1
|
Liu M, Ke M, Lu H, Feng Z, Wang K, Wang D, Wang K, Bai Y, Yang S, Miao L, Chen Q, Sun M, Shan C, Hu J, Jiang L, Jin H, Hu J, Huang C, Wang R, Zhao W, Yu F. A novel cinnamic acid derivative for hepatocellular carcinoma therapy by degrading METTL16 protein. Bioorg Med Chem 2025; 124:118178. [PMID: 40186923 DOI: 10.1016/j.bmc.2025.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The RNA methyltransferase methyltransferaselike protein 16 (METTL16) is upregulated in a large proportion of hepatocellular carcinoma (HCC), and its high expression is associated with poor clinical outcomes. METTL16 deletion inhibits HCC growth in vitro and in vivo. Referencing the structure of cinnamic acid, here we designed and synthesized a novel series of small molecular compounds, and found through bioactivity screening that compound 15a effectively reduced METTL16 level and modulated oncogenic PI3K/AKT pathway signaling. Compound 15a inhibited the proliferation and migration of HepG2 cells, and induced apoptosis in vitro. Furthermore, compound 15a significantly inhibited the growth of patient-derived HCC xenografts in nude mice with greater efficacy than the multi-kinase inhibitor lenvatinib. The promising efficacy and good biosafety profile of compound 15a enables us to further develop this compound for treating patients with HCC and possibly other cancers in clinic.
Collapse
Affiliation(s)
- Mingyang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Muyan Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongchen Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Ziyu Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Danyang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Kun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Yueping Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China; Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Song Yang
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Lu Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Qiang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore.
| | - Lingyu Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China
| | - Hongzhen Jin
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China
| | - Jinfang Hu
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Tiancheng Drug Assessment Co., Ltd, Tianjin 300193, Chinaa.
| | - Changjiang Huang
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Tiancheng Drug Assessment Co., Ltd, Tianjin 300193, Chinaa.
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China; Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China; Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road, Haihe Education Park, Tianjin 300350, China.
| | - Fan Yu
- Qingdao Central Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, No. 369 Dengyun Road, Qingdao 266113, China.
| |
Collapse
|
2
|
Gao X, Bian T, Wei X, Xu M, Ren J, Zhao Y, Zheng Y, Li X. Exploration of mechanism of Bufalin and Bufalin derivatives in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156686. [PMID: 40220402 DOI: 10.1016/j.phymed.2025.156686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Bufalin, a promising candidate for the treatment of hepatocellular carcinoma (HCC), has garnered interest from researchers in exploring its pharmacological mechanisms. The traditional single-target research method makes it difficult to elucidate the molecular mechanism systematically, and there are still limitations. PURPOSE To explore the synergistic mechanisms of Bufalin and its derivatives in the treatment of HCC through quantitative and integrated analysis of big data, this study provides a reference for clinical screening of anti-liver cancer drugs and accelerates the research and development of new drugs. METHODS The literature on the anti-liver cancer activity of Bufalin was searched, the research trends and hotspots were analyzed, and the hot targets were identified. Potential targets and signaling pathways were predicted and compared with established targets. To evaluate the affinity of Bufalin and its derivatives with key targets and validate the results of network pharmacology. The structure-activity relationships and pathways were reviewed, and key pharmacophore and potential pathways were identified. RESULTS Analysis of 302 literatures showed that Na+/K+-ATPase was a hot target in the anti-liver cancer mechanism of Bufalin. 76 potential targets are primarily associated with pathways such as PI3K/AKT/mTOR, Hedgehog, and AMPK/mTOR, which play roles in regulating key targets like phosphoinositide 3-kinase (PIK3), adenosine monophosphate-activated protein kinase (AMPK), and epidermal growth factor receptor (EGFR). Bufalin derivatives have a higher affinity with key targets. The cdocker interaction energy (CIE) of BF211, compound 1, and compound 2 with PI3K were -48.0722 kcal/mol, -50.8791 kcal/mol, and -59.7326 kcal/mol, respectively, which were significantly lower than Bufalin (-26.0859 kcal/mol). CONCLUSIONS Bufalin and its derivatives have significant anti-HCC activity and show good potential for drug development. Their mechanism of action involves a complex network of AMPK targets and PI3K/AKT/mTOR signaling pathways. In the future, specific inhibitors should be developed against these targets and pathways as a new therapeutic strategy for HCC. Among them, compounds 2, 7, and 8 have a higher affinity for potential targets than Bufalin and its other derivatives and have higher research value. In addition, α-pyrone is the key pharmacophore of Bufalin, and structural modification of the C3 position can significantly regulate its cytotoxicity and solubility. Therefore, optimization of the structure of the C3 position is expected to reduce the toxicity and improve the water solubility of Bufalin, overcoming the limitations of its clinical application and providing a safer and more effective solution for the treatment of HCC.
Collapse
Affiliation(s)
- Xinchen Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tianrun Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyu Wei
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengsi Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Ren
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanchao Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiankuan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Wei W, Gan Y, Zhang X, Chen Y, Huang Z, Wang S, Xie X, Li Y, Qin P, Jiang L. Exploring the level of metabolic reprogramming and the role of prognostic factor SF3A3 in hepatocellular carcinoma through integrated single-cell landscape analysis. PLoS One 2025; 20:e0323559. [PMID: 40424306 PMCID: PMC12111341 DOI: 10.1371/journal.pone.0323559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/09/2025] [Indexed: 05/29/2025] Open
Abstract
This study aims to investigate metabolic reprogramming heterogeneity in hepatocellular carcinoma (HCC) cells and identify novel therapeutic targets for HCC treatment. Single-cell RNA sequencing data from public databases were used to analyze the TME of HCC and reveal the characteristics of different cell subsets, including mononuclear phagocytes, epithelial cells, endothelial cells, NK/T cells, B cells, and unknown cells. The analysis revealed that these cell subsets play their own unique roles in tumor progression and immune escape. Analysis of copy number variations (CNVs) was performed on tumor-derived epithelial cells, with the epithelial cells in Cluster 3 subgroup showing the highest CNV levels. Gene Ontology (GO) enrichment analysis revealed that these cell subsets were involved in a variety of biological processes such as immune response, cell communication, and metabolic pathways, which were consistent with their functional roles. Pseudotemporal analysis further delineated the malignant trajectory of HCC cells, with Cluster 3 exhibiting enhanced phosphatidylinositol metabolism, suggesting a critical role for metabolic reprogramming in tumor invasion and proliferation. Furthermore, a diagnostic model incorporating metabolic reprogramming-associated gene signatures was established, which effectively distinguished HCC from normal tissues. Among these signatures, splicing factor 3a subunit 3 (SF3A3) was identified as both diagnostic and independent prognostic biomarker. Mechanistically, SF3A3 knockdown in HCC cell lines significantly suppressed proliferation, migration, PI3K/AKT signaling, and EMT marker expression, thereby demonstrating its role in driving HCC aggressiveness. In conclusion, these findings elucidate novel molecular characteristics of HCC based on metabolic reprogramming, while establishing SF3A3 as a promising multi-faceted target for HCC diagnosis, prognostic assessment, and therapeutic intervention.
Collapse
Affiliation(s)
- Wanshuo Wei
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yuan Gan
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Xindan Zhang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yumo Chen
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
| | - Zengfeng Huang
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
| | - Shuhan Wang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Xiaomei Xie
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Yongle Li
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Pengtao Qin
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
| | - Lihe Jiang
- Scool of Clinical Medicine, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi Province, P.R. China
- The First Affiliated Hospital, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi Province, P.R. China
- Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
- Key Laboratory of Biomarkers and in Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang province, P.R. China.
| |
Collapse
|
4
|
Wang H, Zhu J, Wang H, Zheng W, Wang L, Zhu J, Wang Z, Du Q. The role of FAM111B in the malignant progression and molecular regulation of human glioma through the PI3K/Akt pathway. Chin Neurosurg J 2025; 11:9. [PMID: 40390043 PMCID: PMC12087166 DOI: 10.1186/s41016-025-00395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Gliomas represent the most prevalent primary neoplasm in the adult central nervous system. Despite advancements in therapeutic modalities, such as surgical intervention, radiotherapy, chemotherapy, and tumor treatment, the 5-year survival rate of glioma patients remains low. Therefore, there is an urgent need to develop additional treatment methods. Recent studies have suggested that FAM111B is involved in DNA repair, cell cycle regulation, and apoptosis. FAM111B mutations and overexpression are related to cancer. METHODS We found that FAM111B was significantly overexpressed in glioma tissues compared to the adjacent tissues by analyzing data from the TCGA_GBM&LGG and CGGA databases. Moreover, overexpression of FAM111B was associated with shorter overall survival, and disease-specific survival and tended to increase with disease stage progression. Cellular experiments confirmed these results. These results suggest that overexpression of FAM111B promotes the proliferation, migration, and invasion of glioma cells, whereas the knockdown of FAM111B inhibits these activities. We also found that FAM111B regulated glioma cell proliferation, migration, and invasion via the PI3K/AKT pathway. RESULTS FAM111B is capable of enhancing the proliferation, invasion, and migration capabilities of glioma cells and promotes the malignant progression of glioma via the PI3K/Akt signaling pathway. CONCLUSIONS This is the first study to demonstrate that FAM111B plays a crucial role in the proliferation, migration, and invasion of glioma cells. The malignant phenotype of FAM111B has also been shown to be closely associated with the PI3K/AKT pathway. FAM111B may be a predictive biomarker and a potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Heng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Junrou Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Haiyang Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Wenhao Zheng
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Linjie Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jinhao Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zheng Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
5
|
Zhang Y, Ma T, Lu X, Hua H, Wu L, Chen Z. Mechanical mechanics-reclaiming a new battlefield for chronic liver disease. J Adv Res 2025:S2090-1232(25)00346-7. [PMID: 40379238 DOI: 10.1016/j.jare.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND In the 21st century, significant breakthroughs have been made in the research of chronic liver disease. New biochemical markers of pathogenicity and corresponding drugs continue to emerge. However, current treatment strategies remain unsatisfactory due to complex pathological changes in the liver, including vascular dysfunction, myofibroblast-like transition, and local tissue necrosis in liver sinusoids. These challenges have created an urgent need for innovative, synergistic treatments. Mechanical mechanics is a growing field, with increasing evidence suggesting that mechanical signals play a role similar to that of biochemical markers. These signals influence response speed, conduction intensity, and functional diversity in regulating cell activities. AIM OF REVIEW This review summarizes the three main mechanical characteristics involved in the progression of "liver fibrosis-cirrhosis-hepatocellular carcinoma" and provides an in-depth interpretation of several mechanically-related targets. Finally, current and cutting-edge therapeutic strategies are proposed from a cellular perspective. Despite the many challenges that remain, this review is both relevant and significant.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - XingXing Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin 214400, China.
