1
|
Lan W, Tao L, Mao K, Song S, Liu H, Li Y, Wang X, Yu L, Xiong B. Porous poly (lactic-co-glycolic acid) microspheres loaded with neutral and acidic ginseng polysaccharides ameliorate pneumonia in mice. Carbohydr Polym 2025; 362:123697. [PMID: 40409812 DOI: 10.1016/j.carbpol.2025.123697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
In this study, porous poly (lactic-co-glycolic acid) (PLGA) microspheres loaded with ginseng polysaccharides were successfully prepared and used to ameliorate pneumonia in mice. Fourier transform infrared spectroscopy, and confocal laser scanning microscopy confirmed the successful preparation of porous PLGA microspheres loaded with neutral ginseng polysaccharides (GP-N) and acidic ginseng polysaccharides (GP-S). Porous PLGA microspheres loaded with GP-N and GP-S had good release profiles. In vitro tests revealed that the release solution of porous PLGA microspheres loaded with GP-N and GP-S was nontoxic. The release solutions of porous PLGA microspheres loaded with GP-N and GP-S can both effectively reduce tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β. Porous PLGA microspheres loaded with GP-N and GP-S ameliorated mouse pneumonia by modulating cytokine levels and antioxidant enzyme activities. Porous microspheres loaded with GP-S exhibited more potent anti-inflammatory effects than those loaded with GP-N. This phenomenon may be attributed to the presence of uronic acid in the GP-S. Transcriptomics revealed that the potential anti-pneumonia mechanism of porous PLGA microspheres loaded with GP-S may ameliorate pneumonia in mice through cytochrome P450 drug metabolism, arachidonic acid metabolism, and MAPK signaling pathways. These findings provide a theoretical basis for the amelioration of pneumonia using ginseng polysaccharides.
Collapse
Affiliation(s)
- Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Kaixuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Boyu Xiong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
3
|
Pi J, Wang Y, Zhao Y, Yang J. FBXL18 promotes endometrial carcinoma progression via destabilizing DUSP16 and thus activating JNK signaling pathway. Cancer Cell Int 2025; 25:180. [PMID: 40382593 PMCID: PMC12085810 DOI: 10.1186/s12935-025-03808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
OBJECTIVE The therapeutic options for patients with advanced endometrial carcinoma (EC) were still limited and the prognosis remained unfavorable. F-box and leucine-rich repeat protein 18 (FBXL18), belonging to the F-box protein family, was frequently altered in human cancer, while its functional role and underlying mechanisms in EC were largely unexplored. METHODS The expression of FBXL18 in EC tissues and cells were explored using data mining strategies and further experiments. Multiple in vitro assays, including CCK-8, colony formation, wound healing, and Transwell invasion assays, were performed to assess the function of FBXL18 on cell proliferation, migration, and invasion. Bioinformatic analyses, western blot, qRT-PCR, Co-immunoprecipitation and ubiquitination assays were employed to identify the downstream pathway and direct substrate of FBXL18. RESULTS FBXL18 was highly expressed in EC tissues and cell lines, and EC patients with high FBXL18 expression had poor clinical outcome. Loss- and gain-of-function assays showed that silencing FBXL18 suppressed EC cell proliferation, migration, and invasion, while overexpressing FBXL18 caused the opposite effects. Mechanistically, FBXL18 could physically interacted with DUSP16, a dual specificity phosphatase, leading to its ubiquitination and degradation, and thus activating JNK signaling pathway. Upregulation of DUSP16 in EC cells alleviated FBXL18 overexpression-induced activation of JNK signaling pathway, and reversed FBXL18 overexpression-mediated enhanced cell capacities of proliferation, migration, and invasion. CONCLUSION In summary, our study had showcased the elevated expression, prognostic prediction performance, and the malignant tumor-promoting role of FBXL18 in EC. The novel mechanisms underlying this phenotype are that FBXL18 promotes the ubiquitination and degradation of DUSP16, and thus activates JNK/c-JUN signaling to facilitate EC progression.
Collapse
Affiliation(s)
- Jie Pi
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yong Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuzi Zhao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Bei Y, Wang T, Guan S. Berberine Extends Lifespan in C. elegans Through Multi-Target Synergistic Antioxidant Effects. Antioxidants (Basel) 2025; 14:450. [PMID: 40338239 PMCID: PMC12024168 DOI: 10.3390/antiox14040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Aging is a process of gradual functional decline in complex physiological systems and is closely related to the occurrence of various diseases. Berberine, a bioactive alkaloid derived from Coptis chinensis (Huanglian), has emerged as a promising candidate for anti-aging interventions. This study comprehensively investigated the lifespan-extending effects and molecular mechanisms of berberine in C. elegans through integrated approaches including lifespan assays, locomotor activity analysis, oxidative stress challenges, and transcriptomic profiling. Furthermore, genetic models of mutant and transgenic worms were employed to delineate their interactions with the insulin/IGF-1 signaling (IIS) pathway. Our results demonstrate that berberine extended the mean lifespan of wild-type worms by 27%. By activating transcription factors such as DAF-16/FOXO, HSF-1, and SKN-1/NRF2, berberine upregulated antioxidant enzyme expression, reduced lipofuscin accumulation, and improved stress resistance. Transcriptomic analysis revealed significant changes in lipid metabolism-related genes, particularly in pathways involving fatty acid synthesis, degradation, and sphingolipid metabolism. These findings establish that berberine exerts multi-target anti-aging effects through coordinated activation of stress-responsive pathways and metabolic optimization, providing mechanistic insights for developing natural product-based geroprotective strategies.
Collapse
Affiliation(s)
| | | | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Yang J, Yu Z, Li S, Zhang W, He J, Qu X, Qi Y, Yin Y, Wu J, Chen L, Dong L, Xu W. Identification of Active Ingredients in Ginseng Volatile Oil: A Strategy Combining Computer Virtual Screening With Experimental Validation. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:640-656. [PMID: 39540423 DOI: 10.1002/pca.3456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ginseng volatile oil (GVO) is a valuable active ingredient in ginseng (Panax ginseng C. A. Mey.) with high research potential. Drying procedures alter the real composition of the fresh material, for example, the evaporation of compounds with low boiling point. In this study, the composition of volatile oil in fresh ginseng (FG), sun-dried ginseng (SDG), and red ginseng (RD) was systematically analyzed to clarify the dominant components of FG and their potential pharmacological effects, which provides a basis for application and development of FG. METHODOLOGY GVO was obtained through water vapor distillation and analyzed using GC-MS. Pattern recognition analysis was employed to differentiate components in three processed types of ginseng. Based on this analysis, the active ingredients and key targets were screened. The binding mode and affinity were verified using molecular docking technology. Finally, the anticancer activity of GVO was verified by cell experiments. RESULTS A total of 53 components were identified in three processed types of ginseng by GC-MS. Among them, 32 differential components were screened by pattern recognition analysis. Ultimately, 6 active ingredients (panaxydol, nerolidyl acetate, falcarinol, cis-β-farnesene, γ-elemene, and β-elemene) and 15 key targets were determined by network pharmacology analysis. Molecular docking results revealed that β-elemene exhibited a higher affinity with EGFR, ESR1, and ERK2. Cell experiments indicated that GVO promotes apoptosis in cancer cells. CONCLUSION This research proposed a strategy that integrated "component detection-virtual multitarget screening-active component prediction-experimental verification" to expedite the identification of active ingredients, providing insights for application of FG and the development of functional products.
Collapse
Affiliation(s)
- Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Weijiang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianghua He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyang Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yunpeng Qi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yihui Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Chen X, Gulbahar K, Ding H, Nie C, Gao X. Comparative analysis of proteomics and transcriptomics reveals novel mechanism underlying the antibacterial activity and immune-enhancing properties of horse milk. Front Nutr 2025; 12:1512669. [PMID: 40135224 PMCID: PMC11932903 DOI: 10.3389/fnut.2025.1512669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Background Horse milk is a highly valuable organic food that is a promising alternative to cow milk, exhibiting plenty of healthy and immune benefits to human. However, identification of proteins associated human wellness and underlying molecular mechanism in horse milk remain unclear. Methodology Label-free mass spectrometry-based protein quantification technology was employed to investigate protein composition of animal milk, including cow, goat, camel and horse milk. Prokaryotic expression and disk diffusion assay were applied to acquire and evaluate in vitro antimicrobial activity of candidate proteins. RAW264.7 macrophage model cell line was used to validate effect of proteins on cytotoxicity, apoptosis and immune induction. ROS probe detected cell ROS change and RT-qPCR verified expression of immune response genes induced by proteins. Microscopy was used to observe the effects of protein on the morphological characteristics of bacteria, further transcriptome analysis was performed to investigate transcriptional changes of bacteria induced by candidate proteins. Results A total of 1,335 proteins was identified in cow, goat, camel and horse milk. GO enrichment analysis showed that the proteins related to protein degradation were highly expressed in horse milk compared to other three types of milk, contributing to easier assimilation and palatability. KEGG analysis showed that horse milk contained abundant antimicrobial associated proteins relevant to pathogenic bacterial resistance, leading to the decreased risk of pathogenic diseases. A higher accumulation of proteins associated with caffeine metabolism, amino acid biosynthesis, and glycolysis/gluconeogenesis in horse milk contributes to its distinctive flavor. Notably, highly expressed proteins in horse milk were closely linked to immune signaling pathways, functioning as immune modulators. Importantly, we identified four highly expressed antimicrobial associated proteins in horse milk including LPO, B2M, CD14 and PGL, among them, PGL functioned dually by in vitro antibacterial activity and immune activation. Further transcriptome analysis demonstrated that PGL exerted significant transcriptional changes to bacteria. Enrichment analysis showed PGL could inhibit growth of P. aeruginosa and E. coli by repressing the biosynthesis of secondary metabolites. Conclusion Comparative proteomics revealed immune enhancement and nutrient composition of horse milk compared to cow, goat and camel milk. Identification of PGL showed antibacterial activity and potential medicinal value.
