potato chips with probiotics on intestinal microbiota. Probiotics Antimicrob Proteins 2025; 17:450-461. [PMID: 37792211 DOI: 10.1007/s12602-023-10168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
This study formulated sweet potato chips with powdered potentially probiotic Levilactobacillus brevis (SPLB) and Lactiplantibacillus plantarum (SPLP) and evaluated their impacts on human intestinal microbiota during 48 h of in vitro colonic fermentation. L. brevis and L. plantarum kept high viable cell counts (> 6 log CFU/g) on sweet potato chips after freeze-drying and during 60 days of storage. SPLB and SPLP had satisfactory quality parameters during 60 days of storage. SPLB and SPLP increased the relative abundance of Lactobacillus ssp./Enterococcus spp. (3.84-10.22%) and Bifidobacterium spp. (3.25-12.45%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.56-2.16%), Clostridium histolyticum (8.23-2.33%), and Eubacterium rectale/Clostridium coccoides (8.07-1.33%) during 48 h of in vitro colonic fermentation. SPLB and SPLP achieved high positive prebiotic indexes (> 8.24), decreased pH values and sugar contents, and increased lactic acid and short-chain fatty acid production, proving selective stimulatory effects on beneficial bacterial groups forming the intestinal microbiota. The results showed that SPLB and SPLP have good stability and high viable cell counts of L. brevis and L. plantarum when stored under room temperature and caused positive impacts on human intestinal microbiota, making them potentially probiotic non-dairy snack options.
Collapse
Affiliation(s)
- Tarsila Gonçalves Feitoza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Bárbara de Lima Ponciano Costa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE, Brazil
| | - Estefânia Fernandes Garcia
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Noádia Priscila Araújo Rodrigues
- Laboratory of Didactic Restaurant and Beverages, Department of Gastronomy, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
6
|
Li J, Ye J, Zhou Q, Guo K, Zhou Z. Impact of live microbe intake on cardiovascular disease and mortality in adults with diabetes: A nationwide cohort study. Diabetes Res Clin Pract 2025; 219:111942. [PMID: 39615795 DOI: 10.1016/j.diabres.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This study examines the association between dietary intake of live microbes (LM) and the risk of cardiovascular disease (CVD) and cardiovascular mortality in adults with diabetes. METHODS A retrospective cohort study was conducted using National Health and Nutrition Examination Survey (NHANES) data from 2001 to 2010, with follow-up mortality data through December 31, 2019. A total of 3,955 adults with diabetes were included. Dietary LM intake was categorized as low (LLM), medium (MLM), or high (HLM). Multivariate weighted logistic regression assessed the relationship between LM intake and CVD, and weighted Cox proportional hazards models were used to evaluate cardiovascular mortality. RESULTS Among the 3,955 participants, 1,064 had CVD. MLM consumers had a significantly lower risk of CVD (OR: 0.55; 95 % CI: 0.33, 0.92) compared to non-consumers, with no significant associations for LLM and HLM. During a median follow-up of 10.5 years, 432 cardiovascular deaths occurred. MLM intake was associated with a lower risk of cardiovascular mortality (HR: 0.65; 95 % CI: 0.49, 0.86). CONCLUSION Moderate consumption of dietary live microbes is associated with reduced CVD risk and cardiovascular mortality in adults with diabetes. These findings suggest potential cardiovascular benefits from including LM in the diet of diabetic patients.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianan Ye
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Suresh MG, Mohamed S, Yukselen Z, Hatwal J, Venkatakrishnan A, Metri A, Bhardwaj A, Singh A, Bush N, Batta A. Therapeutic Modulation of Gut Microbiome in Cardiovascular Disease: A Literature Review. HEART AND MIND 2025; 9:68-79. [DOI: 10.4103/hm.hm-d-24-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/30/2024] [Indexed: 03/20/2025] Open
Abstract
Abstract
The cardiovascular diseases (CVDs) are a primary global health concern with significant mortality and morbidity. Recent findings suggest that gut microbiota, through its complex interactions with host metabolism, immune response, and inflammation, plays a crucial role in the pathogenesis and progression of CVD. The mechanisms linking gut dysbiosis with cardiovascular risk factors such as hypertension, atherosclerosis, and metabolic syndrome offer a novel perspective on heart health. Excitingly, interventions targeting the microbiome, such as dietary adjustments, probiotics, and prebiotics, hold promise in reducing CVD risks. Adopting personalized approaches to microbiome therapy, tailored to individuals’ unique microbial profiles, could usher in more effective treatments for CVD. As research continues to unveil the intricate role of the gut microbiome, the future of CVD treatment and prevention appears poised for significant transformation. Therefore, this burgeoning field promises to bring about a paradigm shift in cardiovascular health management, with a strong emphasis on personalized, microbiome-based therapeutic strategies, and preventive measures through diet and lifestyle modifications. This review aims to emphasize the potential of integrating the gut microbial insights into clinical practice and how it can be exploited to revolutionize the prevention and management of CVD in future.