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Wang Z, Lu J, Liu X, Liu J, Li J. Identification of key exosomes-related genes in hepatitis B virus-related hepatocellular carcinoma. Technol Health Care 2025; 33:1343-1357. [PMID: 40331539 DOI: 10.1177/09287329241296353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One of the primary risk factors for hepatocellular carcinoma (HCC) is the hepatitis B virus (HBV). Exosomes have a significant impact on the dissemination of HBV-infected HCC. This study aimed to screen HBV exosome-related hub genes in HCC for a better understanding of the HCC pathogenic mechanism. First, multiple HBV-induced HCC datasets were collected from the Gene Expression Omnibus (GEO) database, and the exosome-related gene set was obtained from relevant literature. Nine HBV-related HCC exosome hub genes (HP, C9, APOA1, PON1, TTR, LPA, FCN2, FCN3, and MBL2) were selected through differential analysis and network analysis. An analysis of the receiver operation characteristic (ROC) revealed that these genes had good diagnostic value. These hub genes were primarily enriched in biological processes such as the citrate cycle tca cycle, phenylalanine metabolism, and fatty acid metabolism, according to gene set enrichment analysis (GSEA). Furthermore, this study predicted the miRNA (hsa-miR-590-5p) targeting LPA, as well as 12 lncRNAs (AL121655, SAP30-DT, LINC00472, etc.) targeting hsa-miR-590-5p. Finally, nelarabine, methylprednisolone, and methylprednisolone were predicted to be possible medications that target the hub gene based on the CellMiner database. To sum up, this work was crucial for discovering new biomarkers and comprehending the function of exosome-related genes in the growth of HBV-infected HCC.
Collapse
Affiliation(s)
- Zhuoyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianfang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jingfeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
7
|
Kawakami Y, Okada H, Nio K, Hayashi T, Seki A, Nakagawa H, Yamada S, Iida N, Shimakami T, Takatori H, Honda M, Kaneko S, Yamashita T. Transcription factor JUNB is required for transformation of EpCAM-positive hepatocellular carcinoma (HCC) cells into CD90-positive HCC cells in vitro. Cell Death Dis 2025; 16:319. [PMID: 40253402 PMCID: PMC12009367 DOI: 10.1038/s41419-025-07602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/22/2025] [Accepted: 03/27/2025] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) harbors two types of stem cells-epithelial and mesenchymal stem cells. The mechanism by which epithelial EpCAM-positive HCC cells transform into mesenchymal CD90-positive HCC cells remains unclear. On peritumoral fibrotic nodules, epithelial HCC cells form communities with stromal cells, driving tumor growth and malignancy. We aimed to clarify the mechanism by which epithelial cell adhesion molecule (EpCAM)-positive HCC cells contribute to the phenotype of mesenchymal CD90-positive HCC cells that metastasize to distant sites by elucidating the interaction between EpCAM-positive HCC cells and fibroblasts. EpCAM-positive CD90-negative epithelial HCC cells (Huh1, Huh7, and HCC cells) were converted into metastasis-prone CD90-positive HCC cells by co-culture with fibroblasts (Lx-2 and Tig3-20). We identified the transcription factor JUNB as responsible for this altered phenotype. We found that the overexpression of JUNB in CD90-negative epithelial HCC cells resulted in significant transformation to mesenchymal CD90-positive HCC in vitro and in vivo, showing metastatic potential to the lungs. In addition, the JUNB expression in EpCAM-positive hepatoma cells was increased by paracrine stimulation with fibroblast-derived TGFb1. This study unravels the mechanism by which fibroblasts aggravate the malignancy of liver cancer, and the results suggest that JUNB may be a target for treating liver cancer metastasis.
Collapse
Affiliation(s)
- Yutaro Kawakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Hikari Okada
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Akihiro Seki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Hidetoshi Nakagawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Noriho Iida
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | - Shuichi Kaneko
- Information-Based Medicine Development, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| |
Collapse
|
8
|
Lang F, Li Y, Yao R, Jiang M. Osteopontin in Chronic Inflammatory Diseases: Mechanisms, Biomarker Potential, and Therapeutic Strategies. BIOLOGY 2025; 14:428. [PMID: 40282293 PMCID: PMC12024743 DOI: 10.3390/biology14040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), atherosclerosis, and inflammatory bowel disease (IBD), pose major global health concerns. These disorders are marked by persistent inflammation, immune system dysfunction, tissue injury, and fibrosis, ultimately leading to severe organ dysfunction and diminished quality of life. Osteopontin (OPN), a multifunctional extracellular matrix protein, plays a crucial role in immune regulation, inflammation, and tissue remodeling. It promotes immune cell recruitment, stimulates pro-inflammatory cytokine production, and contributes to fibrosis through interactions with integrins and CD44 receptors. Additionally, OPN activates key inflammatory pathways, including NF-κB, MAPK, and PI3K/Akt, further aggravating tissue damage in chronic inflammatory conditions. Our review highlights the role of OPN in chronic inflammation, its potential as a biomarker, and its therapeutic implications. We explore promising preclinical approaches, such as monoclonal antibodies, small molecule inhibitors, and natural compounds like curcumin, which have demonstrated potential in mitigating OPN-driven inflammation. However, challenges persist in selectively targeting OPN while maintaining its essential physiological roles, including bone remodeling and wound healing. Our review offers insights into therapeutic strategies and future research directions.
Collapse
Affiliation(s)
- Fuyuan Lang
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Yuanheng Li
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Ruizhe Yao
- Queen Mary College, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330001, China; (F.L.); (Y.L.); (R.Y.)
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
9
|
Akaoka M, Yanagaki M, Kubota H, Haruki K, Furukawa K, Taniai T, Onda S, Hamura R, Tsunematsu M, Shirai Y, Matsumoto M, Shimoda M, Ikegami T. ARID4B Promotes the Progression of Hepatocellular Carcinoma Through the PI3K/AKT Pathway. Ann Surg Oncol 2025; 32:3009-3018. [PMID: 39751985 DOI: 10.1245/s10434-024-16790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear. METHODS This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019. Their HCC samples were immunohistochemically stained for ARID4B, and ARID4B score was calculated from the intensity and percentage of staining. We retrospectively investigated the association of ARID4B score with disease-free and overall survival, and primary recurrence patterns of HCC. Furthermore, human HCC cell lines (HuH-1 and HuH-7) were knocked down for ARID4B using small-interfering RNA (siRNA), and the expression of PI3K/AKT proteins, cell proliferation, migration, and invasion ability were assessed. RESULTS In multivariate analyses, negative HBs-antigen (p = 0.02), multiple tumors (p < 0.01), microvascular invasion (p = 0.03), and high ARID4B score (p = 0.01) were independent predictors of disease-free survival, while tumor size >5 cm (p = 0.03), microvascular invasion (p < 0.01), and high ARID4B score (p = 0.04) were independent predictors of overall survival. A high ARID4B score was associated with high serum α-fetoprotein (AFP) level (p = 0.04), poor tumor differentiation (p < 0.01), and microvascular invasion (p < 0.01). ARID4B scores were significantly lower in the no recurrence, intrahepatic recurrence, and extrahepatic recurrence groups, in that order. Knockdown of ARID4B using siRNA in human HCC cell lines significantly suppressed the PI3K/AKT pathway, cell proliferation, migration, and invasion. CONCLUSIONS ARID4B may activate the PI3K/AKT signaling pathway in HCC and may be a prognostic factor after hepatic resection for HCC.
Collapse
Affiliation(s)
- Munetoshi Akaoka
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hoshiho Kubota
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Onda
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Tsunematsu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Michinori Matsumoto
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Jain NK, Chandrasekaran B, Khazaleh N, Jain HK, Lal M, Joshi G, Jha V. Computational Network Pharmacology, Molecular Docking, and Molecular Dynamics to Decipher Natural Compounds of Alchornea laxiflora for Liver Cancer Chemotherapy. Pharmaceuticals (Basel) 2025; 18:508. [PMID: 40283942 PMCID: PMC12030508 DOI: 10.3390/ph18040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Background:Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) is utilized as a traditional herb for treating several diseases. Objective: Our study aims to identify the active phytochemical candidates from A. laxiflora and analyses to predict their anticancer activity mechanism by employing network pharmacology, molecular docking, and molecular dynamics (MD). Methods: The phytoconstituents of A. laxiflora were retrieved from the literature, and phytoconstituent-related targets implicated in hepatocellular carcinoma (HCC) were collected from respective databases. Computational methods were employed to recognize essential compounds, hub gene targets, and signaling pathways. Results: Our study has identified 12 potentially bioactive compounds, 150 potential anti-HCC targets, and 15 hub gene targets for A. laxiflora. Molecular docking results recognized the better binding energy values of below -5.6 kcal/mol. Further, MD simulations of the three of the top-scoring protein-ligand complexes (MAPK-3-acetylursolic acid, AKT1-quercetin, and AKT1-3-acetylursolic acid) allowed us to validate the docking results, evaluate the stability of the complexes, and associated conformational changes. Conclusions: Our research claims that phytoconstituents of A. laxiflora are crucial for treating liver cancer, and the recognized protein targets can serve as biomarkers, respectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior 474001, Madhya Pradesh, India;
| | | | - Nasha’t Khazaleh
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan;
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia 475661, Madhya Pradesh, India
| | - Moti Lal
- School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India;
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India;
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Vibhu Jha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
11
|
Li N, Cui N, Bakry IA, Ma Y, Cheng Y, Zhao G, Yang H, Song L, Qiao M, Hai D, Galaverna G, Huang X. Pea Peptide Modulates Abnormal Aβ Production in PC12 Cells Induced by Lead Exposure. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:98. [PMID: 40117046 DOI: 10.1007/s11130-025-01296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 03/23/2025]
Abstract
Lead (Pb) exposure poses significant health risks, particularly in neurodegenerative diseases such as Alzheimer's disease (AD). This study investigates the neuroprotective effects of pea peptide (PP4) on PC12 cells exposed to Pb. Using Cell Counting Kit-8 (CCK-8), pretreatment with PP4 at 50 and 200 µM concentrations significantly improved cell viability compared to Pb-only treated cells (P < 0.05), indicating a protective effect. Moreover, Pb exposure led to increased Amyloid Precursor Protein (APP) expression at 10 and 20 µM after 24 h (P < 0.05), while β-site amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) levels were elevated across all concentrations tested (P < 0.05). We established that PP4 can mitigate Pb-induced cytotoxicity and reduce the expression of APP and BACE1 by activating the Phosphoinositide 3-kinase / Protein Kinase (PI3K/AKT) signaling pathway. This study highlights the potential of PP4 as a therapeutic agent in preventing neurotoxic damage associated with lead exposure, suggesting a novel approach for the management of AD.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China.