Collapse
Affiliation(s)
- Xueshan Chen
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
| | - Kawuli Gulbahar
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| | - Haiyan Ding
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
| | - Changhong Nie
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| | - Xiaoli Gao
- School of Pharmacy, Xinjiang Medical University, Xinjiang, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
7
|
Liu Y, Liu F, Li C, Zhang T, Han T, Dai Y, Huang N, Tang H, Wang X, Lin S, Xue L, Wu ZB. TRIM21-mediated ubiquitination and phosphorylation of ERK1/2 promotes cell proliferation and drug resistance in pituitary adenomas. Neuro Oncol 2025; 27:727-742. [PMID: 39533840 PMCID: PMC11889717 DOI: 10.1093/neuonc/noae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pituitary adenomas (PAs) are common intracranial tumors and the TRIM family plays a crucial role in cell proliferation and therapeutic resistance of tumors. However, the role of the TRIM family in PAs is not well recognized. METHODS CRISPR screening explored the role of the TRIM family in cell proliferation and drug resistance in PAs. In vitro and in vivo experiments were performed to evaluate the effects of Tripartite Motif Containing 21 (TRIM21). RNA-sequencing, mass spectrometry, immunoprecipitation, and ubiquitination experiments were performed to explore the molecular mechanism. NanoBiT assays were used to screen the drugs reducing TRIM21 expression. RESULTS CRISPR-Cas9 screens identified that TRIM21 facilitated cell proliferation and drug resistance in PAs. Mechanistically, TRIM21 interacted with ERK1/2 through PRY-SPRY domain, leading to ERK1/2 K27-linked ubiquitination. The ERK1/2 ubiquitination promotes the interaction between ERK1/2 and MEK1/2, thereby facilitating the phosphorylation of ERK1/2. However, an excess presence of TRIM21 suppressed the phosphorylation of ERK1/2 and cell proliferation via activating ERK1/2 negative feedback pathways. Importantly, TRIM21 was upregulated in dopamine-resistant prolactinomas and cabergoline-resistant MMQ cells. Furthermore, drug screening identified that Fimepinostat and Quisinostat, can reduce the protein levels of TRIM21, inhibit tumor progression, and increase drug sensitivity. CONCLUSIONS TRIM21 may represent a therapeutic target for tumors, and inhibiting TRIM21 could be a potential strategy for tumor treatment.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanbao Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
| | - Shaojian Lin
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- The First Affiliated Hospital, Henan University, Kaifeng, P.R. China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Fan Y, Wang Q, Zhang Y, Wang Y, Li W, Jiang S, Duan JN. Mechanism of Guishao Yigong decoction in treating colorectal cancer based on network pharmacology and experimental validation. J Pharm Pharmacol 2025; 77:430-445. [PMID: 39352002 DOI: 10.1093/jpp/rgae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/05/2024] [Indexed: 03/06/2025]
Abstract
OBJECTIVES To explore the effective components of Guishao Yigong decoction (GYD) in the treatment of colorectal cancer and reveal its potential mechanism of action. METHODS Through network pharmacology, the main target and signaling pathway of GYD therapy for colorectal cancer (CRC) were found. Subsequently, the effect of GYD was verified by in vitro cell viability measurements, colony formation, and scratch healing tests. The effects of GYD on metabolic pathways in vivo were found through plasma metabolomics. Finally, flow cytometry and qPCR experiments were used to verify the cycle-blocking effect of GYD on CRC cells. KEY FINDINGS Based on the network pharmacological analysis and molecular docking technology, it was found that GYD could restrain the growth of CRC cells by affecting lipid metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathways. A series of cell experiments showed that GYD could inhibit the proliferation, migration and clonogenic ability of CRC cells. Furthermore, the plasma metabolomics results showed that GYD could affect the production of unsaturated fatty acids in mice. Flow cytometry and qPCR experiments further proved that GYD blocked the CRC cells in the G1 phase and modulated the expression of cell cycle-related targets, such as AKT, TP53, CDKN1A, and CDK2. CONCLUSIONS All the results indicated that GYD could regulate the related metabolism of unsaturated fatty acids. Thus, the cell cycle was blocked and the expressions of the key proteins such as AKT and TP53 were regulated, which achieved the purpose of intervention in colorectal cancer.
Collapse
Affiliation(s)
- Yuwen Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Quyi Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Wenwen Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Ji-Nao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
9
|
Goya L, Mateos R. Antioxidant and Anti-inflammatory Effects of Marine Phlorotannins and Bromophenols Supportive of Their Anticancer Potential. Nutr Rev 2025; 83:e1225-e1242. [PMID: 38894623 PMCID: PMC11819485 DOI: 10.1093/nutrit/nuae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Following the goal of optimizing nutrition, the food industry has been continuously working on food reformulation, nutritional patterns, functional foods development, and the general promotion of a healthy lifestyle. To this end, the scientific community has been increasingly investigating natural compounds that could prevent or treat chronic diseases. Phlorotannins and bromophenols are phenolic compounds particularly present in marine organisms. There is extensive evidence that shows their potential in the prevention of noncommunicable diseases, including cancer, the second cause of mortality worldwide. Numerous studies have demonstrated the anticarcinogenic activity of polyphenolic algae compounds both in cell culture and experimental animal models. Although recent reviews are also available, the present update focuses on the most recent findings related to the antioxidant/anti-inflammatory effect of seaweed phenolics, as well as their regulatory capacity for new molecular targets. Additionally, the review addresses and discusses the close link between inflammation and oxidative stress, along with their relationship with tumor onset and progression, including the most recent findings supporting this correlation. Although clinical studies are still needed to support this evidence, phlorotannins and bromophenols constitute an emerging bioactive group with high potential as chemopreventive agents and/or potential adjuvants for existing cancer therapies.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
10
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Li Y, Wang W, She H, Cui Z, Liu Z, Yang H, Zhang J, Zhou X, Bao D, Yao Y, Luo S, Cai R, Shi Y, Ping YF, Mao Q. Kappa opioid receptor internalisation-induced p38 nuclear translocation suppresses glioma progression. Br J Anaesth 2025; 134:759-771. [PMID: 39741108 PMCID: PMC11867070 DOI: 10.1016/j.bja.2024.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Recent studies have implicated a role for perioperative medications in determining patient outcomes after surgery for malignant tumours, including relapse and metastasis. METHODS A combined approach spanned molecular, cellular, and organismal levels, including bioinformatics, immunohistochemical staining of clinical and animal samples, RNA sequencing of glioblastoma multiforme (GBM) cells with Ingenuity Pathway Analysis, lentiviral-mediated gene expression modulation, in vitro cell experiments, and in vivo orthotopic tumour transplantation. RESULTS We observed a significant correlation between increased kappa opioid receptor (KOP receptor) expression and better prognosis in patients with glioma. Exogenous KOP receptor overexpression in GBM cells in vitro induced cell cycle arrest, suppressed cell growth, and promoted apoptosis. Conversely, reducing KOP receptor expression in GBM cells reduced the proportion of cells in S and G2/M phases, accelerating cell growth. KOP receptor overexpression inhibited glioma cell growth and prolonged survival in mice in vivo, while KOP receptor knockdown had the opposite effect. Mechanistically, internalised KOP receptors were found to bind cytoplasmic p38, facilitating its nuclear translocation and phosphorylation, which influences downstream gene expression. The selective KOP receptor agonist TRK-820 triggered KOP receptor internalisation, activated the p38 pathway, and diminished glioma cell viability in vitro. CONCLUSIONS This combined molecular, cellular, and in vivo approach supports use of KOP receptor agonists as potential adjuvant therapeutics for glioma.
Collapse
Affiliation(s)
- Yong Li
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenying Wang
- Department of Rehabilitation, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhibo Cui
- Jinfeng Laboratory, Chongqing, China
| | - Zhengchao Liu
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai Yang
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqiong Zhou
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Yao
- Jinfeng Laboratory, Chongqing, China
| | | | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China; Jinfeng Laboratory, Chongqing, China.
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
12
|
Wu XY, Dong QW, Zhang YB, Li JX, Zhang MQ, Zhang DQ, Cui YL. Cimicifuga heracleifolia kom. Attenuates ulcerative colitis through the PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118892. [PMID: 39395768 DOI: 10.1016/j.jep.2024.118892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cimicifuga heracleifolia Kom. (C. heracleifolia) has demonstrated efficacy in treating gastrointestinal disorders, including splenasthenic diarrhea. Ulcerative colitis (UC), a chronic inflammatory bowel disease, shares similarities with splenasthenic diarrhea. However, the pharmacological effects of C. heracleifolia on UC and the underlying mechanisms remain unexplored. AIM OF THE STUDY The present study investigates the therapeutic potential and mechanisms of C. heracleifolia in UC. METHODS Initially, network pharmacology analysis, encompassing ingredient screening, target prediction, protein-protein interaction (PPI) network analysis, and enrichment analysis, was employed to predict the mechanisms of C. heracleifolia. The findings were further validated using transcriptomics and functional assays in a dextran sulfate sodium (DSS)-induced UC model. Additionally, bioactive compounds were identified through surface plasmon resonance (SPR) analysis, molecular docking, and cell-based assays. RESULTS A total of 52 ingredients of C. heracleifolia were screened, and 32 key targets were identified within a PPI network comprising 285 potential therapeutic targets. Enrichment analysis indicated that the anti-UC effects of C. heracleifolia are mediated through immune response modulation and the inhibition of inflammatory signaling pathways. In vivo experiments showed that C. heracleifolia mitigated histological damage in the colon, reduced the expression of phosphorylated Akt1, nuclear factor-kappa B (NF-κB) p65, and inhibitor of Kappa B kinase α/β (IKKα/β), suppressed the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and enhanced the expression of tight junction proteins. Moreover, cimigenoside, caffeic acid, and methyl caffeate were identified as the bioactive constituents responsible for the UC treatment effects of C. heracleifolia. CONCLUSIONS In summary, this study is the first to demonstrate that C. heracleifolia exerts therapeutic effects on UC by enhancing the intestinal mucosal barrier and inhibiting the phosphatidylinositol 3-kinase (PI3K)/AKT/NF-κB signaling pathway. These findings offer valuable insights into the clinical application of C. heracleifolia for UC management.