Collapse
Affiliation(s)
| | - Safia Mohamed
- University of Massachusetts Chan Medical School, Baystate Medical Center, Springfield, MA, USA
| | - Zeynep Yukselen
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA, USA
| | - Juniali Hatwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Aida Metri
- Department of Gastroenterology, Johns Hopkins University, Baltimore, MD, United States
| | - Arshia Bhardwaj
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Nikhil Bush
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI, USA
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
9
|
Bulut EC, Erol Kutucu D, Üstünova S, Ağırbaşlı M, Dedeakayoğulları H, Tarhan Ç, Kapucu A, Yeğen BÇ, Demirci Tansel C, Gürel Gürevin E. Synbiotic supplementation ameliorates anxiety and myocardial ischaemia-reperfusion injury in hyperglycaemic rats by modulating gut microbiota. Exp Physiol 2024; 109:1882-1895. [PMID: 39264256 PMCID: PMC11522816 DOI: 10.1113/ep092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.
Collapse
Affiliation(s)
- Erman Caner Bulut
- Department of Biology, Institute of Graduate Studies in SciencesIstanbul UniversityIstanbulTurkey
| | - Deniz Erol Kutucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Savaş Üstünova
- Department of Physiology, School of MedicineBezmialem Vakıf UniversityIstanbulTurkey
| | - Mehmet Ağırbaşlı
- Department of Cardiology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Huri Dedeakayoğulları
- Department of Medical Biochemistry, Faculty of MedicineBiruni UniversityIstanbulTurkey
| | - Çağatay Tarhan
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Ayşegül Kapucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Berrak Ç. Yeğen
- Department of Physiology, School of MedicineMarmara UniversityIstanbulTurkey
| | | | - Ebru Gürel Gürevin
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| |
Collapse
|
10
|
Basafa-Roodi P, Jazayeri S, Hadi F, Paghaleh SJ, Khosravi-Darani K, Malakouti SK. Effects of synbiotic supplementation on the components of metabolic syndrome in patients with schizophrenia: a randomized, double-blind, placebo-controlled trial. BMC Psychiatry 2024; 24:669. [PMID: 39385189 PMCID: PMC11462647 DOI: 10.1186/s12888-024-06061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Antipsychotic drugs may have adverse effects on the components of metabolic syndrome. Previous studies have shown that changes in the intestinal microbiome are associated with metabolic disturbances in patients with schizophrenia. The objective of this study was to determine the effects of synbiotics on the components of metabolic syndrome as primary outcomes in patients with schizophrenia. Secondary outcomes were HbA1c, insulin resistance, LDL-c, and anthropometric measurements. METHODS In this double-blind, placebo-controlled trial, seventy patients with schizophrenia receiving antipsychotic drugs who had at least two criteria of metabolic syndrome were randomly divided into two groups to receive either two capsules of a synbiotic supplement or a placebo daily for 8 weeks. Anthropometric indices and biochemical parameters were measured at baseline and after the intervention. RESULTS Fifty-five patients completed the study. The synbiotic supplement significantly decreased waist circumference and HbA1C compared to placebo (-2.66 ± 4.20 vs. 3.03 ± 4.50 and - 0.26 ± 0.54 vs. 0.20 ± 0.75, respectively). Although BMI did not change significantly in the synbiotic + antipsychotic group, it increased in the placebo + antipsychotic group (-0.37 ± 1.00 vs. 0.61 ± 1.09 P < 0.5). LDL-c and triglyceride (TG) levels decreased significantly in the synbiotic + antipsychotic group, but the change was not significantly different from that of the placebo + antipsychotic group. FBS, HDL-c, systolic and diastolic blood pressure, insulin resistance, and total cholesterol were not significantly different between the two groups after intervention. CONCLUSION Synbiotic supplement may decrease waist circumference, HbA1c, LDL and TG and prevent BMI increase in patients receiving antipsychotic drugs. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT Number: IRCT20090901002394N45), Date: 26-12-2019.
