1
|
Wang P, Wang Z, Jin X, Zhang M, Shen M, Li D. Oral Sulforaphane Intervention Protects Against Diabetic Cardiomyopathy in db/db Mice: Focus on Cardiac Lipotoxicity and Substrate Metabolism. Antioxidants (Basel) 2025; 14:603. [PMID: 40427484 PMCID: PMC12109042 DOI: 10.3390/antiox14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The protective effect of cruciferae-derived sulforaphane (SFN) on diabetic cardiomyopathy (DCM) has garnered increasing attention. However, no studies have specifically explored its mechanistic involvement in cardiac substrate metabolism and mitochondrial function. To address this gap, Type 2 diabetes mellitus (T2DM) db/db mice were orally gavaged with vehicle or 10 mg/kg body weight SFN every other day for 16 weeks, with vehicle-treated wild-type mice as controls. SFN intervention (SFN-I) alleviated hyperglycemia, dyslipidemia, HOMA-IR, serum MDA levels, and liver inflammation. Furthermore, SFN-I improved the lipotoxicity-related phenotype of T2DM cardiomyopathy, manifested as attenuation of diastolic dysfunction, cardiac injury, fibrosis, lipid accumulation and peroxidation, ROS generation, and decreased mitochondrial complex I and II activities and ATP content, despite having no effect on ceramide abnormalities. Protein expression data revealed that the model mice exhibited upregulated cardiac CD36, H-FABP, FATP4, CPT1B, PPARα, and PDK4 but downregulated GLUT4, with unchanged MPC1 and MPC2. Notably, SFN-I significantly attenuated the increase in CD36, H-FABP, CPT1B, and PPARα. These results suggest that chronic oral SFN-I protects against DCM by mitigating overall metabolic dysregulation and inhibiting cardiolipotoxicity. The latter might involve controlling cardiac fatty acid metabolism and improving mitochondrial function, rather than promoting glucose metabolism.
Collapse
Affiliation(s)
- Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Xinyuan Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengdi Zhang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengfan Shen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (P.W.); (Z.W.); (X.J.); (M.Z.); (M.S.)
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
2
|
Jo HG, Seo J, Jang B, Kim Y, Kim H, Baek E, Park SY, Lee D. Integrating network pharmacology and experimental validation to advance psoriasis treatment: Multi-target mechanistic elucidation of medicinal herbs and natural compounds. Autoimmun Rev 2025; 24:103836. [PMID: 40381707 DOI: 10.1016/j.autrev.2025.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Psoriasis, a chronic immune-mediated inflammatory disease (IMID), presents significant therapeutic challenges, necessitating exploration of alternative treatments like medicinal herbs (MH) and natural compounds (NC). Network pharmacology offers predictive insights, yet a systematic evaluation connecting these predictions with experimental validation outcomes specifically for MH/NC in psoriasis is lacking. This review specifically fills this gap by comprehensively integrating and analyzing studies that combine network pharmacology predictions with subsequent experimental validation. METHODS A systematic literature search identified 44 studies employing both network pharmacology and in vitro or in vivo experimental methods for MH/NC targeting psoriasis. This review provides a systematic analysis of the specific network pharmacology platforms, predicted targets/pathways, in vivo and in vitro experimental validation models, and key biomarker changes reported across these integrated studies. Methodological approaches and the consistency between predictions and empirical findings were critically evaluated. RESULTS This first comprehensive analysis reveals that network pharmacology predictions regarding MH/NC mechanisms in psoriasis are frequently corroborated by experimental data. Key signaling pathways, including the IL-17/IL-23 axis, MAPK, and NF-κB, emerge as consistently predicted and experimentally validated targets across diverse natural products. The review maps the specific network pharmacology tools and experimental designs utilized, establishing a methodological benchmark for the field and highlighting the successful synergy between computational prediction and empirical verification. CONCLUSION By systematically integrating and critically assessing the linkage between network pharmacology predictions and experimental validation for MH/NC in psoriasis, this review offers a unique clarification of the current, validated state-of-the-art, differentiating it from previous literature. It confirms network pharmacology's predictive power for natural products, identifies robustly validated therapeutic pathways, and provides a crucial benchmark, offering data-driven insights for future research into artificial intelligence-enhanced natural product-based therapies for psoriasis and other IMIDs.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; Naturalis Inc., 6 Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea.