| | - Ningning Cui
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Ibrahim A Bakry
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Guangshan Zhao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Huijie Yang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Dan Hai
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, China
| | - Gianni Galaverna
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 17/a, PARMA, 43124, Italy
| | - Xianqing Huang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Huayuan Road 116, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Luo Y, Wan F, Zhang Z, Qin Z, Ren Y. The Role of Chemokine (C-C Motif) Ligand 7 (CCL7) in Hepatocellular Carcinoma: Expression, Function, and Mechanisms. Cancer Med 2025; 14:e70701. [PMID: 40062588 PMCID: PMC11891931 DOI: 10.1002/cam4.70701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
AIM AHepatocellular carcinoma (HCC) is a malignant neoplasm characterized by a poor prognosis, with its incidence rising globally. Chemokine (C-C motif) ligand 7 (CCL7), a chemokine protein, has been implicated in the progression of various cancers. Nonetheless, the specific role of CCL7 in HCC has yet to be elucidated. This study seeks to examine the expression and functional role of CCL7 in the context of HCC. MATERIALS & METHODS Western blot and immunohistochemistry were used to detect the expression of CCL7 in HCC tissues and cell lines. Cell Counting Kit 8 (CCK8) assay, clonogenic assay, and transwell assay were performed to examine the effects of CCL7 on SNU-878 cells. Immunofluorescence was used to analyze the expression of proteins associated with epithelial interstitial transformation (EMT). Western blot was used to detect the activation of the PI3K/AKT pathway. In vivo tumorigenesis experiments were performed to assess the role of CCL7 in HCC tumorigenesis. RESULTS The results showed that the expression of CCL7 was up-regulated in HCC tissues, and exogenous CCL7 promoted the proliferation, migration, invasion, and EMT of SNU-878 cells and VEGF secretion by SNU-878 cells. Furthermore, CCL7 stimulated the activation of the PI3K/AKT pathway. Further analysis revealed that CCL7 targeted CCR1 and CCR2 to enhance the growth, and metastasis of SNU-878 cells and VEGF secretion by SNU-878 cells. CCR1/CCR2 silencing prevented CCL7 from activating the PI3K/AKT signaling pathway in SNU-878 cells. Moreover, CCL7 facilitated HCC tumorigenesis and VEGF expression in vivo. CONCLUSION Our findings indicate that CCL7 plays a promoting role in HCC growth and tumorigenesis, potentially via targeting CCR1 and CCR2 and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangkun Luo
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
- Department of RadiologySichuan Province Orthopedic HospitalChengduSichuanChina
| | - Fei Wan
- Department of RadiologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zhao Zhang
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Zujun Qin
- Department of PathologyAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Yongjun Ren
- Department of Hepatobiliary SurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| |
Collapse
|
13
|
Lei Z, Luo Y, Lu J, Fu Q, Wang C, Chen Q, Zhang Z, Zhang L. FBXO22 promotes HCC angiogenesis and metastasis via RPS5/AKT/HIF-1α/VEGF-A signaling axis. Cancer Gene Ther 2025; 32:198-213. [PMID: 39809956 PMCID: PMC11839479 DOI: 10.1038/s41417-024-00861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025]
Abstract
The gene F-box only protein 22 (FBXO22) has been discovered to promote the development of liver cancer tumors. Nevertheless, there remains considerable ambiguity regarding the involvement of FBXO22 in the processes of angiogenesis and metastasis in hepatocellular carcinoma (HCC). Our study has confirmed a significant upregulation of FBXO22 expression in both HCC samples and cellular models. The increased level of FBXO22 correlates strongly with the number of tumors, presence of vascular invasion, and poor prognosis. Experimental investigations have shown that FBXO22 significantly enhances angiogenesis and metastasis of HCC both in vitro and in vivo. Mechanistically, FBXO22 interacts with and ubiquitinates 40S ribosomal protein S5 (RPS5) on Lys85, thereby promoting its K48-linked ubiquitin-mediated degradation in the cytoplasm. Following a decrease in the expression of RPS5, activation of downstream PI3K/AKT signaling pathway occurs, leading to elevated levels of HIF-1α and vascular endothelial growth factor A (VEGF-A). Our study has shown that FBXO22 facilitates HCC angiogenesis and metastasis via the RPS5/AKT/HIF-1α/VEGF-A signaling axis. Notably, inhibition of FBXO22 enhances the efficacy of Lenvatinib both in vitro and in vivo. Therefore, FBXO22 may present itself as a potential target for therapeutic intervention in the treatment of HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- F-Box Proteins/metabolism
- F-Box Proteins/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Signal Transduction
- Mice
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Neoplasm Metastasis
- Cell Line, Tumor
- Male
- Mice, Nude
- Female
- Gene Expression Regulation, Neoplastic
- Angiogenesis
- Receptors, Cytoplasmic and Nuclear
Collapse
Affiliation(s)
- Zhen Lei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Junli Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
| | - Qian Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Affiliated to Nanchang University), Ganzhou, People's Republic of China.
| |
Collapse
|
14
|
Nagaiah HP, Samsudeen MB, Augustus AR, Shunmugiah KP. In vitro evaluation of silver-zinc oxide-eugenol nanocomposite for enhanced antimicrobial and wound healing applications in diabetic conditions. DISCOVER NANO 2025; 20:14. [PMID: 39847138 PMCID: PMC11757845 DOI: 10.1186/s11671-025-04183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition. The Ag+ZnO+EU nanocomposite demonstrated potent antimicrobial efficacy against a range of wound associated pathogens, including standard and clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Minimum inhibitory concentrations of Ag+ZnO+EU for standard and clinical isolates were significantly lower than those of the individual components, highlighting the synergistic effect of the nanocomposite. Time-kill assays revealed rapid microbial eradication, achieving complete sterility within 240-min. Importantly, the nanocomposite effectively eliminated persister-like cells, which are typically resistant to conventional treatments, suggesting a potential solution for persistent infections. In vitro scratch assays using human keratinocyte cells demonstrated that the Ag+ZnO+EU nanocomposite significantly accelerated wound closure, with near-complete healing observed within 24-h, indicating enhanced cell migration and tissue regeneration. Additionally, the nanocomposite showed potential antidiabetic effects by increasing glucose uptake up to 97.21% in an in vitro assay using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose, a fluorescent glucose analog, suggesting potential applications beyond wound healing. These findings highlight the Ag+ZnO+EU nanocomposite as a promising candidate for addressing both antimicrobial resistance and impaired wound healing in diabetic contexts.
Collapse
|
15
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing cisplatin efficacy in hepatocellular carcinoma with selenocystine: The suppression of DNA repair and inhibition of proliferation in hepatoma cells. Chem Biol Interact 2025; 405:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Wang L, Zhang J, Ye S, Lu F. LncRNA H19 improves mesenchymal characteristics of buffalo (Bubalus bubalis) bone marrow-derived mesenchymal stem cells under hypoxic conditions. Res Vet Sci 2025; 182:105461. [PMID: 39612735 DOI: 10.1016/j.rvsc.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
As adult stem cells with various advantages, Bone marrow-derived mesenchymal stem cells (BMSCs) are valuable resources for veterinary treatment and animal reproduction. Previous studies have shown that hypoxia can induce epithelial-mesenchymal transition (EMT) and improve mesenchymal characteristics of BMSCs in vitro culture. However, the mechanism by which hypoxia improves the interstitial characteristics of buffalo BMSCs (bBMSCs) remains unclear. In this study, the effects of hypoxia on the mesenchymal characteristics of bBMSCs and the expression level of lncRNA H19 were examined, and then the effects of lncRNA H19 on maintaining the mesenchymal characteristics of bBMSCs under hypoxic culture conditions (5 % oxygen) as well as its mechanism also were explored, so as to further understand the molecular mechanism of mesenchymal characteristics maintenance of bBMSCs. The results showed that hypoxic culture conditions promoted EMT of bBMSCs, with lncRNA H19 expression up-regulated. When lncRNA H19 was knocked down in hypoxia, the expression level of Vimentin was down-regulated, the expression level of E-Cadherin was up-regulated, and EMT was inhibited. Meanwhile, the genes (p-PI3K and p-AKT1) involved in PI3K/AKT signaling pathway were inhibited by lncRNA H19 Knockdown. IGF-1 (10 ng/mL), an activator of PI3K/AKT signaling pathway, was added to rescued the inhibition of PI3K/AKT signaling pathway caused by lncRNA H19 Knockdown, with the effects of lncRNA H19 on EMT related genes also partially reversed. These findings not only provide theoretical guidance to elucidate the detailed regulation mechanism of hypoxia on mesenchymal nature maintenance of bBMSCs, but also provide positive support to further establish the stable in vitro culture system of bBMSCs.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China.
| |
Collapse
|
17
|
Yang L, Fang A, Zhou S, Liu H. -RAMP3 promotes hepatocellular carcinoma tumor cell-mediated CCL2 degradation by supporting membrane distribution of ACKR2. Int Immunopharmacol 2024; 143:113419. [PMID: 39437486 DOI: 10.1016/j.intimp.2024.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to explore the potential bind of Receptor Activity-Modifying Protein 3 (RAMP3) with atypical chemokine receptor 2 (ACKR2), and their cooperative regulation on the degradation of the immunosuppressive chemokine CCL2 in the tumor microenvironment of HCC. Bioinformatic analysis was conducted using available bulk-tissue RNA-seq, single-cell RNA-seq, and protein-protein interaction datasets. Human HCC cell line Huh7 and HepG2 and mouse HCC cell line Hepa1-6 were utilized for experiments. Results showed that RAMP3 binds with ACKR2 in HCC tumor cells and promotes the membrane distribution of ACKR2 through RAB4-positive vesicles. RAMP3 promotes CCL2 scavenging through ACKR2 in HCC cells. Mouse RAMP3 inhibited the proliferation of mouse liver cancer cell line (Hepa1-6)-derived syngeneic tumors through ACKR2, reduced the intratumoral concentration of CCL2 in the tumor, and inhibited the phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) and protein kinase B (AKT). In addition, mouse RAMP3 inhibited CD11b+/Gr-1 + myeloid cell infiltration and neovascularization in the tumors through ACKR2. In TCGA-LIHC, RAMP3low/ACKR2low group had the worst progression-free interval (PFI), while the RAMP3high/ACKR2high group had the best overall survival (OS). In summary, restoring RAMP3 expression in HCC cells may generate synergistic support for the anticancer effect of ACKR2.