Collapse
Affiliation(s)
- Poorya Basafa-Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Hadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Jamali Paghaleh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Kianush Khosravi-Darani
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Kazem Malakouti
- Mental Health Research Center, School of Mental Health and Behavioral Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Amini-Salehi E, Mahapatro A, Korsapati RR, Korsapati AR, Jain SM, Babaeizad A, Mohammadi S, Rashidian P, Hashemi M, Dave T, Jamilian P, Hassanipour S, Keivanlou MH, Patel D. Exploring the relationship between gut microbiome modulation and blood pressure in type 2 diabetes: An umbrella review. Nutr Metab Cardiovasc Dis 2024; 34:2046-2054. [PMID: 38902190 DOI: 10.1016/j.numecd.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
AIMS Given the epidemic proportions of type 2 diabetes mellitus (T2DM) globally, it's crucial to comprehensively understand the factors influencing its management. The gut microbiome, known for its influence on various aspects of health, has emerged as a potential regulator of blood pressure in individuals with T2DM. This umbrella review aimed to consolidate the findings of existing meta-analyses investigating the impact of gut microbiome modulation on systolic and diastolic blood pressure in T2DM patients. DATA SYNTHESIS Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we systematically searched PubMed, Scopus, and Web of Science databases from inception to July 2023. Quality assessment was performed using the AMSTAR2 and GRADE checklists. Statistical analyses were conducted using Comprehensive Meta-Analysis (CMA) version 3. A total of 6 meta-analyses meeting the inclusion criteria were included. The results revealed a significant association between microbial modulation and diastolic blood pressure (SMD: -0.133; 95% CI: -0.219 to -0.048; P = 0.002). However, the effect of gut microbial modulation on systolic blood pressure did not reach statistical significance (SMD: -0.077; 95% CI: -0.162 to 0.009; P = 0.078). CONCLUSION This study found that modulating the gut microbiome had a statistically significant impact on diastolic blood pressure in individuals with type 2 diabetes mellitus (T2DM). However, no significant effect was observed on systolic blood pressure. While high-quality meta-analyses reported favorable outcomes, caution is warranted due to the low clinical importance, diversity in study populations, and variations in interventions.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Guilan University of Medical Sciences, Rasht, Iran; Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | - Shika M Jain
- MVJ Medical College and Research Hospital, Karnataka, India
| | - Ali Babaeizad
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Mohammadi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Tirth Dave
- Department of Internal Medicine, Bukovinian State Medical University, Chernivtsi, Ukraine
| | | | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
13
|
Kaul R, Paul P, Harfouche M, Ayyan M, Laws S, Chaari A. The effect of microbiome-modulating therapeutics on glucose homeostasis in metabolic syndrome: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Syndr 2024; 18:103118. [PMID: 39298907 DOI: 10.1016/j.dsx.2024.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a chronic disorder featuring overweight/obesity, high blood pressure, and dysfunction of lipid and carbohydrate metabolism. Microbiome-modulating probiotics, prebiotics, synbiotics and fecal microbiota transplant (FMT) are promising adjunct therapies for improving parameters of glucose homeostasis and insulinemia. METHODS We conducted a comprehensive systematic review, meta-analyses, and meta-regressions to investigate the effect of the abovementioned microbiome therapies on various biomarkers after screening clinical trials published through April 2023. We pooled data using random effects meta-analyses, reporting them as mean differences (MDs) with 95 % confidence intervals (CIs), and conducting univariate linear model meta-regressions. RESULTS Data from 21 trial comparisons across 19 studies (n = 911) revealed that, compared to placebo/control, microbiome-modulating therapies were associated with statistically significant changes in fasting plasma glucose (MD: 4.03 mg/dL [95%CI: 6.93; -1.13]; p effect = 0.006, I2 = 89.8 %), and fasting insulin (MD: 2.56 μU/mL [95%CI: 4.28; -0.84]; p effect = 0.004, I2 = 87.9 %), but not insulin resistance or sensitivity indices and HbA1c. Age, baseline BMI, baseline biomarker value, pro/synbiotic dosage, trial duration, nutraceutical type, and WHO region were factors affecting the efficacy of these interventions at producing changes in biomarkers, signaling the potential role of personalized precision medicine adjunct therapy for deranged glucose homeostasis in patients with MetS. Nevertheless, presence of heterogeneity calls for further investigation before their clinical application. CONCLUSIONS Probiotics, prebiotics, synbiotics and FMT supplementation improved fasting glucose and insulin in patients with MetS. Further large-scale and high-quality trials are required before potential clinical applications.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Pradipta Paul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar; World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Muhammad Ayyan
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Sa'ad Laws
- Health Sciences Library, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
14
|
Raval SD, Archana G. Evaluation of synbiotic combinations of commercial probiotic strains with different prebiotics in in vitro and ex vivo human gut microcosm model. Arch Microbiol 2024; 206:315. [PMID: 38904672 DOI: 10.1007/s00203-024-04030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Exploring probiotics for their crosstalk with the host microbiome through the fermentation of non-digestible dietary fibers (prebiotics) for their potential metabolic end-products, particularly short-chain fatty acids (SCFAs), is important for understanding the endogenous host-gut microbe interaction. This study was aimed at a systematic comparison of commercially available probiotics to understand their synergistic role with specific prebiotics in SCFAs production both in vitro and in the ex vivo gut microcosm model. Probiotic strains isolated from pharmacy products including Lactobacillus sporogenes (strain not labeled), Lactobacillus rhamnosus GG (ATCC53103), Streptococcus faecalis (T-110 JPC), Bacillus mesentericus (TO-AJPC), Bacillus clausii (SIN) and Saccharomyces boulardii (CNCM I-745) were assessed for their probiotic traits including survival, antibiotic susceptibility, and antibacterial activity against pathogenic strains. Our results showed that the microorganisms under study had strain-specific abilities to persist in human gastrointestinal conditions and varied anti-infective efficacy and antibiotic susceptibility. The probiotic strains displayed variation in the utilization of six different prebiotic substrates for their growth under aerobic and anaerobic conditions. Their prebiotic scores (PS) revealed which were the most suitable prebiotic carbohydrates for the growth of each strain and suggested xylooligosaccharide (XOS) was the poorest utilized among all. HPLC analysis revealed a versatile pattern of SCFAs produced as end-products of prebiotic fermentation by the strains which was influenced by growth conditions. Selected synbiotic (prebiotic and probiotic) combinations showing high PS and high total SCFAs production were tested in an ex vivo human gut microcosm model. Interestingly, significantly higher butyrate and propionate production was found only when synbiotics were applied as against when individual probiotic or prebiotics were applied alone. qRT-PCR analysis with specific primers showed that there was a significant increase in the abundance of lactobacilli and bifidobacteria with synbiotic blends compared to pre-, or probiotics alone. In conclusion, this work presents findings to suggest prebiotic combinations with different well-established probiotic strains that may be useful for developing effective synbiotic blends.