Collapse
Affiliation(s)
- Xue-Yi Wu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jia-Xin Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Mei-Qing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
13
|
Bello SF, Xu H, Bolaji UFO, Aloryi KD, Adeola AC, Gibril BAA, Popoola MA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Expression profiling and single nucleotide polymorphism of mitogen-activated protein kinase kinase kinase 8 MAP3K8 in white muscovy ducks (Cairina moschata). Gene 2025; 932:148901. [PMID: 39209181 DOI: 10.1016/j.gene.2024.148901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
A previous study on ovarian and hypothalami transcriptome analysis in white Muscovy duck revealed that MAP3K8 gene participated in MAPK signaling pathway that influence egg production. Additionally, MAP3K8 was predicted as a target gene of miRNA-509-3p that promotes the secretion of oestradiol which is an important hormone in egg ovulation. This suggested that MAP3K8 might have a functional role in the reproductive performance "egg production" of white Muscovy ducks. Herein, we focused on expression level of MAP3K8 in reproductive and non-reproductive tissues of highest (HP) and lowest (LP) egg producing white Muscovy ducks and identified the polymorphism in MAP3K8 and its association with three egg production traits; Age at first egg (AFE), number of eggs at 300 days (N300D) and 59 weeks (N59W). The results of expression level indicated that mRNA of MAP3K8 was significantly (p < 0.01) expressed in the oviduct than in the ovary and hypothalamus. Seven synonymous SNPs were detected, and association analysis showed that g.148303340 G>A and g.148290065 A>G were significantly (p < 0.05) associated with N300D and N59W. The results of this study might serve as molecular marker for marker-assisted selection of white Muscovy ducks for egg production.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Agriculture Research Group, Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305-00100, Nairobi, Kenya
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Umar-Faruq Olayinka Bolaji
- Department of Animal Production, College of Food Science and Agriculture King Saud University, Riyadh, Saudi Arabia
| | - Kelvin Dodzi Aloryi
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Adeniyi Charles Adeola
- Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 Yunnan, China
| | - Bahareldin Ali Abdalla Gibril
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Moshood Abiola Popoola
- Federal College of Animal Health and Production Technology, Moor Plantation, Apata, Ibadan, Nigeria; National Dairy Research Institute, Karnal, India
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
14
|
Ye J, Wang J, Liu R, Chen C, Wang W. The prognostic significance and potential mechanism of PFDN4 in hepatocellular carcinoma. Int Immunopharmacol 2025; 145:113761. [PMID: 39644788 DOI: 10.1016/j.intimp.2024.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
PFDN4, a subunit of the prefoldin complex, has been previously shown to be upregulated in breast and colorectal cancers, where its expression correlates with poor clinical outcomes. This study investigates PFDN4 expression across various cancer types, with a specific focus on its role in hepatocellular carcinoma (HCC) development and progression. Analysis of TCGA data revealed that PFDN4 is highly expressed in several cancers and is associated with poor prognosis. Further validation through multiple databases, tissue microarrays, and clinical samples confirmed that PFDN4 protein levels are significantly elevated in HCC tissues. Meanwhile, multiple database multivariate and univariate Cox regression analyses suggest that PFDN4 is an independent prognostic marker for HCC. To evaluate the functional effects of PFDN4, we established stable HCC cell lines with PFDN4 knockdown and overexpression. Using CCK-8, EdU, wound healing, and Transwell assays, we found that PFDN4 knockdown significantly suppressed cell proliferation, migration, and invasion, while its overexpression enhanced these behaviors. These findings were further validated in vivo. Mechanistically, transcriptome sequencing suggested that PFDN4 modulates HCC cell behavior through the MAPK/ERK signaling pathway, a result confirmed by Western blot and the use of the MAPK/ERK inhibitor SCH772984. Additionally, single-cell RNA sequencing data revealed that PFDN4 is primarily expressed in several immune cell types, including B cells, CD8 + Tex, DC, ILC, mast cells, macrophages, Tprolif, and Treg. In conclusion, our study demonstrates that PFDN4 is upregulated in HCC and drives tumor progression via the MAPK/ERK pathway, highlighting its potential as both a prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Jianguo Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Rongqiang Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China; Laboratory of General Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan, Hubei 430060, China.
| |
Collapse
|
15
|
Gu P, Ding W, Zhu W, Shen L, Zhang L, Wang W, Wang R, Wang W, Wang Y, Yan B, Sun X. MIR4435-2HG: A novel biomarker for triple-negative breast cancer diagnosis and prognosis, activating cancer-associated fibroblasts and driving tumor invasion through EMT associated with JNK/c-Jun and p38 MAPK signaling pathway activation. Int Immunopharmacol 2024; 142:113191. [PMID: 39317050 DOI: 10.1016/j.intimp.2024.113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Breast cancer has the highest incidence rate and causes the most fatalities among all female cancers worldwide. Triple-negative breast cancer (TNBC) is known for its strong invasiveness and higher rates of recurrence. In this research, we aimed to identify MIR4435-2HG as a promising long non-coding RNA (lncRNA) biomarker and therapeutic target for TNBC. METHODS Utilizing clinicopathological information and transcriptome data from The Cancer Genome Atlas (TCGA) database, we assessed the clinical relevance of MIR4435-2HG in breast cancer through univariate and multivariate COX regression, receiver operating characteristic (ROC) analysis, as well as Kaplan-Meier survival analysis. To investigate the biological role of MIR4435-2HG in TNBC, we conducted gene set enrichment analysis (GSEA), as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Additionally, we constructed and validated a nomogram to predict disease-free survival (DFS). Both the R package "pRRophetic" and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm were employed to forecast the sensitivity to different therapeutics between the high- and low-MIR4435-2HG groups. We employed single-cell RNA sequencing analysis and tumor microenvironment infiltration analysis to investigate the potential involvement of MIR4435-2HG in the TNBC tumor microenvironment. Cellular biological behaviors were assessed utilizing CCK-8, transwell assays, and wound-healing assays. Furthermore, we performed RNA-seq, qRT-PCR, and western blotting analyses to elucidate and confirm the specific mechanisms underlying the role of MIR4435-2HG in TNBC. RESULTS In our study, we have identified MIR4435-2HG as a significant diagnostic and prognostic factor for TNBC. We observed that MIR4435-2HG is widely expressed and might have a significant impact on the reshaping of the TNBC tumor microenvironment. Patients with TNBC in the high-MIR4435-2HG group may show reduced sensitivity to cisplatin, doxorubicin, and gemcitabine and have an increased propensity for immune escape. Knockdown of MIR4435-2HG inhibits cancer-associated fibroblasts (CAFs) activation. Notably, MIR4435-2HG predominantly enhances the migratory and invasive capabilities of TNBC cells through the epithelial-mesenchymal transition (EMT) process. Mechanistically, we validated that MIR4435-2HG activates the JNK/c-Jun and p38 non-classical MAPK signaling pathway in TNBC cells. CONCLUSIONS Our findings highlight the significant potential of MIR4435-2HG as a highly promising biomarker for TNBC. Targeting MIR4435-2HG could represent an appealing therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Peng Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wentao Ding
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenting Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ling Shen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Lei Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China; Clinical Medical School, Shanghai General Hospital of Nanjing Medical University, Shanghai 211166, China
| | - Wei Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China
| | - Yanhao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai 200032, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201620, China.
| |
Collapse
|
16
|
Wu TK, Hsieh YH, Hung TW, Lin YC, Lin CL, Liu YJ, Pan YR, Tsai JP. The Anti-Metastatic Action of Oxyresveratrol via Suppression of Phosphoryl-ERK/-PKCα-Mediated Sp1/MMP1 Signaling in Human Renal Carcinoma Cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:5264-5273. [PMID: 39171862 DOI: 10.1002/tox.24400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (p < 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.
Collapse
Affiliation(s)
- Tsai-Kun Wu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Renal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Jou Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Ru Pan
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
17
|
Ghasemi N, Azizi H, Razavi-Amoli SK, Skutella T. The Role of Plzf in Spermatogonial Stem Cell Maintenance and Differentiation: Mapping the Transcriptional Dynamics and Key Interactions. Cells 2024; 13:1930. [PMID: 39682679 PMCID: PMC11640652 DOI: 10.3390/cells13231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (Plzf, also known as Zbtb16) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. Plzf plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis. However, the transcription patterns of Plzf along the seminiferous tubules and its interaction network with adjacent partners still need to be fully elucidated. This study employed immunostaining techniques coupled with Fluidigm quantitative real-time polymerase chain reaction (Fluidigm qPCR) to quantify Plzf expression in undifferentiated and differentiated spermatogonia. Furthermore, we utilized bioinformatics analyses to identify Plzf partners and their associations with other regulatory factors. Immunohistostaining (IMH) revealed a high expression of Plzf in cells near the basal membrane of seminiferous tubules and a lower expression in the middle regions in vivo. Immunocytochemistry (ICC) demonstrated that undifferentiated spermatogonia exhibited significant Plzf positivity, whereas differentiated spermatogonia showed reduced Plzf expression in vitro. Fluidigm qPCR confirmed a significant differential expression of Plzf between undifferentiated and differentiated spermatogonia. In silico differential expression analysis between undifferentiated spermatogonia and spermatids indicated that Plzf is closely associated with Mycn, Lin28a, Kras, Ccnd1, and Jak1, highlighting the importance of these partnerships during spermatogenesis. Our findings suggest that the network of Plzf-related partners and their associated proteins involves differentiation, localization, apoptosis, and signal transduction. This comprehensive approach advances our understanding of Plzf transcription patterns and sheds light on its interactions with other cellular factors, revealing previously obscure pathways and interactions. These insights could lead to more effective diagnostic strategies for reproductive system-related diseases and inform the development of improved therapeutic and clinical applications.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran;
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O. Box 49767, Amol 4615664616, Iran;
| | - Seyedeh-Kiana Razavi-Amoli
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
| |
Collapse
|
18
|
Qin J, Wang C, Zhou X. Glutathione regulates CIA-activated splenic-lymphocytes via NF-κB/MMP-9 and MAPK/PCNA pathways manipulating immune response. Cell Immunol 2024; 405-406:104866. [PMID: 39250860 DOI: 10.1016/j.cellimm.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
Collapse
Affiliation(s)
- Jingying Qin
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Xiaoying Zhou
- School of Pharmacy, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
19
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
20
|
Shi W, Xie H, Ouyang K, Wang S, Xiong H, Woo MW, Zhao Q. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Food Chem 2024; 450:139241. [PMID: 38636382 DOI: 10.1016/j.foodchem.2024.139241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The characteristics of the crosslinking between rice protein (RP) and ferulic acid (FA), gallic acid (GA), or tannin acid (TA) by covalent binding of Laccase and non-covalent binding were evaluated. The RP-polyphenol complexes greatly improved the functionality of RP. The covalent effect with higher polyphenol binding equivalence showed higher emulsion activity than the non-covalent effect. The solubility, and antioxidant activity of covalent binding were higher than that of non-covalent binding in the RP-FA group, but there was a contrasting behavior in the RP-GA group. The RP-FA was most soluble in conjugates, while the RP-GA had the highest solubility in mixtures. It was found that the covalent complexes were more stable in the intestinal tract. The content of polyphenols in the RP-TA group was rapidly increased at the later intestinal digestion, which indicated the high polyphenol-protective effect in this group. Meanwhile, the RP-TA group showed high reducing power but low digestibility.
