1
|
Mi Z, Mu H, Han Y, Liu R, Niu B, Wang G, Chen H, Gao H, Chen H. Salicylic acid nanoliposomes treatment alleviates chilling injury in postharvest baby ginger by regulating membrane lipid metabolism. Food Chem 2025; 482:144137. [PMID: 40187316 DOI: 10.1016/j.foodchem.2025.144137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
In this study, salicylic acid nanoliposomes (SA@NLs) were used to alleviate chilling injury (CI) in baby ginger by modulating membrane lipid metabolism. SA@NLs were prepared using thin-film hydration method, and characterized in term of morphology, particle size, and stability. The results showed that SA@NLs were nanosized vesicles with an average particle size of 129 nm, demonstrating favorable dispersibility and encapsulation efficiency. SA@NLs treatment effectively maintained the quality index of baby ginger. The SA@NLs-treated group showed lower levels of phosphatidic acid, lysophosphatidylcholine, and lysophosphatidylethanolamine compared to the SA-treated and control groups, indicating the mitigation of the degradation of phospholipids. Meanwhile, SA@NLs treatment exhibited higher unsaturated fatty acid content and the unsaturation index of fatty acids (IUFA) reached 68.96 % at the end of storage, which enhanced cell membrane fluidity and chilling tolerance. These results demonstrated that SA@NLs had potential applications in controlling CI in baby ginger and other cold-sensitive fruits and vegetables.
Collapse
Affiliation(s)
- Zhenzhen Mi
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guannan Wang
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hangjun Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of Post-harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Zou J, Ding W, Chen Y, Pan X, Fu X, Zheng S, Lin Y, Xia C, Ma Y, Zhang X, Wu S, Gao F. Incorporating zinc coordination driven nanozyme into chitosan and hyaluronic acid based nanoplatform for scavenging H 2S/ROS in managing inflammatory bowel disease. Carbohydr Polym 2025; 361:123501. [PMID: 40368544 DOI: 10.1016/j.carbpol.2025.123501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 05/16/2025]
Abstract
Inflammatory bowel disease (IBD) causes damage to patients, and therapy remains a crucial challenge owing to the presence of excessive reactive oxygen species (ROS) and hydrogen sulfide (H2S) in colonic inflammatory circulation. Herein, we report a shikonin (SK) and zinc (Zn) driven coordination nanozyme (SK-Zn, S-Z), which effectively scavenged ROS and H2S. Furthermore, a pH responsive targeted polymer nanoplatform (S-Z@ChF), consisting of S-Z, chitosan, hyaluronic acid and poly ferulic acid, was developed for the oral treatment of colitis. In vivo experiments revealed that the nanoplatform could target colonic inflammatory lesions, relieve inflammatory index and restore the colonic mechanical barrier. The transcriptomics and pharmacodynamic mechanism analysis revealed that S-Z@ChF scavenged ROS, inhibited nuclear factor kappa-B (NF-κB) and pyruvate kinase isozyme type M2 (PKM2) and signal transducer and activator of transcription 3 (STAT3) pathways, balancing the level of macrophage polarization and pro-inflammatory enzyme. Additionally, S-Z@ChF reliably regulated the gut microbiota during H2S scavenging. In conclusion, S-Z@ChF, which provides multiple anti-inflammatory pathways and microenvironment reprogramming support for blocking inflammatory circulation, was found to be biologically safe, with significant potential for clinical application in IBD.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xier Pan
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shulei Zheng
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaochun Zhang
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shuang Wu
- Clinical Traditional Chinese Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Sun L, Liu Y, Sun Q, Wang G, Du B, Liu B, Gao T, Zhao P, Yang Y, Rong R. Polysaccharides from traditional Chinese medicine and their nano-formulated delivery systems for cancer immunotherapy. Carbohydr Polym 2025; 357:123416. [PMID: 40158963 DOI: 10.1016/j.carbpol.2025.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
Cancer immunotherapy has evolved into a new generation strategy in the field of anti-tumor treatment. Polysaccharides derived from Traditional Chinese Medicine (TCM) are gaining recognition as powerful immunomodulators in cancer therapy, noted for their multi-target and multi-pathway actions. Owing to their beneficial properties such as water solubility, biocompatibility, and chemical structure modifiability, TCM polysaccharides can also serve as carriers for hydrophobic drugs in the development of innovative drug delivery systems, enhancing synergistic antitumor effects. In this article, we summarize the diverse mechanisms of immunoregulation by TCM polysaccharides in tumor therapy. The applications of these polysaccharides as both active ingredients and drug carriers within nanodelivery systems for cancer immunotherapy are also introduced. Additionally, extensive research on TCM polysaccharides in clinical settings has been collected. Furthermore, discussions are presented on the development prospects and challenges faced by these polysaccharides in the field of tumor immunotherapy. Our goal is to improve researchers' comprehension of TCM polysaccharides in cancer immunotherapy, providing promising strategies to optimize cancer treatment and benefit diverse patient populations.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yuting Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qihui Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Guimei Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bodong Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Tian Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan 250355, PR China; Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
4
|
Lin Z, Sun M. Phytochemical regulation of CaMKII in Alzheimer's disease: A review of molecular mechanisms and therapeutic potential. Pharmacol Res 2025; 216:107790. [PMID: 40409522 DOI: 10.1016/j.phrs.2025.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/08/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that leads to cognitive decline. CaMKII is a calcium-regulated kinase that is crucial for synaptic plasticity and memory. Phytochemicals with diverse origins, safety, and biological activity have attracted considerable attention in AD research. This systematic analysis of phytochemicals targeting CaMKII reveals their neuroprotective mechanisms against AD pathogenesis, highlighting CaMKII as a promising therapeutic target that warrants further preclinical investigation and drug development. We conducted a comprehensive review of the literature of phytochemicals that target CaMKII as a protective mechanism against AD. The search was conducted across multiple databases, including PubMed, Web of Science, China National Knowledge Internet, and Google Scholar, and covered the period from January 2000 to October 2024. A total of 301 articles were retrieved, of which 22 articles were included. The results showed that flavonoid, glycoside, terpene, and polyphenol analogs positively regulated CaMKII expression, whereas alkaloid analogs negatively regulated CaMKII expression. Different components of traditional Chinese medicine played different roles in CaMKII expression. Flavonoid compounds upregulated the expression of SYN, PSD-95, MAP2, and GluR1 to exert neuroprotective effects. Alkaloid and glycoside analogs inhibited Aβ deposition and tau hyperphosphorylation. Terpene analogs upregulated the SYN, PSD-95, NMDAR, BDNF, and PI3K/Akt signaling pathways to exert neuroprotection. Polyphenol analogs upregulated PSD-95, Munc18-1, SNAP25, SYN, and BDNF to exert neuroprotective effects. Emerging evidence demonstrates that select phytochemicals and traditional Chinese medicine compounds exert neuroprotective effects in AD by modulating CaMKII activity, thereby reducing Aβ accumulation, attenuating tau hyperphosphorylation, and enhancing synaptic plasticity, suggesting promising therapeutic potential.