Collapse
Affiliation(s)
- Shivani D Raval
- Department of Microbiology and Biotechnology Center, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
| |
Collapse
|
15
|
Chen J, Fang S, Huo J, Yang N. The chain-mediating effect of Crp, BMI on the relationship between dietary intake of live microbes and hyperlipidaemia. Lipids Health Dis 2024; 23:130. [PMID: 38702682 PMCID: PMC11067115 DOI: 10.1186/s12944-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Inflammation and obesity are the risk factors for hyperlipidaemia. Nonetheless, research regarding the association between dietary live microbes intake and hyperlipidaemia is lacking. Therefore, this study focused on revealing the relationship between them and mediating roles of inflammation and obesity. METHODS Totally 16,677 subjects were enrolled from the National Health and Nutrition Examination Survey (NHANES) (1999-2010 and 2015-2020). To explore the correlation between live microbes and hyperlipidaemia as well as blood lipid levels, respectively, multiple logistic regression and linear regression were employed. Furthermore, the mediating roles of body mass index (BMI), C-reactive protein (Crp) and their chain effect were explored through mediating analysis. RESULTS High dietary live microbes intake was the protective factor for hyperlipidaemia. In addition, high dietary live microbes intake exhibited a positive relationship to the high-density lipoprotein cholesterol (HDL-C) among males (β = 2.52, 95% CI: 1.29, 3.76, P < 0.0001) and females (β = 2.22, 95% CI: 1.05, 3.38, P < 0.001), but exhibited a negative correlation with triglyceride (TG) levels in males (β = -7.37, 95% CI: -13.16, -1.59, P = 0.02) and low-density lipoprotein cholesterol (LDL-C) levels in females (β = -2.75, 95% CI: -5.28, -0.21, P = 0.02). Crp, BMI and their chain effect mediated the relationship between live microbes with HDL-C levels. Moreover, BMI and the chain effect mediated the relationship between live microbes with LDL-C levels. CONCLUSION Dietary live microbes intake is related to a lower hyperlipidaemia risk. Crp, BMI and their chain effect make a mediating impact on the relationship.
Collapse
Affiliation(s)
- Jingyi Chen
- Institute of Precision Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shuhua Fang
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, 211200, China
| | - Jinlin Huo
- Institute of Precision Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Nian Yang
- Department of Pharmacy, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch Southeast University, Nanjing, 211200, China.