Collapse
Affiliation(s)
- Wenyi Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Kefan Ouyang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Songyu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Meng Wai Woo
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1142, New Zealand
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
21
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
22
|
Cui Y, Lan L, Lv J, Zhao B, Kong J, Lai Y. Chalcomoracin promotes apoptosis and endoplasmic reticulum stress in hepatocellular carcinoma cells. J Antibiot (Tokyo) 2024; 77:428-435. [PMID: 38724630 DOI: 10.1038/s41429-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Chalcomoracin (CMR), a Diels-Alder adduct obtained from mulberry leaves, demonstrated wide-spectrum anti-cancer activity. Herein, we aimed to explore the function of CMR and how it works in hepatocellular carcinoma (HCC). Human HCC cell lines Hep3B and SNU-387 were cultured and treated with various concentrations of CMR (1.5, 3, and 6 µM). Subsequently, the effects of CMR on cell viability, colony formation, apoptosis, migration, and invasion abilities were studied in vitro. Furthermore, the levels of endoplasmic reticulum (ER) stress-related proteins and mitogen-activated protein kinase (MAPK) pathway-related proteins in cells under CMR exposure were detected using western blot. Experiments in vivo were conducted to examine the effects of CMR on tumor growth in HCC. CMR administration inhibited the viability and clonogenic, migration, and invasion abilities, as well as promoted cell apoptosis and ER stress in Hep3B and SNU-387 cells. In addition, CMR treatment reduced the phosphorylation levels of ERK, P38, and JNK in the MAPK pathway. Moreover, an in vivo study showed that CMR administration could inhibit tumorigenesis and MAPK pathway activity in HCC. Our data indicate that CMR has the potential to inhibit the development of HCC, potentially through the inhibition of the MAPK pathway. These findings suggest that CMR may have promising applications as an anticancer agent in future therapeutics for HCC.
Collapse
Affiliation(s)
- Yongliang Cui
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Liqin Lan
- Department of Intensive Care Unit, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jiahui Lv
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China
| | - Jinfeng Kong
- Department of Liver Disease, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Yongping Lai
- Department of Hepatobiliary Pancreatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| |
Collapse
|
23
|
Wang M, Han Z, Wang X, Cheng Y, Cao Z, Zhang Y, Zhang Y. lncRNA TMEM161B-AS1 screened the onset of oral squamous cell carcinoma in HPV-infected patients, predicted poor prognosis, and regulated cell progression via modulating the miR-651-5p/BDNF axis. Odontology 2024; 112:1010-1022. [PMID: 38376795 DOI: 10.1007/s10266-024-00899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become the most common HPV-related cancer with high invasion and metastasis. Exploring biomarkers for the screening and monitoring of OSCC, especially for the HPV-OSCC, would benefit patients' diagnosis and prognosis. This study evaluated the significance and mechanism of TMEM161B-AS1 and miR-651-5p in HPV-OSCC aiming to provide novel insight into the mechanism of HPV-OSCC development. Expression of TMEM161B-AS1 and miR-561-5p was analyzed in healthy individuals, HPV-infected non-OSCC patients, and HPV-OSCC patients using PCR. Their significance in HPV-OSCC occurrence and prognosis was evaluated by logistic regression, ROC, Kaplan-Meier, and Cox regression analysis. In OSCC cells, CCK8 and Transwell assays were employed for assessing cell growth and metastasis. The luciferase reporter assay and cell transfection were performed to evaluate the regulatory association between TMEM161B-AS1, miR-561-5p, and BDNF. Significant upregulation of TMEM161B-AS1 and downregulation of miR-561-5p were observed in oral HPV-infected patients. Both TMEM161B-AS1 and miR-651-5p served as risk factors for the occurrence of OSCC in oral HPV-infected patients and could distinguish HPV-OSCC patients from HPV-infected non-OSCC patients. Increased TMEM161B-AS1 and reduced miR-561-5p indicated severe development and adverse prognosis of HPV-OSCC patients. In OSCC cells, silencing TMEM161-AS1 suppressed cell proliferation and motility via negatively modulating miR-561-5p. miR-561-5p negatively regulated BDNF, which was considered the underlying mechanism of TMEM161B-AS1. Increasing TMEM161B-AS expression and decreasing miR-561-5p showed the occurrence of OSCC in HPV-infected patients and predicted malignant development and adverse prognosis. TMEME161B-AS1 served as a tumor promoter via regulating the miR-561-5p/BDNF axis.
Collapse
Affiliation(s)
- Mian Wang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Zhengjie Han
- Department of Pathology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, China
| | - Xuewei Wang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yusheng Cheng
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Ziqiang Cao
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China
| | - Yang Zhang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China.
| | - Yang Zhang
- Department of Stomatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, No. 269, Daxue Road, Xuzhou, 221000, Jiangsu Province, China.
| |
Collapse
|
24
|
Marrero AD, Cárdenas C, Castilla L, Ortega-Vidal J, Quesada AR, Martínez-Poveda B, Medina MÁ. Antiangiogenic Potential of an Olive Oil Extract: Insights from a Proteomic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13023-13038. [PMID: 38809962 PMCID: PMC11181319 DOI: 10.1021/acs.jafc.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Extra virgin olive oil (EVOO), a staple of the Mediterranean diet, is rich in phenolic compounds recognized for their potent bioactive effects, including anticancer and anti-inflammatory properties. However, its effects on vascular health remain relatively unexplored. In this study, we examined the impact of a "picual" EVOO extract from Jaén, Spain, on endothelial cells. Proteomic analysis revealed the modulation of angiogenesis-related processes. In subsequent in vitro experiments, the EVOO extract inhibited endothelial cell migration, adhesion, invasion, ECM degradation, and tube formation while inducing apoptosis. These results provide robust evidence of the extract's antiangiogenic potential. Our findings highlight the potential of EVOO extracts in mitigating angiogenesis-related pathologies, such as cancer, macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Casimiro Cárdenas
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Servicios
Centrales de Apoyo a la Investigación (SCAI), Universidad de Málaga, E-29071 Málaga, Spain
| | - Laura Castilla
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Juan Ortega-Vidal
- Departamento
de Química Inorgánica y Orgánica, Campus de Excelencia
Internacional Agroalimentaria ceiA3, Universidad
de Jaén, Jaén E- 23071, Spain
| | - Ana R. Quesada
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de
Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Departamento
de Biología Molecular y Bioquímica, Facultad de Ciencias,
Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain
- Instituto
de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA
Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER
de Enfermedades Raras (CIBERER), Instituto
de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
25
|
Zhang T, Zhong Y, Shi Y, Feng C, Xu L, Chen Z, Sun X, Zhao Y, Sun X. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155550. [PMID: 38522313 DOI: 10.1016/j.phymed.2024.155550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1β, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1β in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Tingwen Zhang
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yue Zhong
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Shi
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Chengcheng Feng
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Zheng Chen
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, No.9 Changchun Road, Chuanying District, Jilin City, Jilin Province, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, No. 2888, Xincheng Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Xialin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China.
| |
Collapse
|
26
|
Chang CF, Chang PC, Lee YC, Pan CY, Chang HM, Wu WJ, Lin MY, Chen CY, Wen ZH, Lee CH. The Antimicrobial Peptide Tilapia Piscidin 4 Induced the Apoptosis of Bladder Cancer Through ERK/SIRT1/PGC-1α Signaling Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10296-2. [PMID: 38805142 DOI: 10.1007/s12602-024-10296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Marine antimicrobial peptides have been demonstrated in numerous studies to possess anti-cancer properties. This research investigation aimed to explore the fundamental molecular mechanisms underlying the antitumor activity of Tilapia piscidin 4 (TP4), an antimicrobial peptide, in human bladder cancer. TP4 exhibited a remarkable inhibitory effect on the proliferation of bladder cancer cells through cell cycle arrest at the G2/M phase. Additionally, TP4 upregulated the expression of cleaved caspase-3, caspase-9, and PARP, leading to the activation of apoptotic pathways in bladder cancer cells. TP4 exhibit a marked rise in mitochondria reactive oxygen species, leading to the subsequent loss of potential for the mitochondrial membrane. Furthermore, the inhibition of mitochondrial oxidative phosphorylation resulted in a decrease in downstream ATP production. Meanwhile, TP4-treated bladder cancer cells showed an increase in Bax and ERK but a decrease in SIRT1, PGC-1α, and Bcl2. ERK activation, SIRT1/PGC-1α-axis, and TP4-induced apoptosis were all significantly reversed by the ERK inhibitor SCH772984. Finally, the inhibitory effect of TP4 on tumor growth has been confirmed in a zebrafish bladder cancer xenotransplantation model. These findings suggest that TP4 may be a potential agents for human bladder cancer through apoptosis induction, ERK activation, and the promotion of SIRT1-mediated signaling pathways.