Collapse
Affiliation(s)
- Zhongying Lin
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Miao Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Wen C, Cao L, Xu X, Liang L, Liu X, Zhang J, Li Y, Liu G. Effect of different phospholipids on the co-encapsulation of curcumin and oligomeric proanthocyanidins in nanoliposomes: Characteristics, physical stability, and in vitro release. Food Chem 2025; 487:144721. [PMID: 40393221 DOI: 10.1016/j.foodchem.2025.144721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/22/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
In the present study, the differences among NLs prepared with soybean phospholipids (SPL), soybean phosphatidylcholine (PC), and sunflower seed phospholipids (SSPL) were investigated. The structural characteristics, physical stability, in vitro release, and bio-accessibility of NLs co-encapsulating curcumin (Cur) and oligomeric proanthocyanidins (OPC) were evaluated. Compared with PC and SSPL, SPL co-encapsulated Cur and OPC NLs (SPL-co-loaded-NLs) had a smaller particle size (147 nm), a more uniform shape (spherical bilayer structure), and better size homogeneity. In addition, SPL-co-loaded-NLs also possessed the highest stability, antioxidant capacity (DPPH· scavenging rate: 38.79 %, FRAP value: 0.17 mmol Fe2+/mL), and bio-accessibility (Cur: 93 %, OPC: 96 %). Furthermore, FT-IR and XRD confirmed that the higher stability of SPL-co-loaded-NLs compared with other NLs was due to their tighter lipid structure, tighter lipid aggregation, and stronger hydrophobic and hydrogen bonding interactions between active substances and phospholipids. This study was expected to provide a theoretical reference for developing functional foods with co-encapsulated active substances of different polarities.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
6
|
Wang K, Yang R, Li J, Wang H, Wan L, He J. Nanocarrier-based targeted drug delivery for Alzheimer's disease: addressing neuroinflammation and enhancing clinical translation. Front Pharmacol 2025; 16:1591438. [PMID: 40438598 PMCID: PMC12116324 DOI: 10.3389/fphar.2025.1591438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/05/2025] [Indexed: 06/01/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, amyloid-beta (Aβ) aggregation, tau pathology, and chronic neuroinflammation. Among these, neuroinflammation plays a crucial role in exacerbating disease progression, making it an attractive therapeutic target. However, the presence of the blood-brain barrier (BBB) significantly limits the effective delivery of therapeutic agents to the brain, necessitating novel drug delivery strategies. Nanocarrier-based delivery systems have emerged as a promising solution to these challenges, offering targeted drug transport, enhanced BBB penetration, and improved bioavailability while minimizing systemic toxicity. This review explores the current advancements in nanocarrier-mediated drug delivery for AD, focusing on the mechanisms of neuroinflammation, the role of nanocarriers in overcoming the BBB, and their ability to modulate inflammatory pathways. Furthermore, the review discusses preclinical validation strategies and key challenges, including safety concerns, large-scale production limitations, and regulatory hurdles that must be addressed to enable clinical translation. Future perspectives emphasize the integration of nanotechnology with precision medicine, gene therapy, and artificial intelligence to optimize nanocarrier design for individualized AD treatment. By overcoming these obstacles, nanocarriers hold the potential to revolutionize therapeutic approaches for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kang Wang
- Acupuncture and Moxibustion Department, Beijing Massage Hospital, Beijing, China
| | - Rongying Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haitao Wang
- The school of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiale He
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Mittal G, A P, Dhali A, Prasad R, S Y, Nurani KM, Găman MA. Plant extracts with antioxidant and hepatoprotective benefits for liver health: A bibliometric analysis of drug delivery systems. World J Gastroenterol 2025; 31:105836. [DOI: 10.3748/wjg.v31.i18.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 04/21/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND The rising global burden of liver diseases, such as non-alcoholic fatty liver disease and liver fibrosis, has necessitated innovative therapeutic approaches. Plant-based therapies, recognized for their anti-inflammatory and antioxidant properties, have shown promising effects. However, poor bioavailability limits their clinical application.
AIM To map global research trends, key contributors, and emerging themes in plant-based therapies combined with advanced drug delivery systems for liver health.
METHODS Using the Scopus database, 645 documents were retrieved and analyzed using bibliometric tools Biblioshiny and VOSviewer. Analysis focused on publication trends, geographical contributions, and advancements in drug delivery technologies, including nanoparticles, liposomes, and polymeric micelles. Metrics such as publication growth rate, authorship collaboration, and thematic clustering were assessed.
RESULTS The dataset spans 43 years (1981-2024), with an annual growth rate of 11.09% in the number of publications. Research output is dominated by China (33%), followed by the United States (24%) and India (18%). Collaborative studies accounted for 24.34% of publications, with an average of 5.81 co-authors per document. Key innovations include nanoparticle encapsulation of curcumin and silymarin, improving bioavailability by up to 85%. Highly cited studies demonstrated the antioxidant, anti-inflammatory, and anti-fibrotic properties of these compounds. For instance, curcumin nanoparticles showed a 70% improvement in solubility, and silymarin liposomal formulations enhanced therapeutic efficiency by 62%. Thematic analysis revealed a transition from basic clinical observations to molecular and pharmacokinetic research, with a focus on oxidative stress mitigation and hepatoprotection.
CONCLUSION This study highlights the growing synergy between plant-based therapies and advanced drug delivery systems, with significant contributions from Asian and Western countries. Future efforts should prioritize clinical trials, standardization of plant extract formulations, and interdisciplinary approaches to maximize therapeutic outcomes. The findings provide a foundation for integrating plant-derived compounds into evidence-based hepatological therapies, addressing critical challenges in bioavailability and safety.