| |
Collapse
|
16
|
Baghel K, Khan A, Kango N. Role of Synbiotics (Prebiotics and Probiotics) as Dietary Supplements in Type 2 Diabetes Mellitus Induced Health Complications. J Diet Suppl 2024; 21:677-708. [PMID: 38622882 DOI: 10.1080/19390211.2024.2340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diabetes is a metabolic disorder whose prevalence has become a worrying condition in recent decades. Chronic diabetes can result in serious health conditions such as impaired kidney function, stroke, blindness, and myocardial infarction. Despite a variety of currently available treatments, cases of diabetes and its complications are on the rise. This review article provides a comprehensive account of the ameliorative effect of prebiotics and probiotics individually or in combination i.e. synbiotics on health complications induced by Type 2 Diabetes Mellitus (T2DM). Recent advances in the field underscore encouraging outcomes suggesting the consumption of synbiotics leads to favorable changes in the gut microbiota. These changes result in the production of bioactive metabolites such as short-chain fatty acids (crucial for lowering blood sugar levels), reducing inflammation, preventing insulin resistance, and encouraging the release of glucagon-like peptide-1 in the host. Notably, novel strategies supplementing synbiotics to support gut microbiota are gaining attraction as pivotal interventions in mitigating T2DM-induced health complications. Thus, by nurturing a symbiotic relationship between prebiotics and probiotics i.e. synbiotics, these interventions hold promise in reshaping the microbial landscape of the gut thereby offering a multifaceted approach to managing T2DM and its associated morbidities. Supporting the potential of synbiotics underscores a paradigm shift toward holistic and targeted interventions in diabetes management, offering prospects for improved outcomes and enhanced quality of life for affected individuals. Nevertheless, more research needs to be done to better understand the single and multispecies pre/pro and synbiotics in the prevention and management of T2DM-induced health complications.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Aamir Khan
- Department of Zoology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
17
|
Shearer J, Shah S, Shen-Tu G, Schlicht K, Laudes M, Mu C. Microbial Features Linked to Medication Strategies in Cardiometabolic Disease Management. ACS Pharmacol Transl Sci 2024; 7:991-1001. [PMID: 38665607 PMCID: PMC11040554 DOI: 10.1021/acsptsci.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Human gut microbiota are recognized as critical players in both metabolic disease and drug metabolism. However, medication-microbiota interactions in cardiometabolic diseases are not well understood. To gain a comprehensive understanding of how medication intake impacts the gut microbiota, we investigated the association of microbial structure with the use of single or multiple medications in a cohort of 134 middle-aged adults diagnosed with cardiometabolic disease, recruited from Alberta's Tomorrow Project. Predominant cardiometabolic prescription medication classes (12 total) were included in our analysis. Multivariate Association with Linear Model (MaAsLin2) was employed and results were corrected for age, BMI, sex, and diet to evaluate the relationship between microbial features and single- or multimedication use. Highly individualized microbiota profiles were observed across participants, and increasing medication use was negatively correlated with α-diversity. A total of 46 associations were identified between microbial composition and single medications, exemplified by the depletion of Akkermansia muciniphila by β-blockers and statins, and the enrichment of Escherichia/Shigella and depletion of Bacteroides xylanisolvens by metformin. Metagenomics prediction further indicated alterations in microbial functions associated with single medications such as the depletion of enzymes involved in energy metabolism encoded by Eggerthella lenta due to β-blocker use. Specific dual medication combinations also had profound impacts, including the depletion of Romboutsia and Butyriciocccus by statin plus metformin. Together, these results show reductions in bacterial diversity as well as species and microbial functional potential associated with both single- and multimedication use in cardiometabolic disease.
Collapse
Affiliation(s)
- Jane Shearer
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine,
University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Faculty
of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shrushti Shah
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Faculty
of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Grace Shen-Tu
- Alberta’s
Tomorrow Project, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta T2T 5C7, Canada
| | - Kristina Schlicht
- Institute
of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute
of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- Division
of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Chunlong Mu
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine,
University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
18
|
Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne) 2024; 15:1277921. [PMID: 38572479 PMCID: PMC10987746 DOI: 10.3389/fendo.2024.1277921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Heidari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Khosravi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:5996218. [PMID: 38529045 PMCID: PMC10963111 DOI: 10.1155/2024/5996218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Methods The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaona Ye
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ronghua Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miaomiao Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingjun Han
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
20
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
21
|