Collapse
Affiliation(s)
- Lan Yang
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Aiping Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610072 Chengdu, China
| | - Shijie Zhou
- Jinruijie Biotechnology Center, Chengdu 610041, China.
| | - Hao Liu
- Department of Oncology Centre, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
18
|
Chu Z, Zheng Y, Shen Q, Yang K, Wang H, Ma K, Hao Y, Chen J, Li H, Fu X, Zhang C. Neutrophil extracellular traps with low concentrations induce proliferation and migration of human fibroblasts via activating CCDC25/ILK/PI3K/AKT pathway. Biochem Biophys Res Commun 2024; 738:150954. [PMID: 39522234 DOI: 10.1016/j.bbrc.2024.150954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Neutrophil plays an important role in the early stage of wound healing. Excessive neutrophil extracellular traps (NETs) which are produced by neutrophil have been proved as a significant unfavorable factor for wound healing by impairing the function of human skin fibroblasts. However, the effect of NETs with low concentrations on fibroblasts remains unclear. The interaction between CCDC25 and ILK in fibroblast were found to be activated by NET-DNA with low concentrations. Additionally, phosphorylation of PI3K and AKT was increased in NET-stimulated fibroblasts but was inhibited by CCDC25 knockout or ILK knockdown. NETs-induces proliferation and migration ability of fibroblast were also reduced by application of CCDC25 sgRNAs or ILK shRNAs. This study demonstrates that low concentrations of NETs, upon biding with CCDC25, activates the ILK/PI3K/AKT signaling pathway in skin fibroblasts, leading to increased cell proliferation and migration activity.
Collapse
Affiliation(s)
- Ziqiang Chu
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Ye Zheng
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Qi Shen
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Keli Yang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Hui Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, China
| | - Kui Ma
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China; Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yaying Hao
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Junli Chen
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haihong Li
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| | - Xiaobing Fu
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China; Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 51 Fucheng Road, Haidian District, Beijing, 100048, China; Medical Sciences, 2019RU051, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
19
|
Chen X, Song Y, Tian Y, Dong X, Chang Y, Wang W. miR-149-3p Enhances Drug Sensitivity of AML Cells by Inhibiting Warburg Effect Through PI3K/AKT Pathway. Cell Biochem Biophys 2024; 82:3287-3296. [PMID: 39154128 DOI: 10.1007/s12013-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/19/2024]
Abstract
Acute myeloid leukemia (AML) is a kind of heterogeneous hematologic malignancy with high incidence, which is usually treated by intensive and maintenance treatment with large dose of conventional chemotherapy drugs. However, cell resistance is still an unsolved problem. The abnormal expression of miRNAs is closely related to the pathogenesis and progression of AML, and affects the drug resistance of cancer cells. miR-149-3p plays an important role in the resistance of cancer cells to cisplatin, and plays an excellent anti-tumor activity. By studying the function of miR-149-3p, it is expected to find new therapeutic methods to reverse chemotherapy resistance. In order to explore the mechanism of action of miR-149-3p on AML chemotherapeutic drug sensitivity, we explored the relationship between the Warburg effect and AML chemotherapeutic drug resistance. Based on AML cells, transfection of miR-149-3p inhibitor/NC and Warburg effect inhibitor (2DG) and PI3K/AKT pathway inhibitor (LY294002) were used to investigate the mechanism of IFN-γ regulating chemotherapy resistance of AML cells through Warburg effect. Down-regulation of miR-149-3p significantly inhibited drug sensitivity of AML cells. Down-regulation of miR-149-3p significantly promoted proliferation and invasion of AML cells while inhibiting apoptosis by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax. Down-regulation of miR-149-3p significantly promoted the expression of Warburg effect-related proteins hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and Glucose transporter 1 (GLUT1), glucose consumption, lactic acid, and intracellular ATP production. After inhibiting the Warburg effect with 2DG, the effect of miR-149-3p was inhibited, suggesting that upregulation of miR-149-3p reversed AML cell resistance by inhibiting the Warburg effect. In addition, miR-149-3p interacted with AKT1. Down-regulation of miR-149-3p increased the expression of inosine phosphate 3 kinase (PI3K), protein kinase B (AKT), and multi-drug resistance protein (MDR1). LY294002 inhibited the expression of these proteins, and down-regulation of miR-149-3p reversed the effect of LY294002 and improved the drug resistance of cells. Upregulation of miR-149-3p expression may potentially be a therapeutic target for AML resistance. It has been shown to inhibit PI3K/AKT pathway activation, thereby inhibiting the Warburg effect, and affecting cell proliferation, apoptosis, and drug resistance.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Cisplatin/pharmacology
- Warburg Effect, Oncologic/drug effects
- Morpholines/pharmacology
- Hexokinase/metabolism
- Hexokinase/genetics
- Chromones/pharmacology
- HL-60 Cells
Collapse
Affiliation(s)
- Xi Chen
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Song
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiushuai Dong
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Chang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Chen C, Liao J, Sun X. Keratinocyte differentiation factor 1 enhances cervical cancer cell viability and migration by activating the PI3K/AKT pathway. J OBSTET GYNAECOL 2024; 44:2362420. [PMID: 38864525 DOI: 10.1080/01443615.2024.2362420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The aim of This study is to investigate the effects of Keratinocyte differentiation factor 1 (KDF1) on cervical cancer cells and the underlying mechanisms. METHODS The Gene Expression Profiling Interactive Analysis database was used to analyse KDF1 expression in cervical cancer and paracancerous tissue samples. The correlation between the expression of KDF1 and clinicopathological features was also analysed. Cervical cancer cells (HeLa cells) with KDF1 overexpression or knockdown were constructed. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of KDF1 in cervical cancer tissues and cells. In different treatment groups of cervical cancer cells, protein expression of KDF1, cell viability, invasion, and migration were subsequently confirmed by western blotting, CCK-8 assay, transwell assay, and wound healing assay, respectively. A PI3K inhibitor (LY294002) was used to detect the effect of KDF1 on the phosphoinositide 3-kinase (PI3K)/Protein Kinase B (AKT) pathway. RESULTS KDF1 was highly expressed in cervical cancer tissues and cell lines (p < 0.01), and was significantly associated with poor prognosis (p < 0.05). Knockdown of KDF1 in HeLa cells resulted in a significant decrease in cell proliferation, migration, and invasion, as well as phosphorylated PI3K (P-PI3K) and p-AKT levels (p < 0.01). However, KDF1 overexpression activated the PI3K/AKT pathway and significantly enhanced the malignant biological behaviour of cervical cancer cells (p < 0.01). Additionally, the PI3K inhibitor reduced the proliferation, invasion, and migration of HeLa cells overexpressing KDF1 (p < 0.01). CONCLUSION KDF1 enhances cervical cancer viability and migration by activating the PI3K/AKT pathway, and may serve as a therapeutic target for patients with cervical cancer.
Collapse
Affiliation(s)
- Chao Chen
- Department of Obstetrics and Gynecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | | | - Xingxing Sun
- Department of Obstetrics and Gynecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
21
|
Priyanka, Mujwar S, Bharti R, Singh TG, Khatri N. 2,2'- Bipyridine Derivatives Exert Anticancer Effects by Inducing Apoptosis in Hepatocellular Carcinoma (HepG2) Cells. J Hepatocell Carcinoma 2024; 11:2181-2198. [PMID: 39539640 PMCID: PMC11559256 DOI: 10.2147/jhc.s479463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To elucidate the therapeutic potential of 2,2'-bipyridine derivatives [NPS (1-6)] on hepatocellular carcinoma HepG2 cells. Methods The effects on cell survival, colony formation, cellular and nuclear morphology, generation of reactive oxygen species (ROS), change in the integrity of mitochondrial membrane potential (MMP), and apoptosis were investigated. Additionally, docking studies were conducted to analyze and elucidate the interactions between the derivatives and AKT and BRAF proteins. Results NPS derivatives (1, 2, 5 and 6) significantly impaired cell viability of HepG2 cell lines at nanogram range concentrations - 72.11 ng/mL, 154.42 ng/mL, 71.78 ng/mL, and 71.43 ng/mL, while other derivatives were also effective at concentrations below 1 µg/mL. These compounds reduced the colony formation capacity of HepG2 cells in a dose-dependent manner following treatment. Mechanistic studies revealed that these derivatives induce reactive oxygen species (ROS) accumulation and cause mitochondrial membrane depolarization, ultimately triggering apoptosis in HepG2 cells. In the presence of these derivatives, cells demonstrated that 75% of cells underwent apoptosis, compared to 25% in the control group. Additionally, there was a marked increase in mitochondrial depolarization (95% cells) and a threefold rise in ROS levels compared to the controls. Docking studies revealed interactions between the derivatives and the signaling proteins AKT (PDB ID: 6HHF) and BRAF (PDB ID: 8C7Y) with binding affinities ranging from -7.10 to -9.91, highlighting their pivotal role in targeting key players in hepatocellular carcinoma progression. Conclusion The findings of this study underscore the therapeutic potential of these derivatives against HepG2 cells and offer valuable insights for further experimental validation of their efficacy as inhibitors targeting AKT or BRAF signaling pathways.
Collapse
Affiliation(s)
- Priyanka
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Ram Bharti
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Neeraj Khatri
- IMTech Centre for Animal Resources & Experimentation (iCARE), CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
22
|
Huang K, Liu H, Wu Y, Fan W, Zhao Y, Xue M, Tang Y, Feng ST, Li J. Development and validation of survival prediction models for patients with hepatocellular carcinoma treated with transcatheter arterial chemoembolization plus tyrosine kinase inhibitors. LA RADIOLOGIA MEDICA 2024; 129:1597-1610. [PMID: 39400683 DOI: 10.1007/s11547-024-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Due to heterogeneity of molecular biology and microenvironment, therapeutic efficacy varies among hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE) and tyrosine kinase inhibitors (TKIs). We examined combined models using clinicoradiological characteristics, mutational burden of signaling pathways, and radiomics features to predict survival prognosis. METHODS Two cohorts comprising 111 patients with HCC were used to build prognostic models. The training and test cohorts included 78 and 33 individuals, respectively. Mutational burden was calculated based on 17 cancer-associated signaling pathways. Radiomic features were extracted and selected from computed tomography images using a pyradiomics system. Models based on clinicoradiological indicators, mutational burden, and radiomics score (rad-score) were built to predict overall survival (OS) and progression-free survival (PFS). RESULTS Eastern Cooperative Oncology Group performance status, Child-Pugh class, peritumoral enhancement, PI3K_AKT and hypoxia mutational burden, and rad-score were used to create a combined model predicting OS. C-indices were 0.805 (training cohort) and 0.768 (test cohort). The areas under the curve (AUCs) were 0.889, 0.900, and 0.917 for 1-year, 2-year, and 3-year OS, respectively. To predict PFS, alpha-fetoprotein level, tumor enhancement pattern, hypoxia and receptor tyrosine kinase mutational burden, and rad-score were used. C-indices were 0.782 (training cohort) and 0.766 (test cohort). AUCs were 0.885 and 0.925 for 6-month and 12-month PFS, respectively. Calibration and decision curve analyses supported the model's accuracy and clinical potential. CONCLUSIONS The nomogram models are hopeful to predict OS and PFS in patients with intermediate-advanced HCC treated with TACE plus TKIs, offering a promising tool for treatment decisions and monitoring patient progress.