Collapse
Affiliation(s)
- Gaurav Mittal
- MBBS Final Year StudentMahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Prashanth A
- Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Maharashtra 442102, India
| | - Arkadeep Dhali
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S5 7AU, United Kingdom
| | - Roshan Prasad
- Department of Medicine, Datta Meghe Institute of Higher Education and Research, Sawangi 442107, India
| | - Yogesh S
- Department of Medicine, Madras Medical College, Chennai 600003, India
| | | | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest 010001, Romania
| |
Collapse
|
8
|
Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, Egbung GE, Aja PM. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnology 2025; 23:336. [PMID: 40336110 PMCID: PMC12057057 DOI: 10.1186/s12951-025-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-generation obesity management strategies.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M Aja
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
9
|
Fu S, Zhang M, Calzadilla N, Zhao B, Zhang X, Yang B, McKenzie VAA, Zheng A, Ni Q, Zhang F. Smart polymer prodrugs via responsive prodrug-initiated ring-opening polymerization of lactide for improved drug delivery. NANOSCALE 2025; 17:10595-10599. [PMID: 40214986 DOI: 10.1039/d5nr00780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Smart polymer prodrugs, created via responsive prodrug-initiated controlled polymerization of lactide, demonstrated extremely high drug loading, tuneable stimuli-triggered drug release, and significant tumor growth inhibition and improved survival with minimal toxicity. This adaptable strategy can precisely tailor drugs' physicochemical properties for optimal therapeutic efficacy, demonstrating great promise for cancer treatment.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Miao Zhang
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Nicholas Calzadilla
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Bowei Yang
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Victoria A A McKenzie
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Ajay Zheng
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Qianqian Ni
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Centre, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
10
|
Koppula S, Shaik B, Maddi S. Phytosomes as a New Frontier and Emerging Nanotechnology Platform for Phytopharmaceuticals: Therapeutic and Clinical Applications. Phytother Res 2025; 39:2217-2249. [PMID: 40110760 DOI: 10.1002/ptr.8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025]
Abstract
A complete investigation into phytosome-based formulations and innovative nanotechnology is presented in this review. This investigation aims to improve the bioavailability and therapeutic effectiveness of herbal components. Phytosomes can significantly increase solubility, absorption, and stability compared to standard herbal formulations by encapsulating active phytoconstituents into phospholipid complexes. This unique ability of phytosomes to overcome the limits of traditional herbal formulations is a potential game changer in medicine. This study highlights the different uses of phytosomes across various health disorders, such as neurodegenerative illnesses, inflammatory conditions, diabetes, cardiovascular diseases, and wound healing. The review also discusses the potential of phytosomes in treating infectious diseases by improving the delivery of bioactive compounds that have improved anticancer efficacy and antibacterial properties. Despite the emergence of numerous groundbreaking discoveries, substantial barriers remain that hinder their widespread application. Challenges that must be addressed include stability, large-scale manufacture, regulatory hurdles, and limited clinical translation. This review also examines the limitations present in clinical practice, mainly focusing on the variability in bioavailability. The review highlights the crucial need for future research in phytosomes, engaging the researchers and emphasizing the continuous evolution of this promising area of medicine.
Collapse
Affiliation(s)
- Suresh Koppula
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| | - Bajee Shaik
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| | - Srinivas Maddi
- ACUBIOSYS Private Limited, Telangana State Industrial Infrastructure Corporation Limited-Industrial Area Local Authority (TSIIC-IALA), Hyderabad, India
| |
Collapse
|
11
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
12
|
Li Y, Qu S, Zuo J, Long H, Cao F, Jiang F. Progress on the functions and mechanisms of natural products in anti-glioma therapy. Chin J Nat Med 2025; 23:541-559. [PMID: 40383611 DOI: 10.1016/s1875-5364(25)60815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 05/20/2025]
Abstract
Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuhui Qu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiayi Zuo
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoping Long
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Li J, Cao J, Zhang Z, Wang S, Zhu M, Yang L, Ouyang W, Ma C. Mechanism study on the treatment of ulcerative colitis by Gegen Qinlian nano-preparation through promoting M2 macrophage polarization. Front Mol Biosci 2025; 12:1580874. [PMID: 40351533 PMCID: PMC12061719 DOI: 10.3389/fmolb.2025.1580874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Objective To address the core pathological features of intestinal barrier disruption and immune imbalance in ulcerative colitis (UC), we developed a nano-targeted formulation (GGQL nano-preparation) based on berberine, puerarin, baicalin, and glycyrrhizin by combining traditional Chinese medicine (TCM) and nanotechnology in this study. We aimed to investigate whether GGQL nano-preparation could promote M2 macrophage polarization, correct intestinal inflammation, and treat UC. Methods We used databases to identify M2 macrophage-related gene targets for GGQL nano-preparation in UC. Protein-protein interaction networks, topological analysis, and GO/KEGG enrichment analyses revealed GGQL nano-preparation's potential regulation of macrophage polarization via a specific pathway. We validated this using a dextran sulfate sodium (DSS)-induced UC model in C57BL/6 mice. Parameters assessed included the disease activity index (DAI), colon length, colitis macroscopic damage index (CMDI), spleen index, and pathological changes (via HE staining). Immunohistochemistry detected AMPK-PPAR axis factor changes to determine GGQL nano-preparation's impact on M2 macrophage polarization and intestinal inflammation. Results Our analyses suggested the GGQL nano-preparation reduced the DAI, enhanced colon length, improved CMDI scores, and mitigated splenic inflammation. HE staining showed GGQL nano-preparation alleviated inflammation in the spleen, lungs, and colon. Immunohistochemical findings indicated GGQL nano-preparation upregulated AMPK, PPAR, and SIRT1 expression. Mechanistically, GGQL nano-preparation promoted M2 macrophage polarization through the AMPK-PPARγ axis, achieving therapeutic objectives for UC. Conclusion The GGQL nano-preparation effectively promotes M2 macrophage polarization via the AMPK-PPARγ axis, treating UC.