Asbaghi O, Shimi G, Hosseini Oskouie F, Naseri K, Bagheri R, Ashtary-Larky D, Nordvall M, Rastgoo S, Zamani M, Wong A. The effects of conjugated linoleic acid supplementation on anthropometrics and body composition indices in adults: a systematic review and dose-response meta-analysis. Br J Nutr 2024; 131:406-428. [PMID: 37671495 DOI: 10.1017/s0007114523001861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Prior meta-analytic investigations over a decade ago rather inconclusively indicated that conjugated linoleic acid (CLA) supplementation could improve anthropometric and body composition indices in the general adult population. More recent investigations have emerged, and an up-to-date systematic review and meta-analysis on this topic must be improved. Therefore, this investigation provides a comprehensive systematic review and meta-analysis of randomised controlled trials (RCT) on the impact of CLA supplementation on anthropometric and body composition (body mass (BM), BMI, waist circumference (WC), fat mass (FM), body fat percentage (BFP) and fat-free mass (FFM)) markers in adults. Online databases search, including PubMed, Scopus, the Cochrane Library and Web of Science up to March 2022, were utilised to retrieve RCT examining the effect of CLA supplementation on anthropometric and body composition markers in adults. Meta-analysis was carried out using a random-effects model. The I2 index was used as an index of statistical heterogeneity of RCT. Among the initial 8351 studies identified from electronic databases search, seventy RCT with ninety-six effect sizes involving 4159 participants were included for data analyses. The results of random-effects modelling demonstrated that CLA supplementation significantly reduced BM (weighted mean difference (WMD): -0·35, 95 % CI (-0·54, -0·15), P < 0·001), BMI (WMD: -0·15, 95 % CI (-0·24, -0·06), P = 0·001), WC (WMD: -0·62, 95% CI (-1·04, -0·20), P = 0·004), FM (WMD: -0·44, 95 % CI (-0·66, -0·23), P < 0·001), BFP (WMD: -0·77 %, 95 % CI (-1·09, -0·45), P < 0·001) and increased FFM (WMD: 0·27, 95 % CI (0·09, 0·45), P = 0·003). The high-quality subgroup showed that CLA supplementation fails to change FM and BFP. However, according to high-quality studies, CLA intake resulted in small but significant increases in FFM and decreases in BM and BMI. This meta-analysis study suggests that CLA supplementation may result in a small but significant improvement in anthropometric and body composition markers in an adult population. However, data from high-quality studies failed to show CLA's body fat-lowering properties. Moreover, it should be noted that the weight-loss properties of CLA were small and may not reach clinical importance.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hosseini Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| |
Collapse
|
22
|
Kaul R, Paul P, Harfouche M, Saliba R, Chaari A. Microbiome-modulating nutraceuticals ameliorate dyslipidemia in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Res Rev 2024; 40:e3675. [PMID: 37381688 DOI: 10.1002/dmrr.3675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/26/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
AIMS Type 2 Diabetes is intrinsically linked to cardiovascular disease (CVD) via diabetic dyslipidemia, both of which remain global health concerns with annually increasing prevalence. Given the established links between gut microbiome dysbiosis and metabolic diseases, its modulation is an attractive target to ameliorate metabolic imbalances in such patients. There is a need to quantitively summarise, analyse, and describe future directions in this field. METHODS We conducted a systematic review, meta-analysis, and meta-regression following searches in major scientific databases for clinical trials investigating the effect of pro/pre/synbiotics on lipid profile published until April 2022. Data were pooled using random-effects meta-analysis and reported as mean differences with 95% confidence intervals (CIs). PROSPERO No. CRD42022348525. RESULTS Data from 47 trial comparisons across 42 studies (n = 2692) revealed that, compared to placebo/control groups, the administration of pro/pre/synbiotics was associated with statistically significant changes in total cholesterol (-9.97 mg/dL [95% CI: -15.08; -4.87], p < 0.0001), low-density lipoprotein (-6.29 mg/dL [95% CI: -9.25; -3.33], p < 0.0001), high-density lipoprotein (+3.21 mg/dL [95% CI: 2.20; 4.22], p < 0.0001), very-low-density lipoprotein (-4.52 mg/dL [95% CI: -6.36; -2.67], p < 0.0001) and triglyceride (-22.93 mg/dL [95% CI: -33.99; -11.87], p < 0.001). These results are influenced by patient characteristics such as age or baseline BMI, and intervention characteristics such as dosage and duration. CONCLUSIONS Our study shows that adjunct supplementation with a subset of pro/pre/synbiotics ameliorates dyslipidemia in diabetic individuals and has the potential to reduce CVD risk. However, widespread inter-study heterogeneity and the presence of several unknown confounders limit their adoption in clinical practice; future trials should be designed with these in mind.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Pradipta Paul
- Medical Education Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Reya Saliba
- Health Sciences Library, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, Doha, Qatar
| |
Collapse
|
23
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
24
|
Keivanlou MH, Amini-Salehi E, Hassanipour S, Zare R, Mohammadi-Vajari E, Hashemi M, Salari A, Porteghali P. The Value of Microbiome-targeted Therapy on Lipid Indices of Patients with Type 2 Diabetes Mellitus: An Umbrella Meta-analysis of Randomized Controlled Trials. Curr Diabetes Rev 2024; 21:e180124225761. [PMID: 38243955 DOI: 10.2174/0115733998284844240102110559] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is considered a global health challenge with increasing prevalence in recent years. One of the key elements in managing T2DM patients is controlling their lipid profile. Recent studies suggest microbiome-targeted therapy (MTT) as a treatment strategy for enhancing lipid profiles in these patients. OBJECTIVE The current study aimed to investigate the impact of MTT on lipid indices of T2DM patients by performing an umbrella approach. METHODS Three international databases including PubMed, Scopus, and Web of Science were searched from inception up to April 2023 to find meta-analyses evaluating the impact of MTT (prebiotics, probiotics, and synbiotics) on the lipid profile of T2DM patients. Two independent researchers extracted data from the relevant meta-analyses. To find the source of heterogeneity various subgroup analyses were performed. Comprehensive Meta-Analyses (CMA) software version 3 was utilized for the final analysis. RESULTS Based on the results of the current study, MTT had on significant effects total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (ES: - 0.092; 95%CI: -0.111, -0.074; P< 0.001, ES: -0.109; 95%CI: -0.137, -0.081; P< 0.001, ES: -0.036; 95%CI: -0.068, -0.005; P= 0.024, ES: 0.109; 95%CI: 0.056, 0.162; P<0.000, respectively). In subgroup analysis, probiotics showed the most substantial effect on all lipid biomarkers. CONCLUSION This research has provided promising insights into the potential impact of MTT on lipid levels in patients diagnosed with T2DM. Notably, MTT had the greatest impact on HDL levels, followed by TG, TC, and LDL. As a result of our study, MTT is recommended as an adjunctive therapeutic option for T2DM treatment due to its capability to regulate lipid profiles.