| | - Jihye Seo
- Siho Korean Medicine Clinic, 407, Dongtansillicheon-ro, Hwaseong-si 18484, Republic of Korea
| | - Boyun Jang
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Youngsoo Kim
- IntegroMediLab Co., Ltd., 143, Magokjungang-ro, Gangseo-gu, Seoul 07797, Republic of Korea
| | - Hyehwa Kim
- KC Korean Medicine Hospital, 12, Haeol 2-gil, Paju-si 10865, Republic of Korea
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Soo-Yeon Park
- Department of Ophthalmology, Otolaryngology & Dermatology, College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
3
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025; 35:325-356. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
4
|
Mthembu SX, Mazibuko-Mbeje SE, Silvestri S, Orlando P, Nkambule BB, Muller CJ, Tiano L, Dludla PV. Supplementation with aspalathin and sulforaphane protects cultured cardiac cells against dyslipidemia-associated oxidative damage. Metabol Open 2025; 25:100346. [PMID: 39882383 PMCID: PMC11774938 DOI: 10.1016/j.metop.2025.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.25 mM) to induce lipidemic-related complications. The results showed that both aspalathin and sulforaphane enhanced cellular metabolic activity and improved mitochondrial respiration correlating with improved mRNA expression of genes involved in mitochondrial function, including uncoupling protein 2, peroxisome proliferator-activated receptor, gamma coactivator 1-alpha, nuclear respiratory factor 1, and ubiquinol-cytochrome c reductase complex assembly factor 1. Beyond attenuating lipid peroxidation, the dietary compounds also suppressed intracellular reactive oxygen species and enhanced antioxidant responses, including the mRNA expression of nuclear factor erythroid 2-related factor 2. These envisaged benefits were associated with decreased cellular apoptosis. This preclinical study supports and warrants further investigation into the potential benefits of these dietary compounds or foods rich in aspalathin or sulforaphane in protecting against lipid-induced oxidative damage within the myocardium.
Collapse
Affiliation(s)
- Sinenhlanhla X.H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho, 2735, South Africa
| | | | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
- Department of Human Sciences and Promotion of Quality of Life, University of San Raffaele, 00166 Roma, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J.F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Phiwayinkosi V. Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
5
|
Lu Y, Li X, Ma S, Ding M, Yang F, Pang X, Sun J, Li X. Broccoli ( Brassica oleracea L. var. italica Planch) alleviates metabolic-associated fatty liver disease through regulating gut flora and lipid metabolism via the FXR/LXR signaling pathway. Food Funct 2025; 16:1218-1240. [PMID: 39903517 DOI: 10.1039/d4fo03731f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The increased consumption of dietary fats contributes to the development of MAFLD (metabolic fatty liver disease). The ability of broccoli to enhance lipid metabolism has attracted researchers' attention. Researchers fed C57BL/6 mice a 12-week HFD to ensure the induction of MAFLD. The findings indicated that broccoli floret juice could effectively relieve MAFLD. Broccoli is helpful for reducing weight, blood glucose levels, fat accumulation, and insulin resistance associated with MAFLD and reduces the concentrations of TC, TG, LDL-C, GOT, GPT, IL-1β, IL-6, CCL4, and MCP1. Broccoli can increase the concentration of HDL-C, CAT, GSH-Px, SOD, and T-AOC, relieve inflammation and hepatic and ileum damage, and improve the antioxidant capacity of the body. Also, broccoli can optimize the structure of intestinal flora, promote the growth of Allobaculum, Muribaculaceae, Akkermansia, Eubacterium, and Bacteroides, and reduce bile acid deposition. In addition, the FXR/LXRα signaling system is impacted by broccoli, which is capable of raising the average levels of expression of the Fxr, SHP, and Cyp7a1 genes and proteins and reducing those of the genes for Fasn, Lpin 1, Dgat 2, Scd1, LXRα, and SREBP-1c.