Collapse
Affiliation(s)
- Chun-Feng Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan
- Division of Urology, Department of Surgery, Kaohsiung Armed Forces General Hospital, Zhongzheng 1st Rd, Kaohsiung, 802301, ROC
| | - Po-Chih Chang
- Division of Thoracic Surgery, Department of Surgery, Weight Management Center Kaohsiung Medical University Hospital/Kaohsiung Medical University, Department of Sports Medicine, Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811532, Taiwan
| | - Hui-Min Chang
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wan-Ju Wu
- Division of Pharmacology and Chinese Medicine, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung, 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung, 83102, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Lien-Hai Rd, Kaohsiung, 804201, Taiwan.
- Department of Marine Biotechnology and Resources, Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
27
|
Malekan M, Haass NK, Rokni GR, Gholizadeh N, Ebrahimzadeh MA, Kazeminejad A. VEGF/VEGFR axis and its signaling in melanoma: Current knowledge toward therapeutic targeting agents and future perspectives. Life Sci 2024; 345:122563. [PMID: 38508233 DOI: 10.1016/j.lfs.2024.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is responsible for most skin cancer-associated deaths globally. The progression of melanoma is influenced by a number of pathogenic processes. Understanding the VEGF/VEGFR axis, which includes VEGF-A, PlGF, VEGF-B, VEGF-C, and VEGF-D and their receptors, VEGFR-1, VEGFR-2, and VEGFR-3, is of great importance in melanoma due to its crucial role in angiogenesis. This axis generates multifactorial and complex cellular signaling, engaging the MAPK/ERK, PI3K/AKT, PKC, PLC-γ, and FAK signaling pathways. Melanoma cell growth and proliferation, migration and metastasis, survival, and acquired resistance to therapy are influenced by this axis. The VEGF/VEGFR axis was extensively examined for their potential as diagnostic/prognostic biomarkers in melanoma patients and results showed that VEGF overexpression can be associated with unfavorable prognosis, higher level of tumor invasion and poor response to therapy. MicroRNAs linking to the VEGF/VEGFR axis were identified and, in this review, divided into two categories according to their functions, some of them promote melanoma angiogenesis (promotive group) and some restrict melanoma angiogenesis (protective group). In addition, the approach of treating melanoma by targeting the VEGF/VEGFR axis has garnered significant interest among researchers. These agents can be divided into two main groups: anti-VEGF and VEGFR inhibitors. These therapeutic options may be a prominent step along with the modern targeting and immune therapies for better coverage of pathological processes leading to melanoma progression and therapy resistance.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | - Ghasem Rahmatpour Rokni
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armaghan Kazeminejad
- Department of Dermatology, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences,Sari, Iran
| |
Collapse
|
28
|
Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, Kumar BR, Dogiparthi LK, Prema S, Nainu F, Rab SO, Doukani K, Emran TB. Polyphenols Targeting MAP Kinase Signaling Pathway in Neurological Diseases: Understanding Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2024; 61:2686-2706. [PMID: 37922063 DOI: 10.1007/s12035-023-03706-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
Polyphenols are a class of secondary metabolic products found in plants that have been extensively studied for how well they regulate biological processes, such as the proliferation of cells, autophagy, and apoptosis. The mitogen-activated protein kinase (MAPK)-mediated signaling cascade is currently identified as a crucial pro-inflammatory pathway that plays a significant role in the development of neuroinflammation. This process has been shown to contribute to the pathogenesis of several neurological conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), CNS damage, and cerebral ischemia. Getting enough polyphenols through eating habits has resulted in mitigating the effects of oxidative stress (OS) and lowering the susceptibility to associated neurodegenerative disorders, including but not limited to multiple sclerosis (MS), AD, stroke, and PD. Polyphenols possess significant promise in dealing with the root cause of neurological conditions by modulating multiple therapeutic targets simultaneously, thereby attenuating their complicated physiology. Several polyphenolic substances have demonstrated beneficial results in various studies and are presently undergoing clinical investigation to treat neurological diseases (NDs). The objective of this review is to provide a comprehensive summary of the different aspects of the MAPK pathway involved in neurological conditions, along with an appraisal of the progress made in using polyphenols to regulate the MAPK signaling system to facilitate the management of NDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sumon Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Lavanya Yaidikar
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, India
| | - B Raj Kumar
- Department of Pharmaceutical Analysis, Moonray Institute of Pharmaceutical Sciences, Raikal (V), Farooq Nagar (Tlq), Shadnagar (M), R.R Dist., Telangana, 501512, India
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, MBU, Tirupati, Andhra Pradesh, India
| | - S Prema
- Crescent School of Pharmacy, BS Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Faculty of Nature and Life Sciences, University of Ibn Khaldoun-Tiaret, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
29
|
Drewe J, Schöning V, Danton O, Schenk A, Boonen G. Machine Learning-Based Analysis Reveals Triterpene Saponins and Their Aglycones in Cimicifuga racemosa as Critical Mediators of AMPK Activation. Pharmaceutics 2024; 16:511. [PMID: 38675172 PMCID: PMC11054181 DOI: 10.3390/pharmaceutics16040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Cimicifuga racemosa (CR) extracts contain diverse constituents such as saponins. These saponins, which act as a defense against herbivores and pathogens also show promise in treating human conditions such as heart failure, pain, hypercholesterolemia, cancer, and inflammation. Some of these effects are mediated by activating AMP-dependent protein kinase (AMPK). Therefore, comprehensive screening for activating constituents in a CR extract is highly desirable. Employing machine learning (ML) techniques such as Deep Neural Networks (DNN), Logistic Regression Classification (LRC), and Random Forest Classification (RFC) with molecular fingerprint MACCS descriptors, 95 CR constituents were classified. Calibration involved 50 randomly chosen positive and negative controls. LRC achieved the highest overall test accuracy (90.2%), but DNN and RFC surpassed it in precision, sensitivity, specificity, and ROC AUC. All CR constituents were predicted as activators, except for three non-triterpene compounds. The validity of these classifications was supported by good calibration, with misclassifications ranging from 3% to 17% across the various models. High sensitivity (84.5-87.2%) and specificity (84.1-91.4%) suggest suitability for screening. The results demonstrate the potential of triterpene saponins and aglycones in activating AMP-dependent protein kinase (AMPK), providing the rationale for further clinical exploration of CR extracts in metabolic pathway-related conditions.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Verena Schöning
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital—University Hospital, 3010 Bern, Switzerland
| | - Ombeline Danton
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Alexander Schenk
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| | - Georg Boonen
- Medical Department, Max Zeller Söhne AG, 8590 Romanshorn, Switzerland; (O.D.); (A.S.); (G.B.)
| |
Collapse
|
30
|
Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol 2024; 602:1579-1594. [PMID: 37462604 DOI: 10.1113/jp283834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 04/21/2024] Open
Abstract
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and the School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Zhou J, Yu J, Chu Q. Comparative transcriptome analysis reveals potential regulatory mechanisms of genes and immune pathways following Vibrio harveyi infection in red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2024; 146:109386. [PMID: 38242261 DOI: 10.1016/j.fsi.2024.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-β), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.
Collapse
Affiliation(s)
- Jiale Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Jingyao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
32
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
33
|
Wu Y, Fang Y, Li Y, Au R, Cheng C, Li W, Xu F, Cui Y, Zhu L, Shen H. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117323. [PMID: 37852337 DOI: 10.1016/j.jep.2023.117323] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.
Collapse
Affiliation(s)
- Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
34
|
Li X, Guan H, Ma C, Dai Y, Su J, Chen X, Yuan Q, Wang J. Combination of bulk RNA sequencing and scRNA sequencing uncover the molecular characteristics of MAPK signaling in kidney renal clear cell carcinoma. Aging (Albany NY) 2024; 16:1414-1439. [PMID: 38217548 PMCID: PMC10866414 DOI: 10.18632/aging.205436] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
The MAPK signaling pathway significantly impacts cancer progression and resistance; however, its functions remain incompletely assessed across various cancers, particularly in kidney renal clear cell carcinoma (KIRC). Therefore, there is an urgent need for comprehensive pan-cancer investigations of MAPK signaling, particularly within the context of KIRC. In this research, we obtained TCGA pan-cancer multi-omics data and conducted a comprehensive analysis of the genomic and transcriptomic characteristics of the MAPK signaling pathway. For in-depth investigation in KIRC, status of MAPK pathway was quantitatively estimated by ssGSEA and Ward algorithm was utilized for cluster analysis. Molecular characteristics and clinical prognoses of KIRC patients with distinct MAPK activities were comprehensively explored using a series of bioinformatics algorithms. Subsequently, a combination of LASSO and COX regression analyses were utilized sequentially to construct a MAPK-related signature to help identify the risk level of each sample. Patients in the C1 subtype exhibited relatively higher levels of MAPK signaling activity, which were associated with abundant immune cell infiltration and favorable clinical outcomes. Single-cell RNA sequencing (scRNA-seq) analysis of KIRC samples identified seven distinct cell types, and endothelial cells in tumor tissues had obviously higher MAPK scores than normal tissues. The immunohistochemistry results indicated the reduced expression levels of PAPSS1, MAP3K11, and SPRED1 in KIRC samples. In conclusion, our study represents the first integration of bulk RNA sequencing and single-cell RNA sequencing to elucidate the molecular characteristics of MAPK signaling in KIRC, providing a solid foundation for precision oncology.