Collapse
Affiliation(s)
- Mohammad-Hossein Keivanlou
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
25
|
Chen K, Zheng X, Hu J, Wu M, Zhou Y. Clinical significance of tumor abnormal protein in patients with type 2 diabetes complicated with lung adenocarcinoma in situ. Ann Med 2023; 55:2293243. [PMID: 38375812 PMCID: PMC10732207 DOI: 10.1080/07853890.2023.2293243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/06/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND To investigate the application value of tumor abnormal protein in patients with type 2 diabetes mellitus complicated with lung adenocarcinoma in situ. MATERIALS AND METHODS A total of 140 patients having type 2 diabetes mellitus complicated with lung adenocarcinoma in situ (Group A), 160 patients with type 2 diabetes mellitus (Group B), and 120 healthy controls (Group C) were enrolled in the Department of Thoracic Surgery of the First Affiliated Hospital of Soochow University from November 2021 to December 2022. RESULTS The total cholesterol level was higher in Group A than in Group B (p < 0.05) and Group C (p < 0.01), and it was higher in Group B than in Group C (p < 0.01). The comparison results of cholesterol level were similar to those of tumor abnormal protein, low-density lipoprotein cholesterol, and glycosylated hemoglobin among the three groups. The triglyceride level was higher in Group A than in Group B and Group C (both p < 0.01). Group A had a higher level of high-density lipoprotein cholesterol than Group C (p < 0.01). The fasting plasma glucose level was higher in Group A than in Group B and Group C (both, p < 0.01). These findings indicated that tumor abnormal protein, glycosylated hemoglobin, high-density lipoprotein cholesterol, and fasting plasma glucose were independent factors for patients having type 2 diabetes mellitus complicated with lung adenocarcinoma in situ. CONCLUSION Therefore, detecting tumor abnormal protein levels may help diagnose lung adenocarcinoma in situ in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ke Chen
- Thoracic Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zheng
- Medical Examination Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingcheng Hu
- Endocrine Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengjiao Wu
- Endocrine Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingyi Zhou
- Endocrine Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Paquette S, Thomas SC, Venkataraman K, Appanna VD, Tharmalingam S. The Effects of Oral Probiotics on Type 2 Diabetes Mellitus (T2DM): A Clinical Trial Systematic Literature Review. Nutrients 2023; 15:4690. [PMID: 37960343 PMCID: PMC10648673 DOI: 10.3390/nu15214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) remains a global health concern. Emerging clinical trial (CT) evidence suggests that probiotic intervention may promote a healthy gut microbiome in individuals with T2DM, thereby improving management of the disease. This systematic literature review summarizes thirty-three CTs investigating the use of oral probiotics for the management of T2DM. Here, twenty-one studies (64%) demonstrated an improvement in at least one glycemic parameter, while fifteen studies (45%) showed an improvement in at least one lipid parameter. However, no article in this review was able to establish a uniform decrease in glycemic, lipid, or blood pressure profiles. The lack of consistency across the studies may be attributed to differences in probiotic composition, duration of probiotic consumption, and probiotic dose. An interesting finding of this literature review was the beneficial trend of metformin and probiotic co-administration. Here, patients with T2DM taking metformin demonstrated enhanced glycemic control via the co-administration of probiotics. Taken together, the overall positive findings reported across the studies in combination with minimal adverse effects constitute ground for further quality CTs. This review provides recommendations for future CTs that may address the shortcomings of the current studies and help to extract useful data from future investigations of the use of probiotics in T2DM management.
Collapse
Affiliation(s)
- Simon Paquette
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
| | - Sean C. Thomas
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, Sudbury, ON P3E 2C6, Canada; (S.P.); (S.C.T.); (K.V.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
27
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
28
|
Nazari M, Ashtary-Larky D, Nikbaf-Shandiz M, Goudarzi K, Bagheri R, Dolatshahi S, Omran HS, Amirani N, Ghanavati M, Asbaghi O. Zinc supplementation and cardiovascular disease risk factors: A GRADE-assessed systematic review and dose-response meta-analysis. J Trace Elem Med Biol 2023; 79:127244. [PMID: 37399684 DOI: 10.1016/j.jtemb.2023.127244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVE A deficit in zinc has been related to a higher probability of developing cardiovascular diseases (CVDs). The anti-inflammatory and anti-oxidative capabilities of zinc may have a wide range of therapeutic impacts on CVDs. We conducted a comprehensive systematic review and meta-analysis of the possible impacts that zinc supplementation may have on the risk factors associated with CVDs. METHODS To identify eligible randomized clinical trials (RCTs) evaluating the effects of zinc supplementation on CVDs risk factors, electronic databases including PubMed, Web of Science, and Scopus were systematically searched up to January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random effects models were estimated and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS Of 23165 initial records, 75 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), Hemoglobin A1C (HbA1C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH), with no noticeable effects on low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, systolic blood pressure (SBP), diastolic blood pressure (DBP), aspartate transaminase (AST), and Alanine aminotransferase (ALT). CONCLUSION Overall, zinc supplementation may boost recognized coronary risk factors that contribute to the development of CVDs. Future research should be conducted to bolster our results.