Collapse
Affiliation(s)
- Jilei Li
- Henan Province Hospital of TCM, Zhengzhou (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Jiarui Cao
- Henan University of Chinese Medicine (The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Henan University of Chinese Medicine (The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Sizhe Wang
- Henan University of Chinese Medicine (The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Meng Zhu
- Henan University of Chinese Medicine (The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Lili Yang
- Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Wenhui Ouyang
- Henan University of Chinese Medicine (The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| |
Collapse
|
14
|
Han W, Xiong N, Huang L. Probiotics and nanoparticle-mediated nutrient delivery in the management of transfusion-supported diseases. Front Cell Infect Microbiol 2025; 15:1575798. [PMID: 40292219 PMCID: PMC12021914 DOI: 10.3389/fcimb.2025.1575798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Bone marrow is vital for hematopoiesis, producing blood cells essential for oxygen transport, immune defense, and clotting. However, disorders like leukemia, lymphoma, aplastic anemia, and myelodysplastic syndromes can severely disrupt its function, leading to life-threatening complications. Traditional treatments, including chemotherapy and stem cell transplants, have significantly improved patient outcomes but are often associated with severe side effects and limitations, necessitating the exploration of safer, more targeted therapeutic strategies. Nanotechnology has emerged as a promising approach for addressing these challenges, particularly in the delivery of nutraceuticals-bioactive compounds derived from food sources with potential therapeutic benefits. Despite their promise, nutraceuticals often face clinical limitations due to poor bioavailability, instability, and inefficient delivery to target sites. Nanoparticles offer a viable solution by enhancing the stability, absorption, and targeted transport of nutraceuticals to bone marrow while minimizing systemic side effects. This study explores a range of bone marrow disorders, conventional treatment modalities, and the potential of nanoparticles to enhance nutraceutical-based therapies. By improving targeted delivery and therapeutic efficacy, nanoparticles could revolutionize bone marrow disease management, providing patients with more effective and less invasive treatment options. These advancements represent a significant step toward safer and more efficient therapeutic approaches, ultimately improving patient prognosis and overall health.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of
Medical Sciences, Meizhou, China
| | | | | |
Collapse
|
15
|
Fu J, Liu Z, Feng Z, Huang J, Shi J, Wang K, Jiang X, Yang J, Ning Y, Lu F, Li L. Platycodon grandiflorum exosome-like nanoparticles: the material basis of fresh platycodon grandiflorum optimality and its mechanism in regulating acute lung injury. J Nanobiotechnology 2025; 23:270. [PMID: 40186259 PMCID: PMC11969861 DOI: 10.1186/s12951-025-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe respiratory disease accompanied by diffuse inflammatory responses induced by various clinical causes. Many fresh medicinal plants have shown better efficacy than their dried forms in preventing and treating diseases like inflammation. As a classical Chinese herb, platycodon grandiflorum (PG) has been demonstrated effective in treating pneumonia, but most of previous studies focused on the efficacy of processed or dried PG formats, while the specific benefits of its fresh form are still underexplored. Exosome-like nanoparticles derived from medicinal plants are expected to point out an important direction for exploring the material basis and mechanism of this fresh herbal medicine. RESULTS The fresh form of PG could effectively improve ALI induced by lipopolysaccharide (LPS), relieve lung histopathological injury and weight loss, and reduce levels of inflammatory factors in mice, exhibiting better efficacy than dried PG in the treatment of ALI. Further extraction and purification of PG exosome-like nanoparticles (PGLNs) demonstrated that PGLNs had good biocompatibility, with characteristics consistent with general exosome-like nanoparticles. Besides, proteomic analysis indicated that PGLNs were rich in a variety of proteins. Animal experiments showed that PGLNs improved the pathological changes in LPS-induced lung tissues, inhibited the expression of inflammatory factors and promoted the expression of anti-inflammatory factors, and exerted a regulatory effect on the polarization of lung macrophages. Cell experiments further confirmed that PGLNs could be effectively taken up by RAW264.7 cells and repolarize M1 macrophages into M2 type, therefore reducing the secretion of harmful cytokines. Moreover, non-targeted metabolomics analysis reveals that PGLNs reduce inflammation and control macrophage polarization in a manner closely linked to pathways including glycolysis and lipid metabolism, highlighting a potential mechanism by which PGLNs protect the lungs from inflammatory damage like ALI. CONCLUSION Fresh PG has better anti-inflammatory and repair effects than its dried form. As one of the most effective active substances in fresh PG, PGLNs may regulate macrophage inflammation and polarization by regulating metabolic pathways including lipid metabolism and glycolysis, so as to reduce inflammation and repair lung injury.
Collapse
Affiliation(s)
- Jingmin Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Zhuolin Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Zhiying Feng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiawang Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Jianing Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Kangyu Wang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Xuelian Jiang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiaxin Yang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Yi Ning
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Fangguo Lu
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Ling Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
16
|
Shirzad M, Salahvarzi A, Razzaq S, Javid-Naderi MJ, Rahdar A, Fathi-Karkan S, Ghadami A, Kharaba Z, Romanholo Ferreira LF. Revolutionizing prostate cancer therapy: Artificial intelligence - Based nanocarriers for precision diagnosis and treatment. Crit Rev Oncol Hematol 2025; 208:104653. [PMID: 39923922 DOI: 10.1016/j.critrevonc.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.
Collapse
Affiliation(s)
- Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Salahvarzi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore SPH, Punjab, Pakistan
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | |
Collapse
|
17
|
Nasiri R, Arefnezhad R, Baniasad K, Hosseini SA, Jeshari AS, Miri M, Lotfi A, Ghaemi MS, Amini-Salehi E, Fatemian H, Rezaei-Tazangi F, Kesharwani P, Tavakoli MR, Sahebkar A. Baicalin and baicalein against myocardial ischemia-reperfusion injury: A review of the current documents. Tissue Cell 2025; 93:102772. [PMID: 39923649 DOI: 10.1016/j.tice.2025.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant challenge in the treatment of ischemic heart disease (IHD), arising as a complication from reperfusion therapies designed to restore blood flow after an ischemic event. Despite the availability of various therapeutic strategies, finding an effective treatment for MIRI remains difficult. Baicalin and its aglycone form (baicalein), natural compounds derived from the Chinese skullcap plant (Scutellaria baicalensis), have shown promise due to their antioxidant, anti-inflammatory, and cardioprotective properties. This review aims to explore the potential of baicalin and baicalein as treatments for MIRI, with a focus on their molecular and cellular level effects. These natural agents can decrease oxidative stress by promoting antioxidant enzymes and decreasing harmful oxidative substances that damage cardiac cells. They also exert anti-inflammatory effects by blocking specific pathways that trigger the release of inflammatory mediators. Additionally, they also improve heart cell survival, infarct region, and overall cardiac function by inhibiting key signaling pathways involved in cell death. Research in both animal and cell models suggests that these flavonoids, especially baicalin, can restore cardiac health following MIRI, improving cardiac performance, and reducing cardiac damage. These findings underscore the potential of baicalin and baicalein as therapeutic options for MIRI. However, further research and clinical trials are necessary to elucidate their mechanisms fully and to develop baicalin into a viable treatment.