Collapse
Affiliation(s)
- Xiunan Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunfei Dai
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ji Su
- Department of Urology, Central Hospital of Benxi, Benxi, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
35
|
Liang SM, Liang GB, Wang HL, Jiang H, Ma XL, Wei JH, Huang RZ, Zhang Y. Discovery of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide as a potent multi-target antitumor agent with good efficacy, limited toxicity, and low resistance. Eur J Med Chem 2024; 263:115937. [PMID: 37972528 DOI: 10.1016/j.ejmech.2023.115937] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A series of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide derivatives 4-6 were designed, synthesized, and evaluated as novel multi-target antitumor agents. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) results showed that compounds 5j, 5k, and 6j exhibited superior in vitro antiproliferative activity in MGC-803, HepG-2, SKOV-3, and T24 cancer cell lines and the cisplatin-resistant cell line A549/DDP. HepG-2, SKOV-3, and T24 xenograft assay results revealed that compounds 5j, 5k, and 6j exhibited good antitumor effects compared with amonafide. The pathology results indicated that compound 5j exhibited the least comprehensive toxicity among the three compounds, identifying compound 5j as a good candidate antitumor agent with good efficacy, limited toxicity, and low resistance. Compound 5j was thus chose for further antitumor mechanism investigation. Results from the omics research, confocal immunofluorescence, Western blot, transmission electron microscopy, and flow cytometry indicated that compound 5j exerted antitumor effects through multiple mechanisms, including ferroptosis, autophagy, apoptosis, and cell cycle arrest. These results suggest that screening novel 1,8-naphthalimide-based antitumor agents for good efficacy, limited toxicity, and low resistance based on a multi-target drug strategy is feasible.
Collapse
Affiliation(s)
- Si-Min Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Gui-Bin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
36
|
Guo C, Wan L, Li C, Wen Y, Pan H, Zhao M, Wang J, Ma X, Nian Q, Tang J, Zeng J. Natural products for gastric carcinoma prevention and treatment: Focus on their antioxidant stress actions in the Correa's cascade. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155253. [PMID: 38065034 DOI: 10.1016/j.phymed.2023.155253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Correa's cascade is a pathological process beginning from gastritis to gastric precancerous lesions, and finally to gastric carcinoma (GC). While the pathogenesis of GC remains unclear, oxidative stress plays a prominent role throughout the entire Correa's cascade process. Studies have shown that some natural products (NPs) could halt and even reverse the development of the Correa's cascade by targeting oxidative stress. METHODS To review the effects and mechanism by which NPs inhibit the Correa's cascade through targeting oxidative stress, data were collected from PubMed, Embase, Web of Science, ScienceDirect, and China National Knowledge Infrastructure databases from initial establishment to April 2023. NPs were classified and summarized by their mechanisms of action. RESULTS NPs, such as terpenoid, polyphenols and alkaloids, exert multistep antioxidant stress effects on the Correa's cascade. These effects include preventing gastric mucosal inflammation (stage 1), reversing gastric precancerous lesions (stage 2), and inhibiting gastric carcinoma (stage 3). NPs can directly impact the conversion of gastritis to GC by targeting oxidative stress and modulating signaling pathways involving IL-8, Nrf2, TNF-α, NF-κB, and ROS/MAPK. Among which polyphenols have been studied more and are of high research value. CONCLUSIONS NPs display a beneficial multi-step action on the Correa's cascade, and have potential value for clinical application in the prevention and treatment of gastric cancer by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Cui Guo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lina Wan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Chengen Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jundong Wang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources,Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Jianyuan Tang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
37
|
Mi K, Zeng L, Chen Y, Ning J, Zhang S, Zhao P, Yang S. DHX38 enhances proliferation, metastasis, and EMT progression in NSCLC through the G3BP1-mediated MAPK pathway. Cell Signal 2024; 113:110962. [PMID: 37931691 DOI: 10.1016/j.cellsig.2023.110962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a prevalent and aggressive malignancy with limited therapeutic options. Despite advances in treatment, NSCLC remains a major cause of cancer-related death worldwide. Tumor heterogeneity and therapy resistance present challenges in achieving remission. Research is needed to provide molecular insights, identify new targets, and develop personalized therapies to improve outcomes. METHODS The protein expression level and prognostic value of DHX38 in NSCLC were explored in public databases and NSCLC tissue microarrays. DHX38 knockdown and overexpression cell lines were established to evaluate the role of DHX38 in NSCLC. In vitro and in vivo functional experiments were conducted to assess proliferation and metastasis. To determine the underlying molecular mechanism of DHX38 in human NSCLC, proteins that interact with DHX38 were isolated by IP and identified by LC-MS. KEGG analysis of DHX38-interacting proteins revealed the molecular pathway of DHX38 in human NSCLC. Abnormal pathway activation was verified by Western blot analysis and immunohistochemical (IHC) staining. A molecule-specific inhibitor was further used to explore potential therapeutic targets for NSCLC. The pathway-related target that interacted with DHX38 was verified by co-immunoprecipitation(co-IP) experiments. In cell lines with stable DHX38 overexpression, the target protein was knocked down to explore its complementary effect on DHX38 overexpression-induced tumor promotion. RESULTS The protein expression of DHX38 was increased in NSCLC, and patients with high DHX38 expression levels had a poor prognosis. In vitro and in vivo experiments showed that DHX38 promoted the proliferation, migration and invasion of human NSCLC cells. DHX38 overexpression caused abnormal activation of the MAPK pathway and promoted epithelial-mesenchymal transition (EMT) in tumours. SCH772984, a novel specific ERK1/2 inhibitor, significantly reduced the increases in cell proliferation, migration and invasion caused by DHX38 overexpression. The co-IP experiments confirmed that DHX38 interacted with the Ras GTPase-activating protein-binding protein G3BP1. DHX38 regulated the expression of G3BP1. Knocking down G3BP1 in cells with stable DHX38 overexpression prevented DHX38-induced tumor cell proliferation, migration and invasion. Silencing G3BP1 reversed the MAPK pathway activation and EMT induced by DHX38 overexpression. CONCLUSION In NSCLC, DHX38 functions as a tumor promoter. DHX38 modulates G3BP1 expression, leading to the activation of the MAPK signaling pathway, thus promoting tumor cell proliferation, metastasis, and the progression of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ke Mi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peilin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
38
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
39
|
Mukta MM, Hossain MJ, Akter M, Banik B, Mithun MDMZ, Sarwar S, Arefin MS, Islam MR, Islam SN. Cardioprotection of Water Spinach ( Ipomoea aquatica), Wood Apple ( Limonia acidissima) and Linseed ( Linum usitatissimum L.) on Doxorubicin-Induced Cardiotoxicity and Oxidative Stress in Rat Model. Nutr Metab Insights 2023; 16:11786388231212116. [PMID: 38024869 PMCID: PMC10666662 DOI: 10.1177/11786388231212116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives The aim of this study was to investigate the pharmacological efficacy of 3 functional foods (Water spinach, Wood apple, and Linseed) against doxorubicin-induced cardiotoxicity and oxidative stress in rat models. Methods Twenty-five Wistar Albino rats (male and female) were equally classified into 5 groups. Except for the normal control (NC) group, the animals received 2.5 mg/kg doxorubicin (DOX) intra-peritoneal injection at 48 hours intervals to create a dose of 15 mg/kg overall for 14 days. Simply a standard diet was given to the NC and DOX groups. In the 3 treatment groups such as water spinach (DOX + WS), wood apple (DOX + WA), and linseed (DOX + LS), rats were given 14 gm/day/rat fried water spinach, mashed wood apple, roasted linseed, respectively mixed with regular rat diet at 1:1 ratio. Blood and heart samples were collected by sacrificing all the rats on the last of the experiment day (the 15th day). LDH (lactate dehydrogenase), CK-MB (creatine kinase myocardial band), MDA (malondialdehyde), and SOD (superoxide dismutase) were analyzed. Additionally, histopathological analysis was conducted for final observation. Results The functional foods were indicated to lower the serum cardiac biomarkers (LDH and CK-MB) as well as stress marker (MDA) significantly (P < .05) and improved heart function and oxidative stress. However, the change in serum SOD level was noted as statistically insignificant (P > .05). The biochemical outcomes of the food intervention groups were supported by the histological findings found in those groups. Conclusion Consuming the investigated foods containing antioxidant phytochemicals may combat cardiac toxicity and oxidative stress. Nonetheless, thorough investigations and clinical monitoring are required to understand these functional foods' mechanism of action and dose-response effects in treating cardiotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Maisha Majid Mukta
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Mousumi Akter
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Badhan Banik
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | | | - Sneha Sarwar
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Saidul Arefin
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Mohakhali, Dhaka, Bangladesh
| | - Sheikh Nazrul Islam
- Institute of Nutrition and Food Science, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
40
|
Qin YY, Yang Y, Ren YH, Gao F, Wang MJ, Li G, Liu YX, Fan L. A pan-cancer analysis of the MAPK family gene and their association with prognosis, tumor microenvironment, and therapeutic targets. Medicine (Baltimore) 2023; 102:e35829. [PMID: 37960824 PMCID: PMC10637530 DOI: 10.1097/md.0000000000035829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
The mitogen-activated protein kinases family of genes plays a crucial role in a wide range of inflammatory responses in the human body. The MAPK family of genes includes ERK, ERK5, JNK, P-38 mitogen-activated protein kinases. However, the correlation between MAPK family gene expression and pan-cancer prognosis, as well as the tumor microenvironment, has not been extensively studied. This study integrated multiple bioinformatics analysis methods to assess the expression and prognostic value of MAPK family genes, as well as their relationship with tumor microenvironment in patients with pan-cancer. The results showed that ERK, JNK, and P-38 MAPK expression were found to be significantly upregulated in rectum adenocarcinoma (READ), colon adenocarcinoma/rectum adenocarcinoma esophageal carcinoma (COADREAD), and kidney renal clear cell carcinoma (KIRC), and significantly downregulated in acute myeloid leukemia. And the results revealed good prognostic results for ERK, JNK, and P-38 MAPK in READ, COADREAD, and KIRC. We observed significant positive correlation between MAPK family gene expression and immune scores especially dendritic cells in READ, COADREAD, and KIRC. And we observed that the expression levels of MAPK family genes were significantly correlated with the expression of immune-related genes, such as CXCL1, CXCL2, CXCL8, CXCR1, CXCR2, CTLA-4, CD80, CD86, and CD28, suggesting their important role in regulating immune infiltrates and tumor progression. Therefore, our study suggested that MAPK family gene plays an important role in regulating immune infiltrates and tumor progression.