Collapse
Affiliation(s)
- Kun Huang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
- Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Haikuan Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Miao Xue
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Yiyang Tang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2 Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
23
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
24
|
Mokhfi FZ, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Vallamkonda B, Balakrishnan A, Challa M, Singh J, Prasad PD, Ali SS, Ahmad I, Doukani K, Emran TB. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact 2024; 402:111218. [PMID: 39209016 DOI: 10.1016/j.cbi.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.
Collapse
Affiliation(s)
- Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, Tamil Nadu, India
| | - Manjula Challa
- Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli Village, Sidhout Mandal Kadapa District, Andhra Pradesh, India
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - P Dharani Prasad
- Depertment of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine and Legorreta Cancer Center Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
25
|
Huang X, Wang M, Zhang D, Meng J, Liu P. ZDHHC20 Activates AKT Signaling Pathway to Promote Cell Proliferation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1763-1775. [PMID: 39309302 PMCID: PMC11416782 DOI: 10.2147/jhc.s457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Pian Liu
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
26
|
Bi M, Gao K, Bai B, Tian Z. Benchmark N-glycoproteomics study of common differential tissue and serum N-glycoproteins of patients with hepatocellular carcinoma. Anal Chim Acta 2024; 1322:343066. [PMID: 39182988 DOI: 10.1016/j.aca.2024.343066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
For hepatocellular carcinoma (HCC), N-glycosylation has been proved to be widely involved in various aspects of the disease, including development, metastasis, subtyping, diagnosis and prognosis. The common practice is to discover biomarkers in situ of cancer occurrence (i.e., cancer vs. adjacent tissues) yet to clinically monitor in sera because of non-invasiveness. This study benchmarks N-glycoproteomics characterization of common differential tissue and serum N-glycoproteins of patients with HCC. Differential N-glycosylation in matched tissue and serum samples from the same patients were quantitatively characterized at the intact N-glycopeptide molecular level, and 29 common N-glycoproteins were found. Subcellular localization analysis was carried out to confirm the tissue originality. Secreted N-glycoprotein APOH was up-regulated, and transmembrane and intracellular N-glycoproteins including OSMR, GAT2, CSF-1 and MAGI3 were down-regulated.
Collapse
Affiliation(s)
- Ming Bi
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Bai
- Department of Laboratory Medicine, Center of precision Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Fei D, Wang F, Wang Y, Chen J, Chen S, Fan L, Yang L, Ren Q, Duangmano S, Du F, Liu H, Zhou J, Sheng J, Zhao Y, Wu X, Li M, Xiao Z, Zhang Z, Jiang X. Circular RNA ACVR2A promotes the progression of hepatocellular carcinoma through mir-511-5p targeting PI3K-Akt signaling pathway. Mol Cancer 2024; 23:159. [PMID: 39107843 PMCID: PMC11302160 DOI: 10.1186/s12943-024-02074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Circular RNA (circRNA) is thought to mediate the occurrence and development of human cancer and usually acts as a tiny RNA (miRNA) sponge to regulate downstream gene expression. However, it is not clear whether and how circACVR2A (hsa_circ_0001073) is involved in the progression of HCC. The purpose of this study is to clarify the potential role and molecular mechanism of circACVR2A in regulating the progression of hepatocellular carcinoma cells (HCC). The abundance of related proteins in circACVR2A, microRNA (miR511-5p) and PI3K-Akt signaling pathway was determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) or Western blotting. Cell viability, invasion and apoptosis were analyzed by CCK-8, Transwell analysis and Tunel staining, respectively. The interaction between circACVR2A and microRNA was evaluated by double luciferase reporter gene assay. The results showed that circACVR2A was highly expressed in hepatocellular carcinoma cell lines. Our in vivo and in vitro data showed that circACVR2A promoted the proliferation, migration and invasion of HCC. In terms of mechanism, we found that circACVR2A can directly interact with miR511-5p and act as a miRNA sponge to regulate the expression of related proteins in PI3K-Akt signaling pathway.In HCC, circACVR2A can mediate miR-511-5p/mRNA network to activate PI3K signal pathway. This shows that the molecular regulatory network with circACVR2A as the core is a new potential target for diagnosis and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Du Fei
- Department of Anesthesiology, Luzhou People's Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Fang Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Yaohui Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Ji Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Shendong Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Lianpeng Fan
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Luhan Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Qingyi Ren
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Hao Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Jie Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Jing Sheng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People's Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
28
|
Fang N, Liu B, Pan Q, Gong T, Zhan M, Zhao J, Wang Q, Tang Y, Li Y, He J, Xiang T, Sun F, Lu L, Xia J. SMG5 Inhibition Restrains Hepatocellular Carcinoma Growth and Enhances Sorafenib Sensitivity. Mol Cancer Ther 2024; 23:1188-1200. [PMID: 38647536 DOI: 10.1158/1535-7163.mct-23-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Hepatocellular carcinoma (HCC) has a pathogenesis that remains elusive with restricted therapeutic strategies and efficacy. This study aimed to investigate the role of SMG5, a crucial component in nonsense-mediated mRNA decay (NMD) that degrades mRNA containing a premature termination codon, in HCC pathogenesis and therapeutic resistance. We demonstrated an elevated expression of SMG5 in HCC and scrutinized its potential as a therapeutic target. Our findings revealed that SMG5 knockdown not only inhibited the migration, invasion, and proliferation of HCC cells but also influenced sorafenib resistance. Differential gene expression analysis between the control and SMG5 knockdown groups showed an upregulation of methionine adenosyltransferase 1A in the latter. High expression of methionine adenosyltransferase 1A, a catalyst for S-adenosylmethionine (SAM) production, as suggested by The Cancer Genome Atlas data, was indicative of a better prognosis for HCC. Further, an ELISA showed a higher concentration of SAM in SMG5 knockdown cell supernatants. Furthermore, we found that exogenous SAM supplementation enhanced the sensitivity of HCC cells to sorafenib alongside changes in the expression of Bax and Bcl-2, apoptosis-related proteins. Our findings underscore the important role of SMG5 in HCC development and its involvement in sorafenib resistance, highlighting it as a potential target for HCC treatment.
Collapse
Affiliation(s)
- Nan Fang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Qiuzhong Pan
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tingting Gong
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qijing Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jia He
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Fengze Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, P. R. China
| | - Jianchuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
29
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
30
|
Luo B, Zhuang L, Huang J, Shi L, Zhang L, Zhu M, Lu Y, Zhu Q, Sun D, Wang H, Fang H. LncRNA ZFAS1 regulates ATIC transcription and promotes the proliferation and migration of hepatocellular carcinoma through the PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:351. [PMID: 39001904 PMCID: PMC11246283 DOI: 10.1007/s00432-024-05877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) exert a significant influence on various cancer-related processes through their intricate interactions with RNAs. Among these, lncRNA ZFAS1 has been implicated in oncogenic roles in multiple cancer types. Nevertheless, the intricate biological significance and underlying mechanism of ZFAS1 in the initiation and progression of hepatocellular carcinoma (HCC) remain largely unexplored. METHODS Analysis of The Cancer Genome Atlas Program (TCGA) database revealed a notable upregulation of lncRNA ZFAS1 in HCC tissues. To explore its function, we investigated colony formation and performed CCK-8 assays to gauge cellular proliferation and wound healing, Transwell assays to assess cellular migration, and an in vivo study employing a nude mouse model to scrutinize tumor growth and metastasis. Luciferase reporter assay was used to confirm the implicated interactions. Rescue experiments were conducted to unravel the plausible mechanism underlying the activation of the PI3K/AKT pathway by lncRNAs ZFAS1 and ATIC. RESULTS ZFAS1 and ATIC were significantly upregulated in the HCC tissues and cells. ZFAS1 knockdown inhibited cell proliferation and migration. We observed a direct interaction between the lncRNA ZFAS1 and ATIC. ATIC knockdown also suppressed cell proliferation and migration. SC79, an activator of AKT, partially restores the effects of lncRNA ZFAS1/ATIC knockdown on cell proliferation and migration. Knockdown of lncRNA ZFAS1/ATIC inhibited tumor growth and lung metastasis in vivo. CONCLUSION Overall, lncRNA ZFAS1 regulates ATIC transcription and contributes to the growth and migration of HCC cells through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Baoyang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Lin Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical college of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
| | - Ju Huang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Maoqun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Qiang Zhu
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China.
| | - Hao Wang
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
31
|
Han X, Liu Z, Cui M, Lin J, Li Y, Qin H, Sheng J, Zhang X. FGA influences invasion and metastasis of hepatocellular carcinoma through the PI3K/AKT pathway. Aging (Albany NY) 2024; 16:12806-12819. [PMID: 39227068 PMCID: PMC11501378 DOI: 10.18632/aging.206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 09/05/2024]
Abstract
Fibrinogen is an important plasma protein composed of three polypeptide chains, fibrinogen alpha (FGA), beta, and gamma. Apart from being an inflammation regulator, fibrinogen also plays a role in tumor progression. Liver cancer usually has a poor prognosis, with chronic hepatitis being the main cause of liver cirrhosis and hepatocellular carcinoma (HCC). FGA serves as a serological marker for chronic hepatitis, but its relationship with liver cancer remains unclear. Through bioinformatics analysis and agarose gel electrophoresis, we found that FGA was downregulated in HCC and correlated with tumor stage and grade. By constructing both FGA gene knockout and overexpression cell models, we demonstrated that overexpressing FGA inhibited migration and invasion of liver cancer cells through Transwell migration/invasion and wound healing assays. Western blotting experiments showed that FGA overexpression increased the expression of the epithelial-mesenchymal transition marker protein E-cadherin while decreasing N-cadherin and slug protein expression. In addition, FGA knockout activated the PI3K/AKT pathway. In a mouse model of metastatic tumors, overexpression of FGA restricted the spread of tumor cells. In conclusion, FGA exhibits an inhibitory effect on tumor metastasis, providing new insights for the treatment of advanced HCC metastatic tumors.