Collapse
Affiliation(s)
- Reza Nasiri
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Kimia Baniasad
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Seyed Ali Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mostafa Miri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Lotfi
- Department of Medical Sciences, School of Medicine, Azerbaijan Medical University, Baku, Azerbaijan
| | - Mozhan Sadat Ghaemi
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Fatemian
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Li W, Antoniadi L, Zhou H, Chen H, Angelis A, Halabalaki M, Skaltsounis LA, Qi Z, Wang C. Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity. Food Chem 2025; 469:142580. [PMID: 39721438 DOI: 10.1016/j.foodchem.2024.142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside. Additionally, their transdermal studies in vitro demonstrated that UNL enhanced the cumulative release of OLEO, OLEA, OLEU, and HT by 3.13, 2.76, 2.59, and 2.83 times, respectively. Furthermore, their release mechanisms were better approximated the Peppas-Sahlin model rather than the Korsmeyer-Peppas and Higuchi models, which governed by Fickian diffusion. Moreover, comparing to their compounds, UNL structure exhibited improved their antioxidant and cytotoxicity properties, highlighting their potential as effective delivery agents in humans. These results offer a novel approach for stabilizing biologically active polyphenols from Olea europaea, paving the way for enhanced human health applications.
Collapse
Affiliation(s)
- Wenjun Li
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Lemonia Antoniadi
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece; Pharmagnose S.A., 57th km Athens-lamia National Road, Oinofyta 32011, Greece
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, NKUA, 15771, Athens, Greece
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
19
|
Nahar L, Charoensup R, Kalieva K, Habibi E, Guo M, Wang D, Kvasnica M, Onder A, Sarker SD. Natural products in neurodegenerative diseases: recent advances and future outlook. Front Pharmacol 2025; 16:1529194. [PMID: 40176910 PMCID: PMC11961910 DOI: 10.3389/fphar.2025.1529194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's are on the rise and pose significant challenges due to the lack of effective treatments. This review critically examines the neuroprotective effects of various natural products derived from plants, marine organisms, and fungi. Natural products have long been used in traditional medicine and are gaining attention in modern drug discovery for their unique properties. The review explains how these natural products can protect neurons by influencing the key biological pathways involved in neurodegeneration. It discusses mechanisms including antioxidant effects, anti-inflammatory actions, modulation of cellular signalling, and support for mitochondrial function. A systematic literature search was conducted to minimize bias and ensure rigorous study selection. Preclinical studies using animal models and cell cultures show that secondary metabolites like polyphenols, alkaloids, and terpenoids can significantly reduce neuronal damage. Some clinical trials have shown promising results. However, challenges such as bioavailability, standardization, and dosage must be addressed to translate these findings into clinical practice. The review also evaluates the potential synergy of combining natural products with conventional treatments, offering a complementary therapeutic approach. Natural products represent a promising avenue for developing innovative treatments for neurodegenerative diseases. The review highlights key research gaps and proposes future directions. Future studies should focus on overcoming existing challenges and refining these natural products to improve their efficacy and safety in clinical settings. The application of existing knowledge has the potential to significantly enhance the quality of life for individuals affected by neurodegenerative diseases.
Collapse
Affiliation(s)
- L. Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - R. Charoensup
- School of Integrative Medicine and Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, Thailand
| | - Kulyash Kalieva
- Department of Chemistry and Mathematics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - E. Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Medicinal Plants Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - D. Wang
- International Joint Laboratory of Medicinal Food Development and Health Products Creation, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - M. Kvasnica
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - A. Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - S. D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Wang F, Feng J, Jin A, Shao Y, Shen M, Ma J, Lei L, Liu L. Extracellular Vesicles for Disease Treatment. Int J Nanomedicine 2025; 20:3303-3337. [PMID: 40125438 PMCID: PMC11928757 DOI: 10.2147/ijn.s506456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Traditional drug therapies suffer from problems such as easy drug degradation, side effects, and treatment resistance. Traditional disease diagnosis also suffers from high error rates and late diagnosis. Extracellular vesicles (EVs) are nanoscale spherical lipid bilayer vesicles secreted by cells that carry various biologically active components and are integral to intercellular communication. EVs can be found in different body fluids and may reflect the state of the parental cells, making them ideal noninvasive biomarkers for disease-specific diagnosis. The multifaceted characteristics of EVs render them optimal candidates for drug delivery vehicles, with evidence suggesting their efficacy in the treatment of various ailments. However, poor stability and easy degradation of natural EVs have affected their applications. To solve the problems of poor stability and easy degradation of natural EVs, they can be engineered and modified to obtain more stable and multifunctional EVs. In this study, we review the shortcomings of traditional drug delivery methods and describe how to modify EVs to form engineered EVs to improve their utilization. An innovative stimulus-responsive drug delivery system for EVs has also been proposed. We also summarize the current applications and research status of EVs in the diagnosis and treatment of different systemic diseases, and look forward to future research directions, providing research ideas for scholars.
Collapse
Affiliation(s)
- Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Mengen Shen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiaqi Ma
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, People’s Republic of China
| |
Collapse
|
21
|
Gu X, Du L, Lin R, Ding Z, Guo Z, Wei J, Li Y. How Advanced Is Nanomedicine for Atherosclerosis? Int J Nanomedicine 2025; 20:3445-3470. [PMID: 40125442 PMCID: PMC11928726 DOI: 10.2147/ijn.s508757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in nanotechnology have opened new avenues for precision therapy, personalized medicine, and multifunctional theranostics in atherosclerosis (AS). This review provides a comprehensive overview of the role of nanoparticles (NPs) in precision medicine for AS, discussing their applications, challenges, and future prospects. The review first analyzes the current treatment landscape of AS and outlines potential biological targets for therapy. Various nanocarriers, including organic, inorganic, and hybrid systems, are evaluated for their therapeutic potential, with a focus on targeted drug delivery, anti-inflammatory therapy, vascular repair, plaque stabilization, and lipid clearance. Additionally, the review explores NP preparation methods, emphasizing strategies to enhance drug loading, stability, and controlled release. Finally, the translational challenges of NP-based therapies, including biocompatibility, large-scale production, regulatory hurdles, and clinical implementation, are critically analyzed. Future directions highlight the importance of interdisciplinary collaboration and technological innovation in advancing nanoparticle-based precision medicine for AS.