Collapse
Affiliation(s)
- Yuan-Yuan Qin
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yan Yang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yan-Hui Ren
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Feng Gao
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Min-Jie Wang
- Medical Experimental Center, Department of Pharmacology, School of Basic Medical Sciences, Inner Mongolia Medical University, Huhhot, China
| | - Gang Li
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yun-Xia Liu
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Lei Fan
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
41
|
Al Amin M, Emran TB, Khan J, Zehravi M, Sharma I, Patil A, Gupta JK, Jeslin D, Krishnan K, Das R, Nainu F, Ahmad I, Wilairatana P. Research Progress of Indole Alkaloids: Targeting MAP Kinase Signaling Pathways in Cancer Treatment. Cancers (Basel) 2023; 15:5311. [PMID: 38001572 PMCID: PMC10670446 DOI: 10.3390/cancers15225311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the leading cause of morbidity and mortality in people throughout the world. There are many signaling pathways associated with cancerous diseases, from which the Mitogen-activated protein kinase (MAPK) pathway performs a significant role in this regard. Apoptosis and proliferation are correlated with MAPK signaling pathways. Plenty of experimental investigations were carried out to assess the role of indole alkaloids in MAPK-mediated cancerous diseases. Previous reports established that indole alkaloids, such as vincristine and evodiamine are useful small molecules in cancer treatment via the MAPK signaling system. Indole alkaloids have the anticancer potential through different pathways. Vincristine and evodiamine are naturally occurring indole alkaloids that have strong anticancer properties. Additionally, much research is ongoing or completed with molecules belonging to this group. The current review aims to evaluate how indole alkaloids affect the MAPK signaling pathway in cancer treatment. Additionally, we focused on the advancement in the role of indole alkaloids, with the intention of modifying the MAPK signaling pathways to investigate potential new anticancer small molecules. Furthermore, clinical trials with indole alkaloids in cancer treatment are also highlighted.
Collapse
Affiliation(s)
- Md. Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia;
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, Bengaluru 560010, Karnataka, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | - D. Jeslin
- Department of Pharmaceutics, Sree Balaji Medical College and Hospital Campus, Bharath Institute of Higher Education and Research, Chromepet, Chennai 600044, Tamil Nadu, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai 600117, Tamil Nadu, India;
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61411, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
42
|
Yang H, Wei Z, Song Y, Du K, Yin N, Lu H, Li B, Hou L, Xing P, Chen L, Wang C, Xie S. NUAK1 promotes tumor metastasis through upregulating slug transcription in esophageal squamous cell carcinoma. Cancer Cell Int 2023; 23:258. [PMID: 37919754 PMCID: PMC10621130 DOI: 10.1186/s12935-023-03101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Metastasis is still a major cause of poor pathological outcome and prognosis in esophageal squamous cell carcinoma (ESCC) patients. NUAK1 has been reported highly expressed in many human cancers and is associated with the poor prognosis of cancer patients. However, the role of NUAK1 and its underlying signaling mechanism in ESCC metastasis remain unclear. METHODS Expression of NUAK1 in ESCC was detected by real-time quantitative RT-PCR (qRT-PCR), Western blotting and immunohistochemical staining. MTT, colony formation, wound-healing and transwell assays were used to determine the role NUAK1 in vitro. Metastasis was evaluated by use of an experimental pulmonary metastasis model in BALB/c-nu/nu mice. The mechanisms were assessed by using coimmunoprecipitation, immunofluorescence and dual-luciferase reporter gene experiments. RESULTS NUAK1 was highly expressed in ESCC tissues compared with the adjacent normal esophageal epithelial tissues. Moreover, the elevated expression of NUAK1 positively correlated with tumor invasion depth, lymph node metastasis, pathological TNM stage, and poor survival in ESCC patients. Further experiments showed that NUAK1 overexpression did not change the cell viability and colony formation of ESCC cells, while remarkably promoted the migration and invasion in vitro and experimental pulmonary metastasis in vivo. Mechanistically, NUAK1 enhanced the transcription level of Slug, which enhanced the migratory and invasive capability of ESCC cells. Consistently, silencing Slug almost completely diminished the migration and invasion of NUAK1-overexpressing ESCC cells. Further studies demonstrated that NUAK1 upregulated the transcription activity of Slug through activating the JNK/c-Jun pathway. CONCLUSION These results demonstrated that NUAK1 promoted the metastasis of ESCC cells through activating JNK/c-Jun/Slug signaling, indicating NUAK1 is a promising therapeutic target for metastatic ESCC.
Collapse
Affiliation(s)
- Huiru Yang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Zhen Wei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Yifan Song
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Kexin Du
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Nannan Yin
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Hong Lu
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China
| | - Bingbing Li
- Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, 475004, Henan, China
| | - Lili Hou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Panfei Xing
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China
| | - Liang Chen
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
- The Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave., Kaifeng, 475004, Henan, China.
| |
Collapse
|
43
|
Kim MJ, Kulkarni V, Goode MA, Sivesind TE. Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis. J Mol Graph Model 2023; 124:108539. [PMID: 37331258 PMCID: PMC10529808 DOI: 10.1016/j.jmgm.2023.108539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARβ). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | | | - Micah A Goode
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
44
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
45
|
Zhang L, Li W, Liu X, Guo J, Wu X, Wang J. Niclosamide inhibits TGF-β1-induced fibrosis of human Tenon's fibroblasts by regulating the MAPK-ERK1/2 pathway. Exp Eye Res 2023; 235:109628. [PMID: 37619828 DOI: 10.1016/j.exer.2023.109628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Preventing postoperative bleb scar formation is an effective way of improving glaucoma filtration surgery (GFS) outcome. Use of more effective antifibrotic drugs with fewer adverse effects may be a good way to address the problem. In the present study, we use a primary cell model, consisting of Tenon's fibroblasts obtained from patients with glaucoma, which were stimulated with TGF-β1 to induce the fibrotic phenotype. We explored the effects of niclosamide on TGF-β1-induced fibrosis in these cells and examined its underlying mechanism of action. A transcriptome sequencing assay was used to explore possible signaling pathways involved. Niclosamide inhibited cell proliferation and migration, and decreased the levels of alpha-smooth muscle actin, type I and type III collagen in human Tenon's fibroblasts induced by TGF-β1. Niclosamide also induced apoptosis and counteracted TGF-β1-induced cytoskeletal changes and extracellular matrix accumulation. Moreover, niclosamide decreased TGF-β1-induced phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) protein expression in human Tenon's fibroblasts. The results indicate that niclosamide inhibits TGF-β1-induced fibrosis in human Tenon's fibroblasts by blocking the MAPK-ERK1/2 signaling pathway. Thus, niclosamide is a potentially promising antifibrotic drug that could improve glaucoma filtration surgery success rate.