Collapse
Affiliation(s)
- Xi Han
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
32
|
Rath P, Chauhan A, Ranjan A, Aggarwal D, Rani I, Choudhary R, Shahwan M, Ramniwas S, Joshi H, Haque S, Mathkor DM, Tuli HS. Luteolin: A promising modulator of apoptosis and survival signaling in liver cancer. Pathol Res Pract 2024; 260:155430. [PMID: 39038389 DOI: 10.1016/j.prp.2024.155430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India.
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, India.
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala 134007, India.
| | - Renuka Choudhary
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India.
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shafiul Haque
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia.
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar University, Ambala 133207, India.
| |
Collapse
|
33
|
Lin X, Lin T, Liu M, Chen D, Chen J. Liensinine diperchlorate and artemisitene synergistically attenuate breast cancer progression through suppressing PI3K-AKT signaling and their efficiency in breast cancer patient-derived organoids. Biomed Pharmacother 2024; 176:116871. [PMID: 38861856 DOI: 10.1016/j.biopha.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women around the world. Finding new and efficient drugs has become a crucial aspect of BC treatment. Liensinine diperchlorate (LIN) and artemisitene (ATT) are natural compounds with potential anti-cancer activities extracted from lotus (Nelumbo nucifera Gaertn) seeds and Artemisia annua, respectively. However, the synergistic anti-breast cancer effectiveness and mechanism of LIN and ATT remain unknown. This study intended to reveal the biological functions and underlying mechanism of combined LIN and ATT treatment in BC. Herein, we first reported that LIN and ATT synergistically mitigated the proliferation, migration as well as invasion of BC cells. Besides, LIN boosted the stimulatory effect of ATT on reactive oxygen species (ROS)-mediated apoptosis in BC cells. Interestingly, LIN and ATT synergistically attenuated the growth of BC patient-derived organoids. Moreover, LIN augmented the inhibitory efficacy of ATT on BC growth in vivo without obvious side effects. Furthermore, the inactivation of PI3K-AKT pathway and its regulated proteins contributed to the therapeutic role of LIN and ATT treatment in BC. Intriguingly, a prediction model constructed as per RNA sequencing data indicated that the combination of LIN and ATT treatment might ameliorate the prognosis of BC patients. In conclusion, our present investigation demonstrated that LIN and ATT synergistically inhibited BC cell proliferation, migration as well as invasion and enhanced ROS-mediated apoptosis via suppressing the PI3K-AKT signaling, and suggested that combining LIN and ATT treatment might be a promising choice for BC therapy.
Collapse
Affiliation(s)
- Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Tengyu Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Meng Liu
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Dong Chen
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Jian Chen
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
34
|
Ni D, Qi Z, Wang Y, Man Y, Pang J, Tang W, Chen J, Li J, Li G. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma. Exp Cell Res 2024; 440:114117. [PMID: 38848952 DOI: 10.1016/j.yexcr.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.
Collapse
Affiliation(s)
- Dongsheng Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Zhaolai Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Yuefeng Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
35
|
Sun J, Ma M, Zhong X, Li J, Yi J, Zhang R, Liu X, Peng L, Sun X, Feng W, Hu R, Huang Q, Lv M, Fan K, Zhou X. Investigating the molecular mechanism of Qizhu anticancer prescription in inhibiting hepatocellular carcinoma based on high-resolution mass spectrometry and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117985. [PMID: 38417600 DOI: 10.1016/j.jep.2024.117985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Of all primary liver cancer cases, hepatocellular carcinoma (HCC) accounts for about 90%. Most patients with HCC receive a diagnosis in the medium-to-late stages or with chronic liver disease, have lost the opportunity for radical treatment, such as surgical resection, and their 5-year survival rate is low. Qizhu Anticancer Prescription (QZACP) is an empirical formula composed of traditional Chinese herbs that can clinically relieve HCC symptoms, inhibit the progression of HCC, reduce recurrence rate, and prolong survival; however, its exact mode of action remains unknown. AIM OF THE STUDY This study's purpose was to investigate the mode of action of QZACP in the prevention and treatment of HCC. MATERIALS AND METHODS Initially, drug components in the QZACP decoction were analyzed using high-resolution mass spectrometry. A subcutaneous tumor xenograft model in nude mice was constructed to further analyze the active components of QZACP that had entered tumor tissues through oral administration. Potential targets of QZACP in the prevention and treatment of HCC were identified and then confirmed in vivo via network pharmacology and molecular docking. In addition, regulatory effects of QZACP on HCC cell proliferation and the cell cycle were detected using a CCK-8 assay and flow cytometry. RESULTS High-resolution mass spectrometry revealed that the QZACP decoction contained deacetyl asperulosidic acid methyl ester (DAAME), paeoniflorin, calycosin-7-glucoside, liquiritin, glycyrrhizic acid, astragaloside IV, saikosaponin A, curdione, and atractylenolide II. In nude mice, QZACP could effectively inhibit the growth of subcutaneous tumors, where DAAME, paeoniflorin, liquiritin, and glycyrrhizic acid could enter liver cancer tissues after oral administration. Among these, DAAME was the most highly expressed in HCC tissues and may be an important active component of QZACP for inhibiting HCC. Utilizing network pharmacology, the targets of action of these four drug components were identified. After verification using western blotting, STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2 were identified as targets of QZACP inhibition in HCC. In vitro experiments revealed that QZACP inhibited the proliferation of HCC cells while inducing G0/G1 phase cell cycle arrest. In vivo experiments demonstrated that DAAME significantly inhibited HCC growth. After intersection of the 24 DAAME targets predicted using network pharmacology with the 435 HCC disease targets, only CA9 was identified as a DAAME-HCC crossover target. Molecular docking results revealed that the binding site of DAAME and CA9 had good stereo-complementarity with a docking score of -8.1 kcal/mol. Western blotting and immunohistochemical results also confirmed that DAAME significantly decreased CA9 protein expression in HCC. CONCLUSIONS QZACP inhibits HCC by reducing the expression of STAT3, VEGFA, JUN, FGF2, BCL2L1, AR, TERT, MMP7, MMP1, ABCB1, CA9, and ESR2. DAAME may be an important active component of QZACP for the prevention and treatment of HCC, inhibiting it by targeting the expression of CA9.
Collapse
Affiliation(s)
- Jialing Sun
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Mengqing Ma
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xin Zhong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Jing Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Jinyu Yi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Renjie Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xingning Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Lanfen Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xinfeng Sun
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Wenxing Feng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Rui Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Qi Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macao, China.
| | - Minling Lv
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Kongli Fan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| | - Xiaozhou Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China.
| |
Collapse
|
36
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
37
|
Sekihara K, Himuro H, Toda S, Saito N, Hirayama R, Suganuma N, Sasada T, Hoshino D. Recent Trends and Potential of Radiotherapy in the Treatment of Anaplastic Thyroid Cancer. Biomedicines 2024; 12:1286. [PMID: 38927493 PMCID: PMC11201408 DOI: 10.3390/biomedicines12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive malignancy characterized by advanced disease at diagnosis and a poor prognosis. Despite multimodal therapeutic approaches that include surgery, radiotherapy, and chemotherapy, an optimal treatment strategy remains elusive. Current developments in targeted therapies and immunotherapy offer promising avenues for improved outcomes, particularly for BRAF-mutant patients. However, challenges remain regarding overcoming drug resistance and developing effective treatments for BRAF-wild-type tumors. This comprehensive review examines the clinical and biological features of ATC, outlines the current standards of care, and discusses recent developments with a focus on the evolving role of radiotherapy. Moreover, it emphasizes the necessity of a multidisciplinary approach and highlights the urgent need for further research to better understand ATC pathogenesis and identify new therapeutic targets. Collaborative efforts, including large-scale clinical trials, are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Kazumasa Sekihara
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Soji Toda
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 2320024, Japan
| | - Nao Saito
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan;
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University, Yokohama 2360004, Japan;
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| |
Collapse
|
38
|
Keating CR, Calvisi DF, Qiu W. High-fat diet-induced AKT-palmitoylation in hepatocellular carcinoma: a breakthrough mechanistic investigation. Gut 2024; 73:1046-1048. [PMID: 38336464 PMCID: PMC11156549 DOI: 10.1136/gutjnl-2023-331857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Claudia R Keating
- Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Wei Qiu
- Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
39
|
Hushmandi K, Einollahi B, Saadat SH, Lee EHC, Farani MR, Okina E, Huh YS, Nabavi N, Salimimoghadam S, Kumar AP. Amino acid transporters within the solute carrier superfamily: Underappreciated proteins and novel opportunities for cancer therapy. Mol Metab 2024; 84:101952. [PMID: 38705513 PMCID: PMC11112377 DOI: 10.1016/j.molmet.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Tie S, Tong T, Zhan G, Li X, Ouyang D, Cao J. Network pharmacology prediction and experiment validation of anti-liver cancer activity of Curcumae Rhizoma and Hedyotis diffusa Willd. Ann Med Surg (Lond) 2024; 86:3337-3348. [PMID: 38846818 PMCID: PMC11152801 DOI: 10.1097/ms9.0000000000002074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/08/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to elucidate anti-liver cancer components and potential mechanisms of Curcumae Rhizoma and Hedyotis diffusa Willd (CR-HDW). Methods Effective components and targets of CR-HDW were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Liver cancer-related genes were collected from GeneCards, Gene-Disease Association (DisGeNET), and National Center for Biotechnology Information (NCBI). Protein-protein interaction networks, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified genes. Molecular docking was used to simulate binding of the active components and their target proteins. Cell activity assay, western blot, and senescence-associated β-galactosidase (SA-β-gal) experiments were conducted to validate core targets identified from molecular docking. Results Ten active compounds of CR-HDW were identified including quercetin, 3-epioleanic acid and hederagenin. The primary core proteins comprised Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Protein Kinase B(AKT1), etc. The pathways for Phosphoinositide 3-kinase (PI3K)/ AKT, cellular senescence, Fork head boxO (FOXO) were revealed as important for anti-cancer activity of CR-HDW. Molecular docking demonstrated strong binding between liver cancer target proteins and major active components of CR-HDW. In-vitro experiments confirmed that hederagenin and 3-epioleolic acid inhibited HuH-7 cell growth, reduced expression of PI3K, AKT, and mechanistic target of rapamycin (mTOR) proteins. Hederagenin also induced HuH-7 senescence. Conclusions In summary, The authors' results suggest that the CR-HDW component (Hederagenin, 3-epoxy-olanolic acid) can inhibit the proliferation of HuH-7 cells by decreasing PI3K, AKT, and mTOR. Hederagenin also induced HuH-7 senescence.