Collapse
Affiliation(s)
- Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruifang Lin
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zehui Ding
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiaming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
22
|
Meng Y, Sui L, Xu T, Zhao H, Yuan Q, Sun L. Research and Application Prospect of Nanomedicine in Kidney Disease: A Bibliometric Analysis From 2003 to 2024. Int J Nanomedicine 2025; 20:3007-3030. [PMID: 40093546 PMCID: PMC11910916 DOI: 10.2147/ijn.s510016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Kidney disease is a major public health concern that has a significant effect on a patient's life span and quality of life. However, effective treatment for most kidney diseases is lacking. Nanotechnology mainly explores the design, characterization, production, and applications of objects in the nanoscale range and has been widely used in the medical field. To date, there has been an increasing amount of research on the application of nanotechnology in kidney disease. However, systematic bibliometric studies remain rare. In this review, data collected from the Web of Science Core Collection database until December 31, 2024, were subjected to a bibliometric analysis. A total of 1179 articles and reviews were included. The publication trends, countries, institutions, authors, co-authorship, co-citations, journals, keywords, and references pertaining to this topic were examined. The results showed that nanotechnology research in kidney disease is increasing. The leading country, organization, and author were China, Sichuan University, and Professor Peng Huang, respectively. ACS APPLIED MATERIALS & INTERFACES was the top journal among the 464 journals in which articles on nanotechnology in kidney disease were published. KIDNEY INTERNATIONAL was the most cited journal in the field. The most significant increases were shown for "acute kidney disease", "drug delivery", "oxidative stress", "diabetic nephropathy", and "chronic kidney disease", indicating the current research hotspots. Furthermore, the development prospects and challenges of nanotechnology in kidney disease were discussed in this review. How to achieve precise drug delivery to render kidney-targeting therapy a reality may be problematic in future studies.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Lu Sui
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Hainan Zhao
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou121001, People’s Republic of China
| | - Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| |
Collapse
|
23
|
Mun JH, Jang MJ, Kim WS, Kim SS, Lee B, Moon H, Oh SJ, Ryu CH, Park KS, Cho IH, Hong GS, Choi CW, Lee C, Kim MS. Enhanced Cognitive and Memory Functions via Gold Nanoparticle-Mediated Delivery of Afzelin through Synaptic Modulation Pathways in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2025; 16:826-843. [PMID: 39976589 DOI: 10.1021/acschemneuro.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Gold nanoparticles (AuNPs) are valuable tools in pharmacological and biological research, offering unique properties for drug delivery in the treatment of neurodegenerative diseases. This study investigates the potential of gold nanoparticles loaded with afzelin, a natural chemical extracted from Ribes fasciculatum, to enhance its therapeutic effects and overcome the limitations of using natural compounds regarding low productivity. We hypothesized that the combined treatment of AuNPs with afzelin (AuNP-afzelin) would remarkably enforce neuroprotective effects compared with the single treatment of afzelin. Central administration of AuNP-afzelin (10 ng of afzelin) indicated improvements in cognition and memory-involved assessments of behavioral tests, comparing single treatments of afzelin (10 or 100 ng of afzelin) in scopolamine-induced AD mice. AuNP-afzelin also performed superior neuroprotective effects of rescuing mature neuronal cells and recovered cholinergic dysfunction compared to afzelin alone, according to further investigations of BDNF-pCREB-pAkt signaling, long-term potentiation, and doublecortin (DCX) expression in the hippocampus. This study highlights the potential of afzelin with gold nanoparticles as a promising therapeutic approach for mitigating cognitive impairments associated with neurodegenerative diseases and offers a new avenue for future research and drug development.
Collapse
Affiliation(s)
- Ju Hee Mun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Jang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Seok Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Seop Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - HyunSeon Moon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Cheol-Hui Ryu
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Kyung Su Park
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyu-Sang Hong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Changhyuk Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea National University of Science and Technology (UST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Herdiana Y. Nanoparticles of natural product-derived medicines: Beyond the pandemic. Heliyon 2025; 11:e42739. [PMID: 40083991 PMCID: PMC11904502 DOI: 10.1016/j.heliyon.2025.e42739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review explores the synergistic potential of natural products and nanotechnology for viral infections, highlighting key antiviral, immunomodulatory, and antioxidant properties to combat pandemics caused by highly infectious viruses. These pandemics often result in severe public health crises, particularly affecting vulnerable populations due to respiratory complications and increased mortality rates. A cytokine storm is initiated when an overload of pro-inflammatory cytokines and chemokines is released, leading to a systemic inflammatory response. Viral mutations and the limited availability of effective drugs, vaccines, and therapies contribute to the continuous transmission of the virus. The coronavirus disease-19 (COVID-19) pandemic has sparked renewed interest in natural product-derived antivirals. The efficacy of traditional medicines against pandemic viral infections is examined. Their antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties are highlighted. This review discusses how nanotechnology enhances the efficacy of herbal medicines in combating viral infections.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
25
|