Collapse
Affiliation(s)
- Liyun Zhang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wei Li
- Department of Pediatric Respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China
| | - Junhong Guo
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China
| | - Xueping Wu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
46
|
Rahman MM, Soma MA, Sultana N, Hossain MJ, Sufian MA, Rahman MO, Rashid MA. Exploring therapeutic potential of Woodfordia fruticosa (L.) Kurz leaf and bark focusing on antioxidant, antithrombotic, antimicrobial, anti-inflammatory, analgesic, and antidiarrheal properties. Health Sci Rep 2023; 6:e1654. [PMID: 37885464 PMCID: PMC10599101 DOI: 10.1002/hsr2.1654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Background and Aims The study aimed to evaluate the pharmacological properties of methanolic extracts of leaves and barks of Woodfordia fruticosa (L.) Kurz (family: Lythraceae) focusing on antioxidant, thrombolytic, anti-inflammatory, antibacterial, analgesic, and antidiarrheal effects. Methods 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, clot lysis, disc diffusion, and membrane stabilizing methods were employed to assess in vitro antioxidant, thrombolytic, antibacterial, and anti-inflammatory properties of the leaf and bark methanolic extracts (ME) of W. fruticosa and different organic solvents, that is, petroleum ether (PE), dichloromethane (DCM), chloroform (CL), and aqueous (AQ) fractions. In addition, in vivo central and peripheral analgesic and antidiarrheal activities of both crude extracts were evaluated at two doses (200 and 400 mg/kg of body weight [bw]). Results All the extracts and fractions showed promising antioxidant properties by scavenging DDPH free radicals with IC50 of 6.11-20.79 μg/mL. AQ fraction (41.24%) of leaves and ME (44.90%) of bark exerted notable in vitro thrombolytic activity. The CL fraction of leaves and AQ fraction of the bark showed 43.16% and 45.37% inhibition of RBC hemolysis, respectively, compared to the inhibition of RBC hemolysis by aspirin in a hypotonic-induced membrane stabilizing assay. Besides, both extracts were observed to provide significant (p < 0.001) central and peripheral analgesic responses at both doses of 200 and 400 mg/kg bw. Furthermore, both doses of bark extract (p < 0.001) and the 400 mg/kg bw of leaf extract (p < 0.05) were observed to possess statistically significant antidiarrheal activity. Additionally, in an in vivo acute toxicity investigation, both extracts had a median lethal dose (LD50) greater than 5000 mg/kg bw, indicating their safety level. Conclusion The current study proves the ethnomedicinal uses of W. fruticosa; however, further studies are required for phytochemical screening to isolate the responsible bioactive compounds and discover the lead molecules from the plant species.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Medicinal and Aromatic Plant Research Division, BCSIR Chattogram LaboratoriesBangladesh Council of Scientific and Industrial ResearchChattogramBangladesh
| | | | - Nahid Sultana
- Department of BotanyJagannath UniversityDhakaBangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical SciencesState University of BangladeshDhakaBangladesh
| | - Md. Abu Sufian
- Marketing Strategy DepartmentIncepta Pharmaceuticals Ltd.DhakaBangladesh
| | - M. Oliur Rahman
- Department of Botany, Faculty of Biological SciencesUniversity of DhakaDhakaBangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
47
|
He X, Wang H, Wang R, Li Y, Li S, Cao X, Xu J. HOXC10 promotes esophageal squamous cell carcinoma progression by targeting FOXA3 and indicates poor survival outcome. Heliyon 2023; 9:e21056. [PMID: 37876483 PMCID: PMC10590975 DOI: 10.1016/j.heliyon.2023.e21056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background Esophageal cancer is one of the most unknown and deadliest cancers in the world. Although recent studies have identified some mutations linked to the development of squamous cell carcinoma of the esophagus (ESCC), the specific role of HomeoboxC10 (HOXC10) in the pathogenesis still requires further investigation. Methods Agilent mRNA single-channel gene expression was employed to identify genome-wide gene signatures in ESCC. These signatures were also verified using qRT-PCR, immunohistochemical staining as well as Western blot. The biological functions of HOXC10 were further investigated through cellular studies conducted on ESCC cells. Survival analysis was conducted utilizing the Kaplan-Meier method. The GEPIA database and the STRING website were utilized to predict the potential targets that bind to HOXC10. Co-immunoprecipitation assays were performed to investigate the binding interaction between HOXC10 and Forkhead Box A3 (FOXA3). Animal models were established to analyze the effects of HOXC10 silencing on tumorigenesis in vivo. Results The expression levels of HOXC10 mRNA were found to be upregulated in ESCC. Survival analysis revealed a significant association between abnormally elevated levels of HOXC10 mRNA and an unfavorable prognosis in patients with ESCC. In vitro studies revealed that the knockdown of HOXC10 expression resulted in the inhibition of the proliferation, invasion, and migrating ability of ESCC cells through the upregulation of FOXA3. Furthermore, tumor-bearing mouse models studies demonstrated that HOXC10 through knockdown techniques significantly suppressed ESCC tumor growth. HOXC10 was found to enhance the activation of the MAPK signaling pathway by regulating FOXA3 in ESCC cells. Conclusion These results support a key role for HOXC10 in the tumorigenesis of ESCC by upregulating FOXA3 via the MAPK pathway and highlight its potential as a promising diagnostic and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Xiaoting He
- Oncology Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Huiyu Wang
- Oncology Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Runjie Wang
- Oncology Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Yuting Li
- Oncology Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Suqing Li
- General Surgery Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210012, China
| | - Xiufeng Cao
- General Surgery Department, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210012, China
| | - Junying Xu
- Oncology Department, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| |
Collapse
|
48
|
Rashid PT, Hossain MJ, Zahan MS, Hasan CM, Rashid MA, Al-Mansur MA, Haque MR. Chemico-pharmacological and computational studies of Ophiorrhiza fasciculata D. Don and Psychotria silhetensis Hook. f. focusing cytotoxic, thrombolytic, anti-inflammatory, antioxidant, and antibacterial properties. Heliyon 2023; 9:e20100. [PMID: 37809757 PMCID: PMC10559867 DOI: 10.1016/j.heliyon.2023.e20100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
The current study sought to examine the pharmacological potentials of crude methanolic extracts of Ophiorrhiza fasciculata and Psychotria silhetensis, as well as their various solvent fractionates, with a focus on cytotoxic, thrombolytic, membrane stabilizing, antioxidant, and antibacterial activities via in vitro and in silico approaches. The extensive chromatographic and spectroscopic analyses confirmed and characterized two compounds as (±)-licarin B (1) and stigmasterol (2) from O. fasciculata and P. silhetensis, respectively. Petroleum ether soluble fraction of O. fasciculata and the aqueous soluble fraction of P. silhetensis showed the lowest 50% lethal concentrations (1.41 and 1.94 μg/mL, respectively) in brine shrimp bioassay. Likewise, petroleum ether soluble fraction of O. fasciculata and aqueous soluble fraction of P. silhetensis showed the highest thrombolytic activity with 46.66% and 50.10% lyses of the clot, respectively. The methanol and dichloromethane soluble fractions of O. fasciculata reduced erythrocyte hemolysis by 64.03% and 37.08%, respectively, under hypotonic and heat-induced conditions, compared to 81.97% and 42.12% for standard acetylsalicylic acid. In antioxidant activity test, aqueous soluble fraction O. fasciculata (IC50 = 7.22 μg/mL) revealed promising antioxidant potentialities in comparison to standard butylated hydroxytoluene (IC50 = 21.20 μg/mL). In antibacterial screening, chloroform, and dichloromethane soluble fractions of P. silhetensis showed a mild antibacterial activity compared with the standard drug ciprofloxacin. Additionally, the molecular docking study corroborated the current in vitro findings, and the isolated two constituents had higher binding affinities toward epidermal growth factor receptor, tissue plasminogen activator, vFLIP-IKK gamma stapled peptide dimer, glutathione reductase, and dihydrofolate reductase enzyme than their corresponding standard drugs. In addition, the both isolated compounds exerted favorable pharmacokinetics (absorption, distribution, metabolism, excretion) and toxicological profiles with drug-like qualities in computational-based ADMET and drug likeliness analyses. The current research suggests that both plants have potential as a natural treatment for treating thrombosis, inflammation, and oxidative stress. However, more thorough research is required to thoroughly screen for phytochemicals and pinpoint the precise mechanisms of action of the bioactive metabolites derived from these plants against a broad range of molecular targets.
Collapse
Affiliation(s)
- Parisa Tamannur Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Md Jamal Hossain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Miss Sharmin Zahan
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Choudhury Mahmood Hasan
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka-1205, Bangladesh
| | - Mohammad Rashedul Haque
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
49
|
Xia K, Zheng D, Wei Z, Liu W, Guo W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis 2023; 14:529. [PMID: 37591850 PMCID: PMC10435491 DOI: 10.1038/s41419-023-06048-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly aggressive malignant tumor that is common in the pediatric population and has a high rate of disability and mortality. Recent studies have suggested that the tripartite motif-containing family genes (TRIMs) play critical roles in oncogenesis in several cancers. TRIM26, one of the TRIMs family genes, was more frequently reported to exert a tumor-suppressive role, while its detailed functional roles in the osteosarcoma progression were still unknown and require further investigation. Herein, we found that TRIM26 was markedly downregulated in osteosarcoma tissues and cells. Survival analysis revealed that higher expression of TRIM26 was associated with better prognosis and its expression was an independent protective factor in osteosarcoma. Functional analysis demonstrated that overexpression of TRIM26 inhibited osteosarcoma cell proliferation and invasion via inhibiting the EMT process and MEK/ERK signaling. In contrast, the silence of TRIM26 caused the opposite effect. RACK1, a member of the Trp-Asp repeat protein family, was identified as a novel target of TRIM26. TRIM26 could interact with RACK1 and accelerate the degradation of RACK1, thus inactivation of MEK/ERK signaling. Overexpression of RACK1 could attenuate the inhibitory effect of TRIM26 overexpression on p-MEK1/2 and p-ERK1/2, and silence of RACK1 could partly impair the effect of TRIM26 knockdown-induced upregulation of p-MEK1/2 and p-ERK1/2. Further, a series of gain- and loss-of-function experiments showed that decreased malignant behaviors including cell proliferation and invasion in TRIM26-upregulated cells were reversed when RACK1 was overexpressed, whereas RACK1 knockdown diminished the increased malignant phenotypes in TRIM26-silenced osteosarcoma cells. In conclusion, our study indicated that TRIM26 inhibited osteosarcoma progression via promoting proteasomal degradation of RACK1, thereby resulting in inactivation of MEK/ERK signaling, and impeding the EMT process.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
50
|
Abusaliya A, Jeong SH, Bhosale PB, Kim HH, Park MY, Kim E, Won CK, Park KI, Heo JD, Kim HW, Ahn M, Seong JK, Kim GS. Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of p38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin-A Flavonoid with Therapeutic Potential. Nutrients 2023; 15:3407. [PMID: 37571343 PMCID: PMC10420889 DOI: 10.3390/nu15153407] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis and a low survival rate. Drugs without side effects are desperately needed since chemotherapy has a negative effect on the host cells. Previous research has firmly established that plant-based compounds have significant bioactivities without a negative impact on the host. Flavonoids, in particular, are a class of compounds with both anti-inflammatory and anti-cancer properties. Prunetrin (PUR) is a glycosyloxyisoflavone (Prunetin 4'-O-glucoside) derived from Prunus sp., and its other form, called prunetin, showed optimistic results in an anti-cancerous study. Hence, we aimed to discover the anti-cancer ability of prunetrin in liver cancer Hep3B cells. Our cytotoxicity results showed that PUR can decrease cell viability. The colony formation assay confirms this strongly and correlates with cell cytotoxicity results. Prunetrin, in a dose-dependent manner, arrested the cell cycle in the G2/M phase and decreased the expression of cyclin proteins such as Cyclin B1, CDK1/CDC2, and CDC25c. Prunetrin treatment also promoted the strong cleavage of two important apoptotic hallmark proteins called PARP and caspase-3. It also confirms that apoptosis occurs through the mitochondrial pathway through increased expression of cleaved caspase-9 and increased levels of the pro-apoptotic protein Bak. Bak was significantly increased with the declining expression of the anti-apoptotic protein Bcl-xL. Next, it inhibits the mTOR/AKT signaling pathways, proving that prunetrin includes apoptosis and decreases cell viability by suppressing these pathways. Further, it was also observed that the activation of p38-MAPK was dose-dependent. Taken together, they provide evidence that prunetrin has an anti-cancerous ability in Hep3B liver cancer cells by arresting the cell cycle via p38 and inhibiting mTOR/AKT.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Eunhye Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Chung Kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Kwang Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea; (A.A.)
| |
Collapse
|