Collapse
Affiliation(s)
- Matin Nazari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Iran
| | - Sina Dolatshahi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Meng F, Zhang F, Meng M, Chen Q, Yang Y, Wang W, Xie H, Li X, Gu W, Yu J. Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 on type 2 diabetes mellitus rats. Front Microbiol 2023; 14:1158652. [PMID: 37152739 PMCID: PMC10157401 DOI: 10.3389/fmicb.2023.1158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Many synbiotics are effective for the prevention and treatment of type 2 diabetes mellitus (T2DM). In the treatment of T2DM, synbiotics often regulate the composition of intestinal flora, which autoinducer-2 (AI-2) may play an important role. Whether the changes of intestinal flora are related to AI-2 during synbiotics treatment of T2DM is a topic worth studying. We elucidated the effects of synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 (SML) on T2DM rats. Male Spraque-Dawley rats were injected intraperitoneally with streptozotocin (STZ) and randomly grouped. After that, biochemical parameters, intestinal flora, fecal AI-2, and intestinal colonization of L. reuteri were detected. The results showed that SML had a hypoglycemic effect and mitigated the organ lesions of the liver and pancreas. Also, SML regulated biochemical parameters such as short chain fatty acids (SCFAs), lipopolysaccharides (LPS), intercellular cell adhesion molecule-1 (ICAM-1), and tumor necrosis factor-α (TNF-α). On the other hand, the proportion of probiotics, such as Lactobacillus acidophilus, L. reuteri, Bifidobacterium pseudolongum, Lactobacillus murinus, and Lactobacillus johnsonii, were elevated by the treatment of SML. In addition, SML promoted the colonization and proliferation of L. reuteri in the gut. Another thing to consider was that AI-2 was positively correlated with the total number of OTUs sequences and SML boosted AI-2 in the gut. Taken together, these results supported that SML may modulate intestinal flora through AI-2 to treat T2DM. This study provided a novel alternative strategy for the treatment of T2DM in future.
Collapse
Affiliation(s)
- Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiuding Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yaqin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenbo Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Haina Xie
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Wen Gu,
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Jie Yu,
| |
Collapse
|
30
|
Paul P, Kaul R, Harfouche M, Arabi M, Al-Najjar Y, Sarkar A, Saliba R, Chaari A. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol Res 2022; 185:106520. [DOI: 10.1016/j.phrs.2022.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022]
|
31
|
Saadati S, Naseri K, Asbaghi O, Abhari K, Zhang P, Li HB, Gan RY. Nigella sativa supplementation improves cardiometabolic indicators in population with prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Front Nutr 2022; 9:977756. [PMID: 36034891 PMCID: PMC9403837 DOI: 10.3389/fnut.2022.977756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Nigella sativa (N. sativa) from the family Ranunculaceae has medicinal properties. Previous studies have reported promising findings showing that N. sativa may benefit cardiometabolic health; however, current evidence on its cardiometabolic effects on those with prediabetes and type 2 diabetes mellitus (T2DM) is still unclear. Hence, we conducted a systematic review and meta-analysis to assess the efficacy of N. sativa on cardiometabolic parameters in population with prediabetes and T2DM. Methods PubMed/Medline, ISI Web of Science, Scopus, and Cochrane library were systematically searched up to June 20, 2022. Meta-analyses using random-effects models were used. Results Eleven randomized controlled trials (RCTs) were included in the meta-analysis. N. sativa intervention resulted in significant changes in fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), c-reactive protein (CRP), and malondialdehyde (MDA), without overall changes in glucose levels after oral glucose tolerance test (OGTT), fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR), triglyceride, high-density lipoprotein cholesterol (HDL-C), and body mass index (BMI) when compared with the control group. In subgroup analyses, N. sativa supplementation enhanced serum levels of HDL-C in subjects with baseline HDL-C lower than 40 mg/dL. Furthermore, HOMA-IR and BMI values decreased in the N. sativa-supplemented group compared with the control group, when the length of follow-up was more than 8 weeks and the dose was more than 1 g/day for N. sativa supplementation, respectively. Conclusion Our findings indicate that N. sativa supplementation may effectively improve cardiometabolic profiles in individuals with prediabetes and T2DM.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abhari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, National Agricultural Science and Technology Center, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|