Phongpradist R, Chittasupho C, Singh S, Ontong JC, Tadtong S, Akachaipaibul P, Punvittayagul C, Thongkorn K, Dejkriengkraikul P, Jiaranaikulwanitch J, Chansakaow S, Hongwiset D. Investigation of a Thermoresponsive In Situ Hydrogel Loaded with Nanotriphala: Implications for Antioxidant, Anti-Inflammatory, and Antimicrobial Therapy in Nasal Disorders. Gels 2025; 11:106. [PMID: 39996649 PMCID: PMC11853876 DOI: 10.3390/gels11020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Oxidative stress plays a crucial role in chronic nasal disorders, contributing to inflammation, tissue damage, and impaired mucosal function, highlighting the need for targeted therapies. Recent advancements in nasal drug delivery systems have expanded their applications for treating respiratory and inflammatory conditions. Among these, hydrogel-based systems offer prolonged release of active pharmaceutical ingredients (APIs), enhancing therapeutic efficacy and reducing dosing frequency. This study initially evaluates the antioxidant, anti-inflammatory, antimicrobial, and cytotoxic properties of Nanotriphala, followed by its incorporation into a thermoresponsive in situ hydrogel system, which was subsequently developed and characterized as a novel formulation. Nanotriphala exhibited >90% cell viability and significantly reduced nitric oxide (NO) levels by 40.55 µg/mL at 250 µg/mL. The hydrogel was characterized by key parameters, including viscosity, gelling time, pH, gelling temperature, texture analysis, and ex vivo spreadability. Stability was assessed under various conditions, and mutagenicity and antimutagenicity were evaluated using the Ames test. Results showed that the hydrogel gelled at 34 °C, exhibited good spreadability (10.25 ± 0.28 cm), a viscosity of 227 ± 22 cP, and maintained a pH of 5.75 ± 0.01, with optimal hardness and adhesiveness suitable for nasal application. It demonstrated antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and S. epidermidis at minimal bactericidal concentrations (MBCs) of 32, 2, 4, and 8 µg/mL, respectively, with low mutagenicity (mutagenic index < 2) and strong antimutagenic activity (>60%). The gallic acid content was 0.5796 ± 0.0218 µg/100 mL. Stability studies confirmed optimal storage at 4 °C. These findings suggest that in situ hydrogel loaded with Nanotriphala is a promising nasal drug delivery system for managing oxidative stress and related inflammatory conditions.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Julalak Chorachoo Ontong
- Cosmetic Technology and Dietary Supplement Products Program, Faculty of Agro and Bio Industry, Thaksin University, Ban Pa Phayom, Phatthalung 93210, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Puriputt Akachaipaibul
- Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand;
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
| | - Kriangkrai Thongkorn
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand;
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| | - Darunee Hongwiset
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (R.P.); (C.C.); (J.J.); (S.C.)
| |
Collapse
|
26
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
27
|
Abulsoud AI, Aly SH, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, El Tabaa MM, Rashed M, El-Shiekh RA, Doghish AS. Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment. Med Oncol 2025; 42:56. [PMID: 39883227 DOI: 10.1007/s12032-025-02613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
28
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
29
|
Basurto‐Islas G, Diaz MC, Ocampo LMZ, Martínez‐Herrera M, López‐Camacho PY. Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400721. [PMID: 39888017 PMCID: PMC11781347 DOI: 10.1002/ardp.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory impairments and is considered the most prevalent form of dementia. Among the contributing factors to AD lies the hyperphosphorylation of the microtubule-associated protein tau. Phosphorylated tau reduces its affinity for microtubules and triggers other posttranslational modifications that result in its aggregation and assembly into filaments. These structures progressively accumulate within neurons leading to neurodegeneration. While current AD medications often involve undesirable side effects, the exploration of natural products as a potential therapeutic alternative has gained considerable attention. Numerous compounds have shown potential capacity for reducing tau pathology through different mechanisms, such as inhibiting kinases to reduce tau hyperphosphorylation, enhancing phosphatase activity, and blocking fibril formation. Since tau hyperphosphorylation-induced aggregation is pivotal in AD onset, this review aims to elucidate the potential of natural products in modulating this crucial molecular mechanism.
Collapse
Affiliation(s)
| | | | | | - Melchor Martínez‐Herrera
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| | - Perla Y. López‐Camacho
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| |
Collapse
|
30
|
Moldoveanu CA, Tomoaia-Cotisel M, Sevastre-Berghian A, Tomoaia G, Mocanu A, Pal-Racz C, Toma VA, Roman I, Ujica MA, Pop LC. A Review on Current Aspects of Curcumin-Based Effects in Relation to Neurodegenerative, Neuroinflammatory and Cerebrovascular Diseases. Molecules 2024; 30:43. [PMID: 39795101 PMCID: PMC11722367 DOI: 10.3390/molecules30010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Curcumin is among the most well-studied natural substances, known for its biological actions within the central nervous system, its antioxidant and anti-inflammatory properties, and human health benefits. However, challenges persist in effectively utilising curcumin, addressing its metabolism and passage through the blood-brain barrier (BBB) in therapies targeting cerebrovascular diseases. Current challenges in curcumin's applications revolve around its effects within neoplastic tissues alongside the development of intelligent formulations to enhance its bioavailability. Formulations have been discovered including curcumin's complexes with brain-derived phospholipids and proteins, or its liposomal encapsulation. These novel strategies aim to improve curcumin's bioavailability and stability, and its capability to cross the BBB, thereby potentially enhancing its efficacy in treating cerebrovascular diseases. In summary, this review provides a comprehensive overview of molecular pathways involved in interactions of curcumin and its metabolites, and brain vascular homeostasis. This review explores cellular and molecular current aspects, of curcumin-based effects with an emphasis on curcumin's metabolism and its impact on pathological conditions, such as neurodegenerative diseases, schizophrenia, and cerebral angiopathy. It also highlights the limitations posed by curcumin's poor bioavailability and discusses ongoing efforts to surpass these impediments to harness the full therapeutic potential of curcumin in neurological disorders.
Collapse
Affiliation(s)
- Claudia-Andreea Moldoveanu
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Maria Tomoaia-Cotisel
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
| | - Alexandra Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor St., RO-400006 Cluj-Napoca, Romania;
| | - Gheorghe Tomoaia
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Department of Orthopedics and Traumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 47 Gen. Traian Moșoiu St., RO-400132 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Csaba Pal-Racz
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, Clinicilor St., RO-400371 Cluj-Napoca, Romania;
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, 3 Ilfov St., RO-050044 Bucharest, Romania;
- Centre for Systems Biology, Biodiversity and Bioresources “3B”, Babeș-Bolyai University, 44 Republicii St., RO-400347 Cluj-Napoca, Romania
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research from Cluj-Napoca, a Branch of NIRDBS Bucharest, 48 Republicii St., RO-400015 Cluj-Napoca, Romania;
| | - Madalina-Anca Ujica
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| | - Lucian-Cristian Pop
- Research Center of Excellence in Physical Chemistry, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai University”, 11 Arany Janos St., RO-400028 Cluj-Napoca, Romania or (M.T.-C.); (A.M.); (C.P.-R.); (M.-A.U.)