Collapse
Affiliation(s)
- Songyan Tie
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tianhao Tong
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gangxiang Zhan
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Li
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Ouyang
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jianzhong Cao
- Hunan University of Chinese Medicine
- Hunan Provincial Key Laboratory of Diagnostics in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
41
|
Huang Y, Yan B, Meng C, Zhang L, Wang C. Matrix metalloproteinases in chronic rhinosinusitis. Expert Rev Clin Immunol 2024; 20:547-558. [PMID: 38251631 DOI: 10.1080/1744666x.2024.2302362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are a group of enzymes that are essential in maintaining extracellular matrix (ECM) homeostasis, regulating inflammation and tissue remodeling. In chronic rhinosinusitis (CRS), the overexpression of certain MMPs can contribute to chronic nasal tissue inflammation, ECM remodeling, and tissue repair. AREAS COVERED This review provides a comprehensive overview of the biological characteristics and functions of the MMP family, particularly focusing on the expression and activity of MMPs in patients with CRS, and delves into their role in the pathogenesis of CRS and their potential as therapeutic targets. EXPERT OPINION MMPs are important in tissue remodeling and have been implicated in the pathophysiology of CRS. Previous studies have shown that the expression of MMPs is upregulated in the nasal mucosa of patients with CRS and positively correlates with the severity of CRS. However, there is still a large gap in the research content of MMP in CRS, and the specific expression and pathogenic mechanism of MMP still need to be clarified. The significance and value of the ratio of MMP to tissue inhibitors of metalloproteinase (TIMP) in diseases still need to be demonstrated. Moreover, further studies are needed to assess the efficacy and safety of biologics that target MMPs in patients with CRS.
Collapse
Affiliation(s)
- Yuqing Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Deng ZT, Liang SF, Huang GK, Wang YQ, Tu XY, Zhang YN, Li S, Liu T, Cheng BB. Autophagy plays a pro-apoptotic role in arsenic trioxide-induced cell death of liver cancer. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:295-302. [PMID: 38599914 DOI: 10.1016/j.joim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/18/2023] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The effects of arsenic trioxide (As2O3) on hepatocellular carcinoma have been documented widely. Autophagy plays dual roles in the survival and death of cancer cells. Therefore, we investigated the exact role of autophagy in As2O3-induced apoptosis in liver cancer cells. METHODS The viability of hepatoma cells was determined using the MTT assay with or without fetal bovine serum. The rate of apoptosis in liver cancer cells treated with As2O3 was evaluated using flow cytometry, Hoechst 33258 staining, and TUNEL assays. The rate of autophagy among liver cancer cells treated with As2O3 was detected using immunofluorescence, Western blot assay and transmission electron microscopy. RESULTS Upon treatment with As2O3, the viability of HepG2 and SMMC-7721 cells was decreased in a time- and dose-dependent manner. The apoptosis rates of both liver cancer cell lines increased with the concentration of As2O3, as shown by flow cytometry. Apoptosis in liver cancer cells treated with As2O3 was also shown by the activation of the caspase cascade and the regulation of Bcl-2/Bax expression. Furthermore, As2O3 treatment induced autophagy in liver cancer cells; this finding was supported by Western blot, immunofluorescence of LC3-II and beclin 1, and transmission electron microscopy. In liver cancer cells, As2O3 inhibited the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway that plays a vital role in both apoptosis and autophagy. The PI3K activator SC-79 partially reversed As2O3-induced autophagy and apoptosis. Furthermore, inhibiting autophagy with 3-methyladenine partially reversed the negative effects of As2O3 on cell viability. Serum starvation increased autophagy and amplified the effect of As2O3 on cell death. CONCLUSION As2O3 induces apoptosis and autophagy in liver cancer cells. Autophagy induced by As2O3 may have a proapoptotic effect that helps to reduce the viability of liver cancer cells. This study provides novel insights into the effects of As2O3 against liver cancer. Please cite this article as: Deng ZT, Liang SF, Huang GK, Wang YQ, Tu XY, Zhang YN, Li S, Liu T, Cheng BB. Autophagy plays a pro-apoptotic role in arsenic trioxide-induced cell death of liver cancer. J Integr Med. 2024; 22(3): 295-302.
Collapse
Affiliation(s)
- Zheng-Ting Deng
- Department of Respiration, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Febrile Diseases, School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shu-Fang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Guo-Kai Huang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Yu-Qian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xiao-Yu Tu
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Ya-Ni Zhang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Tao Liu
- Department of Febrile Diseases, School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Bin-Bin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
43
|
Baek M, Kim M, Choi HI, Binas B, Cha J, Jung KH, Choi S, Chai YG. Identification of differentially expressed mRNA/lncRNA modules in acutely regorafenib-treated sorafenib-resistant Huh7 hepatocellular carcinoma cells. PLoS One 2024; 19:e0301663. [PMID: 38603701 PMCID: PMC11008899 DOI: 10.1371/journal.pone.0301663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
The multikinase inhibitor sorafenib is the standard first-line treatment for advanced hepatocellular carcinoma (HCC), but many patients become sorafenib-resistant (SR). This study investigated the efficacy of another kinase inhibitor, regorafenib (Rego), as a second-line treatment. We produced SR HCC cells, wherein the PI3K-Akt, TNF, cAMP, and TGF-beta signaling pathways were affected. Acute Rego treatment of these cells reversed the expression of genes involved in TGF-beta signaling but further increased the expression of genes involved in PI3K-Akt signaling. Additionally, Rego reversed the expression of genes involved in nucleosome assembly and epigenetic gene expression. Weighted gene co-expression network analysis (WGCNA) revealed four differentially expressed long non-coding RNA (DElncRNA) modules that were associated with the effectiveness of Rego on SR cells. Eleven putative DElncRNAs with distinct expression patterns were identified. We associated each module with DEmRNAs of the same pattern, thus obtaining DElncRNA/DEmRNA co-expression modules. We discuss the potential significance of each module. These findings provide insights and resources for further investigation into the potential mechanisms underlying the response of SR HCC cells to Rego.
Collapse
Affiliation(s)
- Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Minjae Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Hae In Choi
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Junho Cha
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Incheon, Republic of Korea
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, Hanyang University, Ansan, Republic of Korea
- Department of Mathematical Data Science, Hanyang University, Ansan, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
44
|
Zhang ZT, Liang QF, Wang X, Wang RS, Duan TT, Wang SM, Tang D. Protective effects of Huang-Qi-Ge-Gen decoction against diabetic liver injury through regulating PI3K/AKT/Nrf2 pathway and metabolic profiling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117647. [PMID: 38163558 DOI: 10.1016/j.jep.2023.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qi-Ge-Gen decoction (HGD) is a traditional Chinese medicine prescription that has been used for centuries to treat "Xiaoke" (the name of diabetes mellitus in ancient China). However, the ameliorating effects of HGD on diabetic liver injury (DLI) and its mechanisms are not yet fully understood. AIM OF THE STUDY To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. MATERIALS AND METHODS A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg-1) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg-1, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the results of network pharmacology were validated by examining biochemical parameters and using western blotting. Lastly, urine metabolites were analyzed by metabolomics strategy to explore the effect of HGD on the metabolic profile of DLI mice. RESULTS HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. CONCLUSIONS HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Qing-Feng Liang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ru-Shang Wang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Ting-Ting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Long T, Wu W, Wang X, Chen M. TPR is a prognostic biomarker and potential therapeutic target associated with immune infiltration in hepatocellular carcinoma. Mol Clin Oncol 2024; 20:27. [PMID: 38414509 PMCID: PMC10895467 DOI: 10.3892/mco.2024.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 02/29/2024] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and hepatocellular carcinoma (HCC) is the most common primary liver cancer. In the present study, it was demonstrated that translocated promoter region (TPR) was upregulated in tumor tissues and associated with prognosis and immune infiltration in HCC. The clinical outcome of patients with HCC with aberrant expression of TPR was examined using multiple databases, including Gene Expression Omnibus, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression, Kaplan-Meier (KM) Plotter and Xiantao tool. The clinicopathologic characteristics of patients from TCGA database that were associated with overall survival were assessed using Cox regression and KM analysis. The potential hallmarks associated with TPR expression were further predicted by Metascape and Gene Set Enrichment Analysis, and the relationship between TPR and immune infiltration was explored using the Tumor-Immune System Interactions Database and the Tumor Immune Estimation Resource. The results demonstrated that TPR expression was higher in HCC and its overexpression was associated with a worse prognosis, alongside a correlation with several clinical features. Furthermore, cell differentiation, a prospective new hallmark of cancer, was differentially enriched in the high TPR expression phenotype pathway. Moreover, TPR may also modulate the tumor immune microenvironment as it was significantly associated with immunoregulators and chemokines, as well as different tumor infiltration immune cells. According to the in vitro experiments, TPR silencing inhibited the phosphorylation of AKT and the proliferation of HCC cells. In summary, TPR may be a new marker and target for HCC therapy.
Collapse
Affiliation(s)
- Teng Long
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Weijie Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
46
|
Zhang S, Cai X, Khan GJ, Cheng J, He J, Zhai K, Mao Y. Exploring the molecular mechanism of Artemisia rupestris L. for the treatment of hepatocellular carcinoma via PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117572. [PMID: 38097024 DOI: 10.1016/j.jep.2023.117572] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy in China. Most tumors develop from chronic inflammation. Artemisia rupestris L. (ARL) has been found to have a significant effect on viral influenza and hepatitis, but the mechanism of action of ARL against liver cancer is unclear. AIM OF THE STUDY The study objective was to explore the mechanism of action of ARL for the treatment of hepatocellular carcinoma (HCC) by ethanol extract and in vitro experimental design. MATERIALS AND METHODS Interactions between ARL and cellular target proteins against HCC were analyzed through network pharmacology and network topology with the utilization of the DAVID database. The rate of HepG2 cells' growth inhibition was assessed using the MTT assay in vitro cellular assay; hoechst33342 detects apoptosis of cells; the ability of HepG2 cells to migrate and invade was assessed using the transwell assay and the cell scratch experiment; and the levels of protein expression in HepG2 cells were assessed using the western blot assay. RESULTS Network pharmacology prediction results demonstrated that 22 active ingredients were tested, 176 possible action targets were discovered, and the PI3K/Akt signaling pathway was found to be the most pertinent action pathway for the treatment of hepatocellular carcinoma. In vitro results showed that it can effectively restrict HepG2 cell proliferation, apoptosis, migration, and invasion as well as the regulation of protein expressions. CONCLUSION Conclusively, Quercetin, Linarin, and Kaempferol were found most essential active ingredients from ARL that regulate the antitumor effects against HCC through the PI3K/Akt signaling pathway. The study provides a fundamental basis for further comprehensive evaluation of ARL to treat tumor diseases in general and its therapeutic potential against hepatocellular carcinoma in particular.