Collapse
Affiliation(s)
- Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Meng Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
6
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
7
|
Krisanits BA, Kaur B, Fahey JW, Turner DP. The Anti-AGEing and RAGEing Potential of Isothiocyanates. Molecules 2024; 29:5986. [PMID: 39770075 PMCID: PMC11677037 DOI: 10.3390/molecules29245986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk.
Collapse
Affiliation(s)
- Bradley A. Krisanits
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bhoomika Kaur
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jed W. Fahey
- Departments of Medicine, Pharmacology & Molecular Sciences, Psychiatry & Behavioral Sciences, and iMIND Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Institute of Medicine, University of Maine, Orono, ME 04469, USA
| | - David P. Turner
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA; (B.A.K.); (B.K.)
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
8
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
9
|
Sonzogni E, Martinelli G, Fumagalli M, Maranta N, Pozzoli C, Bani C, Marrari LA, Di Lorenzo C, Sangiovanni E, Dell’Agli M, Piazza S. In Vitro Insights into the Dietary Role of Glucoraphanin and Its Metabolite Sulforaphane in Celiac Disease. Nutrients 2024; 16:2743. [PMID: 39203879 PMCID: PMC11357145 DOI: 10.3390/nu16162743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Sulforaphane is considered the bioactive metabolite of glucoraphanin after dietary consumption of broccoli sprouts. Although both molecules pass through the gut lumen to the large intestine in stable form, their biological impact on the first intestinal tract is poorly described. In celiac patients, the function of the small intestine is affected by celiac disease (CD), whose severe outcomes are controlled by gluten-free dietary protocols. Nevertheless, pathological signs of inflammation and oxidative stress may persist. The aim of this study was to compare the biological activity of sulforaphane with its precursor glucoraphanin in a cellular model of gliadin-induced inflammation. Human intestinal epithelial cells (CaCo-2) were stimulated with a pro-inflammatory combination of cytokines (IFN-γ, IL-1β) and in-vitro-digested gliadin, while oxidative stress was induced by H2O2. LC-MS/MS analysis confirmed that sulforaphane from broccoli sprouts was stable after simulated gastrointestinal digestion. It inhibited the release of all chemokines selected as inflammatory read-outs, with a more potent effect against MCP-1 (IC50 = 7.81 µM). On the contrary, glucoraphanin (50 µM) was inactive. The molecules were unable to counteract the oxidative damage to DNA (γ-H2AX) and catalase levels; however, the activity of NF-κB and Nrf-2 was modulated by both molecules. The impact on epithelial permeability (TEER) was also evaluated in a Transwell® model. In the context of a pro-inflammatory combination including gliadin, TEER values were recovered by neither sulforaphane nor glucoraphanin. Conversely, in the context of co-culture with activated macrophages (THP-1), sulforaphane inhibited the release of MCP-1 (IC50 = 20.60 µM) and IL-1β (IC50 = 1.50 µM) only, but both molecules restored epithelial integrity at 50 µM. Our work suggests that glucoraphanin should not merely be considered as just an inert precursor at the small intestine level, thus suggesting a potential interest in the framework of CD. Its biological activity might imply, at least in part, molecular mechanisms different from sulforaphane.