| |
Collapse
|
31
|
Zhong L, Tan X, Yang W, Li P, Ye L, Luo Q, Hou H. Bioactive matters based on natural product for cardiovascular diseases. SMART MATERIALS IN MEDICINE 2024; 5:542-565. [DOI: 10.1016/j.smaim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
33
|
Sharifi A, Mashjoor S, Makhmalzadeh BS, Khorsandi L, Shushizadeh MR. Baicalin-loaded proline and hydroxy proline functionalized chitosan derivative nanofiber composite as burning wound dressings. APPLIED MATERIALS TODAY 2024; 41:102519. [DOI: 10.1016/j.apmt.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Bangar SP, Whiteside WS, Chowdhury A, Ilyas RA, Siroha AK. Recent advancements in functionality, properties, and applications of starch modification with stearic acid: A review. Int J Biol Macromol 2024; 280:135782. [PMID: 39304056 DOI: 10.1016/j.ijbiomac.2024.135782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Starch modifications using chemicals are widely used to improve the desirable properties of native starch. Starch modified with steric acid characterized the starch properties due to the formation of starch-steric acid complex. Structural and functional characteristics of modified starch are influenced by duration, starch-acid concentration ratio, and temperature during the reaction. The diffraction patterns of the starch-stearic acid complexes show a mixture of A-type/B-type and V-type patterns. Starch-stearic acid complexes are regarded as "Generally Recognized as Safe (GRAS)" and are thermally stable and exhibit high paste viscosity and non-gelling properties. Due to their reduced gelling ability and increased viscosity, they can be utilized as fat replacers. Starch stearate also has promising applications in drug delivery due to its biocompatibility and non-gelling properties, which can be utilized for controlled release systems. Additionally, its biodegradability and enhanced thermal stability make it an ideal candidate for use in environmentally friendly, biodegradable materials. Complexes also have the potential for food packaging applications due to their increased thermal stability and improved barrier properties due to the replacement of the hydroxyl group of starch with a hydrophobic functional group of stearic acid (SA). This review paper examines the reaction parameters involved in the SA modification of starches and explores the starch-SA complexes' impact on physicochemical factors, as well as key structural attributes and industrial applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Amreen Chowdhury
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Anil Kumar Siroha
- Chaudhary Charan Singh Haryana Agricultural University College of Agriculture, Bawal, Rewari 123401, India
| |
Collapse
|
35
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
36
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
37
|
Purushothaman JR, Rizwanullah M. Ferulic Acid: A Comprehensive Review. Cureus 2024; 16:e68063. [PMID: 39347187 PMCID: PMC11438535 DOI: 10.7759/cureus.68063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Ferulic acid (FA), a phenolic compound abundant in the cell walls of seeds, leaves, and roots of various fruits, vegetables, cereals, and grains, is renowned for its wide range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. Despite its therapeutic potential, the clinical application of FA is hindered by challenges such as poor water solubility, limited bioavailability, rapid metabolism, and instability under physiological conditions. To address these issues, nanotechnology has emerged as a transformative approach, enhancing FA's pharmacokinetic profile. Various nanoparticle-based systems, including polymer-based and lipid-based nanoparticles, have been developed to encapsulate FA. These systems have demonstrated significant improvements in FA's solubility, stability, and bioavailability, with studies showing enhanced antioxidant activity and controlled release profiles. Further, the surface engineering of these nanoparticles provides targeted drug/phytochemical delivery potential. The targeted delivery of drugs/phytochemicals significantly enhances the therapeutic efficacy and minimizes systemic side effects. This review explores the therapeutic potential of FA, the limitations in its clinical application, and the advancements in nanoparticle-based delivery systems that are paving the way for its effective therapeutic use.
Collapse
Affiliation(s)
- Jaganathan R Purushothaman
- Department of Orthopedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Md Rizwanullah
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
38
|
Zheng W, Huang Y, Wu Q, Cheng P, Song Y, Wang B, Huang Q, Hu S. Poly(lactic acid hydroxyacetic acid)-poly(ethylene glycol)-modified ginsenoside Rg3 nanomedicine enhances anti-tumor effect in hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:763-775. [PMID: 39259031 DOI: 10.1080/03639045.2024.2402769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This research aims to improve the bioavailability and anti-hepatocellular carcinoma (HCC) efficacy of Ginsenoside Rg3 by modification with poly (lactic acid hydroxyacetic acid)-poly(ethylene glycol) (PLGA-PEG). METHODS PLGA-PEG-Rg3 was obtained by emulsification and evaluated it physiochemical characterization by FTIR, SEM, laser particle-size analyzer and HPLC. The effect of the PLGA-PEG-Rg3 and Rg3 on HepG2 cells was compared in vitro studies, including cell proliferation, transwell and a series of apoptosis detection, and in-situ HCC model. RESULTS The PLGA-PEG-Rg3 were 122 nm in size and 0.112 in polydispersity index with sustained release profile in vitro. Compared to Rg3, PLGA-PEG-Rg3 was more effective in suppressing HepG2 growth and inducing apoptosis by the mitochondrial apoptosis pathway in vitro. And PLGA-PEG modification enhanced the liver-targeting ability and drug circulation time of Rg3 in vivo, resulting in PLGA-PEG-Rg3 possessing superior performance in inhibiting tumor growth and prolonging the survival time of tumor-bearing mice than Rg3. CONCLUSIONS Overall, these results showed PLGA-PEG-Rg3 enhanced the anti-tumor effect of Rg3 in HCC.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuqiao Huang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| | - Ben Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
39
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
40
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
41
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
42
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
43
|
Wang W, Yang C, Xue L, Wang Y. Key Challenges, Influencing Factors, and Future Perspectives of Nanosuspensions in Enhancing Brain Drug Delivery. Curr Pharm Des 2024; 30:2524-2537. [PMID: 38988170 DOI: 10.2174/0113816128317347240625105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Bloodbrain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.
Collapse
Affiliation(s)
- Wenlu Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chongzhao Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Linying Xue
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
44
|
Bhardwaj H, Khute S, Sahu RK, Jangde RK. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr Drug Metab 2024; 25:248-265. [PMID: 38918986 DOI: 10.2174/0113892002291778240610073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Sulekha Khute
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, 249161, India
| | - Rajendra Kumar Jangde
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| |
Collapse
|