Collapse
Affiliation(s)
- Sirong Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Xiaocui Cai
- Xinjiang Institute of Materia Medica, Key Laboratory of Xinjiang Uygur Medicine, Urumqi, 830004, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Jiangnan Cheng
- Xinjiang Institute of Materia Medica, Key Laboratory of Xinjiang Uygur Medicine, Urumqi, 830004, China
| | - Jinhua He
- Xinjiang Institute of Materia Medica, Key Laboratory of Xinjiang Uygur Medicine, Urumqi, 830004, China; Xinjiang Hospital, Beijing Children's Hospital, Capital Medical University, 393 Aletai Road, Urumqi, 830091, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China.
| | - Yan Mao
- Xinjiang Institute of Materia Medica, Key Laboratory of Xinjiang Uygur Medicine, Urumqi, 830004, China.
| |
Collapse
|
47
|
Mei X, Xiong J, Liu J, Huang A, Zhu D, Huang Y, Wang H. DHCR7 promotes lymph node metastasis in cervical cancer through cholesterol reprogramming-mediated activation of the KANK4/PI3K/AKT axis and VEGF-C secretion. Cancer Lett 2024; 584:216609. [PMID: 38211648 DOI: 10.1016/j.canlet.2024.216609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
Cervical cancer (CC) patients with lymph node metastasis (LNM) have a poor prognosis. However, the molecular mechanism of LNM in CC is unclear, and there is no effective clinical treatment. Here, we found that 7-dehydrocholesterol reductase (DHCR7), an enzyme that catalyzes the last step of cholesterol synthesis, was upregulated in CC and closely related to LNM. Gain-of-function and loss-of-function experiments proved that DHCR7 promoted the invasion ability of CC cells and lymphangiogenesis in vitro and induced LNM in vivo. The LNM-promoting effect of DHCR7 was partly mediated by upregulating KN motif and ankyrin repeat domains 4 (KANK4) expression and subsequently activating the PI3K/AKT signaling pathway. Alternatively, DHCR7 promoted the secretion of vascular endothelial growth factor-C (VEGF-C), and thereby lymphangiogenesis. Interestingly, cholesterol reprogramming was needed for the DHCR7-mediated promotion of activation of the KANK4/PI3K/AKT axis, VEGF-C secretion, and subsequent LNM. Importantly, treatment with the DHCR7 inhibitors AY9944 and tamoxifen (TAM) significantly inhibited LNM of CC, suggesting the clinical application potential of DHCR7 inhibitors in CC. Collectively, our results uncover a novel molecular mechanism of LNM in CC and identify DHCR7 as a new potential therapeutic target.
Collapse
Affiliation(s)
- Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jinfeng Xiong
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Anni Huang
- Department of Medical, Guangxi Hospital, The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Da Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, And State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
48
|
Wei S, Lu C, Mo S, Huang H, Chen M, Li S, Kong L, Zhang H, Hoa PTT, Han C, Luo X. Silencing of KIF2C enhances the sensitivity of hepatocellular carcinoma cells to cisplatin through regulating the PI3K/AKT/MAPK signaling pathway. Anticancer Drugs 2024; 35:237-250. [PMID: 38170762 DOI: 10.1097/cad.0000000000001563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the treatment of unresectable advanced hepatocellular carcinoma (HCC), cisplatin is administered transhepatic arterially for local treatment, but the clinical application of cisplatin drugs is frequently hindered by the emergence of drug resistance. Kinesin family member 2C( KIF2C ) has been shown as oncogene in a variety of tumors. Nevertheless, its effect on cisplatin sensitivity has yet to be ascertained. Herein, we aim to investigate the impact of the KIF2C gene on cisplatin sensitivity within HCC and the plausible underlying molecular mechanism. We examined the expression level of the KIF2C gene in HCC cells by real-time quantitative reverse transcription PCR and Western blot analysis, and analyzed bioinformatically by The Gene Expression Omnibus database and The Cancer Genome Atlas database. The KIF2C gene was silenced using the small interfering RNA technology, and its effect on cisplatin drug sensitivity in HCC cells was evaluated by flow cytometry, cell proliferation, cell migration, and invasion assays. Our results indicated that KIF2C was highly expressed in HCC cells. KIF2C silencing inhibits HCC cell proliferation, migration and invasion, promotes apoptosis, and keeps the cell cycle in G2 phase. In addition, KIF2C silencing enhanced the sensitivity of HCC cells to cisplatin. KIF2C silencing down-regulates the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and mitogen-activated protein kinase 3 (MAPK3) proteins. In conclusion, KIF2C silencing amplifies the sensitivity of HCC cells to cisplatin by regulating the PI3K/AKT/MAPK signaling pathway. Consequently, targeting KIF2C shows great application potential as a strategy for enhancing the effectiveness of HCC treatment.
Collapse
Affiliation(s)
- Shuxin Wei
- School of Basic Medical Sciences, Guangxi Medical University
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
| | - Chunmiao Lu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University
| | - Shutian Mo
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Hailian Huang
- School of Basic Medical Sciences, Guangxi Medical University
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
| | - Meifeng Chen
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Shuai Li
- School of Basic Medical Sciences, Guangxi Medical University
| | - Luping Kong
- School of Basic Medical Sciences, Guangxi Medical University
| | - Hao Zhang
- School of Basic Medical Sciences, Guangxi Medical University
| | - Pham Thi Thai Hoa
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer
| | - Chuangye Han
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer
| | - Xiaoling Luo
- School of Basic Medical Sciences, Guangxi Medical University
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
49
|
Manoharan S, Prajapati K, Perumal E. Natural bioactive compounds and FOXO3a in cancer therapeutics: An update. Fitoterapia 2024; 173:105807. [PMID: 38168566 DOI: 10.1016/j.fitote.2023.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Forkhead box protein 3a (FOXO3a) is a transcription factor that regulates various downstream targets upon its activation, leading to the upregulation of tumor suppressor and apoptotic pathways. Hence, targeting FOXO3a is an emerging strategy for cancer prevention and treatment. Recently, Natural Bioactive Compounds (NBCs) have been used in drug discovery for treating various disorders including cancer. Notably, several NBCs have been shown as potent FOXO3a activators. NBCs upregulate FOXO3a expressions through PI3K/Akt, MEK/ERK, AMPK, and IκB signaling pathways. FOXO3a promotes its anticancer effects by upregulating the levels of its downstream targets, including Bim, FasL, and Bax, leading to apoptosis. This review focuses on the dysregulation of FOXO3a in carcinogenesis and explores the potent FOXO3a activating NBCs for cancer prevention and treatment. Additionally, the review evaluates the safety and efficacy of NBCs. Looking ahead, NBCs are anticipated to become a cost-effective, potent, and safer therapeutic option for cancer, making them a focal point of research in the field of cancer prevention and treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Kunjkumar Prajapati
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|
50
|
Chen Y, Song Z, Hou X, Liu J, Zheng C, Zhao X, Lv G, Li J, Xiu Y, Shi W, Zhao J, Yang H, Wang Y, Zhao J, Zhan X, Niu M, Zou W, Bai Z, Xiao X. Liuweiwuling Tablet relieves the inflammatory transformation of hepatocellular carcinoma by inhibiting the PI3K/AKT/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117406. [PMID: 37952733 DOI: 10.1016/j.jep.2023.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuweiwuling Tablet (LWWL) is a patented Chinese medicine approved by the Chinese National Medical Products Administration (NMPA). Clinically, it is used to treat a range of liver diseases that precede hepatocellular carcinoma (HCC), including hepatitis, liver fibrosis and cirrhosis. LWWL is hypothesized to inhibit the inflammatory transformation of HCC, which may have a positive impact on the prevention and treatment of HCC. However, its exact mechanism of action remains unknown. AIM OF THE STUDY To investigate how LWWL is effective in the treatment of HCC and to validate the pathways involved in this process. MATERIALS AND METHODS An in vivo model of HCC induced by diethylnitrosamine (DEN) was established to study the effect of LWWL on the development of HCC. The rat serum was analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT). The rat liver tissues were stained with hematoxylin and eosin (HE) and Masson's trichrome for pathological analysis. Rat liver tissue was subjected to transcriptome sequencing. Expression of inflammatory and liver fibrosis-related factors in bone marrow-derived macrophages (BMDMs) and LX-2 cells was detected by QRT-PCR, ELISA and Western blot (WB). The expression of apoptosis and stemness genes in HepG2 and Huh7 cells was assessed through flow cytometry and QRT-PCR. Transcriptomics, network pharmacology, WB, and QRT-PCR were employed to validate the mechanisms associated with the amelioration of HCC development by LWWL. RESULTS LWWL significantly reduced the severity of hepatitis and liver fibrosis, the expression of tumor stemness genes, and the incidence of HCC. In addition, LWWL inhibited the release of inflammatory substances and nuclear accumulation of P65 protein in BMDMs as well as the conversion of LX-2 cells to fibroblasts. LWWL inhibited the proliferation of HepG2 and Huh7 cells, including the initiation of apoptosis and the reduction of stemness gene expression. Importantly, LWWL regulates the PI3K/AKT/NF-κB pathway, which affects hepatic inflammation and cancer progression. CONCLUSION LWWL inhibited the occurrence and development of HCC by modulating the severity of hepatitis and liver fibrosis, indicating the potential clinical relevance of LWWL in preventing and treating HCC.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zheng Song
- Peking University 302 Clinical Medical School, Beijing, 100191, China
| | - Xiaorong Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jia Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China
| | - Congyang Zheng
- Digestive Department of the Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaomei Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Guiji Lv
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Junjie Li
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ye Xiu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jia Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Huijie Yang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jun Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Zhan
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; National Key Laboratory of Kidney Diseases, Beijing, 100039, China
| | - Ming Niu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China.
| | - Zhaofang Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| | - Xiaohe Xiao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611100, China; Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; National Key Laboratory of Kidney Diseases, Beijing, 100039, China.
| |
Collapse
|