Collapse
Affiliation(s)
- Elisa Sonzogni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Marco Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Nicole Maranta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Carola Pozzoli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Corinne Bani
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | | | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti” (DiSFeB), Università Degli Studi di Milano, 20133 Milan, Italy; (E.S.); (G.M.); (M.F.); (N.M.); (C.P.); (C.B.); (C.D.L.); (M.D.); (S.P.)
| |
Collapse
|
10
|
Zhang Y, Zhao X, Liu Y, Yang X. Sulforaphane and ophthalmic diseases. Food Sci Nutr 2024; 12:5296-5311. [PMID: 39139965 PMCID: PMC11317731 DOI: 10.1002/fsn3.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 08/15/2024] Open
Abstract
Sulforaphane (SFN) is an organosulfur compound categorized as an isothiocyanate (ITC), primarily extracted from cruciferous vegetables like broccoli and cabbage. The molecular formula of sulforaphane (SFN) is C6H11NOS2. SFN is generated by the hydrolysis of glucoraphanin (GRP) through the enzyme myrosinase, showing notable properties including anti-diabetic, anti-inflammatory, antimicrobial, anti-angiogenic, and anticancer attributes. Ongoing clinical trials are investigating its potential in diseases such as cancer, neurodegenerative diseases, diabetes-related complications, chronic kidney disease, cardiovascular disease, and liver diseases. Several animal carcinogenesis models and cell culture models have shown it to be a very effective chemopreventive agent, and the protective effects of SFN in ophthalmic diseases have been linked to multiple mechanisms. In murine models of diabetic retinopathy and age-related macular degeneration, SFN delays retinal photoreceptor cell degeneration through the Nrf2 antioxidative pathway, NF-κB pathway, AMPK pathway, and Txnip/mTOR pathway. In rabbit models of keratoconus and cataract, SFN has been shown to protect corneal and lens epithelial cells from oxidative stress injury by activating the Keap1-Nrf2-ARE pathway and the Nrf-2/HO-1 antioxidant pathway. Oral delivery or intraperitoneal injection at varying concentrations are the primary strategies for SFN intake in current preclinical studies. Challenges remain in the application of SFN in eye disorders due to its weak solubility in water and limited bioavailability because of the presence of blood-ocular barrier systems. This review comprehensively outlines recent research on SFN, elucidates its mechanisms of action, and discusses potential therapeutic benefits for eye disorders such as age-related macular degeneration (AMD), diabetic retinopathy (DR), cataracts, and other ophthalmic diseases, while also indicating directions for future clinical research to achieve efficient SFN treatment for ophthalmic diseases.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaojing Zhao
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Yang Liu
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiuxia Yang
- Department of OphthalmologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
11
|
Zhang R, Chen S, Zhao F, Wang W, Liu D, Chen L, Bai T, Wu Z, Ji L, Zhang J. Sulforaphane enhanced muscle growth by promoting lipid oxidation through modulating key signaling pathways. Biosci Rep 2024; 44:BSR20240084. [PMID: 38868980 PMCID: PMC11224001 DOI: 10.1042/bsr20240084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFβ signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Suqin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Feng Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lin Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhoulin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Cameán AM. Protective effects of sulforaphane against toxic substances and contaminants: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155731. [PMID: 38824824 DOI: 10.1016/j.phymed.2024.155731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.
Collapse
Affiliation(s)
- Antonio Cascajosa-Lira
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Angeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González n 2, 41012 Seville, España.
| |
Collapse
|
13
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
14
|
Wang Y, He X, Cheng N, Huang K. Unveiling the Nutritional Veil of Sulforaphane: With a Major Focus on Glucose Homeostasis Modulation. Nutrients 2024; 16:1877. [PMID: 38931232 PMCID: PMC11206418 DOI: 10.3390/nu16121877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Nan Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.W.); (X.H.); (N.C.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
| |
Collapse
|
15
|
Liu Q, Ma L, Chen F, Zhang S, Huang Z, Zheng X, Chen Z, Ye J, Hou N, Yi W, Zhou Z. Raloxifene-driven benzothiophene derivatives: Discovery, structural refinement, and biological evaluation as potent PPARγ modulators based on drug repurposing. Eur J Med Chem 2024; 269:116325. [PMID: 38527378 DOI: 10.1016/j.ejmech.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/27/2024]
Abstract
By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Lei Ma
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fangyuan Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Shuyun Zhang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zexin Huang
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Xiufen Zheng
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zikai Chen
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Junwei Ye
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ning Hou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Wei Yi
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Zhi Zhou
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|