1
|
Baltazar F, Amaral M, Romanelli MM, de Castro Levatti EV, Ramos FF, Paulo Melchior de Oliveira Leão L, Chagas-Paula DA, Soares MG, Dias DF, Aranha CMS, dos Santos Fernandes JP, Lago JHG, Tempone AG. Toward New Therapeutics for Visceral Leishmaniasis: Efficacy and Mechanism of Action of Amides Inspired by Gibbilimbol B. ACS OMEGA 2024; 9:44385-44395. [PMID: 39524621 PMCID: PMC11541474 DOI: 10.1021/acsomega.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
The problems with current strategies to control canine visceral Leishmaniasis (CVL), which include the euthanasia of infected animals, and also the toxicity of the drugs currently used in human treatments for CVL, add urgency to the search for new therapeutic agents. This study aimed to evaluate the activity against Leishmania (L.) infantum of 12 amides that are chemically inspired by gibbilimbol B, a bioactive natural product that was initially obtained from Piper malacophyllum. Three of these compounds-N-(2-ethylhexyl)-4-chlorobenzamide (9), N-(2-ethylhexyl)-4-nitrobenzamide (10), and N-(2-ethylhexyl)-4-(tert-butyl)benzamide (12) -demonstrated activity against the intracellular amastigotes without toxicity to mammalian host cells (CC50 > 200 μM); compounds 9, 10, and 12 resulted in EC50 values of 12.7, 12.2, and 5.1 μM, respectively. In silico drug-likeness studies predicted that these compounds would show high levels of gastrointestinal absorption, would be able to penetrate the blood-brain barrier, would show moderate solubility, and would not show unwanted molecular interactions. Due to their promising pharmacological profiles, compounds 9 and 10 were selected for mechanism of action studies (MoA). The MoA studies in L. (L.) infantum revealed that neither of the compounds affected the permeabilization of the plasma membrane. Nevertheless, compound 9 induced strong alkalinization of acidocalcisomes, which resulted in a significant and rapid increase in intracellular Ca2+ levels, thereby causing the depolarization of the mitochondrial membrane potential and a reduction in the levels of reactive oxygen species (ROS). In contrast, compound 10 induced a gradual increase in intracellular Ca2+ levels and a similarly gradual reduction in ROS levels, but it caused neither acidocalcisome alkalinization nor mitochondrial membrane potential depolarization. Finally, the MALDI-TOF/MS assessment of protein alterations in L. (L.) infantum treated separately with compounds 9 and 10 revealed changes in mass spectral profiles from both treatments. These results highlight the anti-L. (L.) infantum potential of these amides-especially for compounds 9 and 10-and they suggest that these compounds could be promising candidates for future in vivo studies in VL-models.
Collapse
Affiliation(s)
- Fabio
Navarro Baltazar
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Amaral
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Maria Romanelli
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | | | - Fernanda Fonseca Ramos
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | | | - Daniela Aparecida Chagas-Paula
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Danielle Ferreira Dias
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Cecilia M. S.
Q. Aranha
- Department
of Medicine, Federal University of São
Paulo (UNIFESP), Av.
Dr. Arnaldo, 455, 01246-903 São Paulo, São Paulo, Brazil
| | - João Paulo dos Santos Fernandes
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | - Joao Henrique Ghilardi Lago
- Centre
of Natural Sciences and Humanities, Universidade
Federal do ABC, Av. dos Estados, 5001, 09210-580 Santo André, São Paulo, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Pailee P, Batsomboon P, Yaosanit W, Thananthaisong T, Mahidol C, Ploypradith P, Reuk-Ngam N, Khlaychan P, Techasakul S, Ruchirawat S, Prachyawarakorn V. Grewiifopenes A-K, bioactive clerodane diterpenoids from Casearia grewiifolia Vent. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:54. [PMID: 39276264 PMCID: PMC11401813 DOI: 10.1007/s13659-024-00475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
Eleven novel clerodane-type diterpenoids, grewiifopenes A-K (1-4 and 12-18), along with nine known compounds (5-11, 19, and 20) were purified from the dichloromethane extract of the twigs and stems of Casearia grewiifolia Vent. (Salicaceae). Their spectroscopic data, including the NMR, HRESIMS, and electronic circular dichroism calculations were employed to completely characterize and elucidate the chemical structures and absolute configurations. The clerodane diterpenoids possessing a 6-OH group and no substitution at C-7 exhibited greater cytotoxic activity than others, with their IC50 values ranging from 0.3 to 2.9 μM. Isocaseamembrin E (7) exhibited antibacterial activity against Staphylococcus aureus, while isocaseamembrin E (7), corymbulosin X (8), caseargrewiin A (9), kurzipene A (10), and balanspene F (11) exhibited antibacterial activity against Bacillus cereus.
Collapse
Affiliation(s)
- Phanruethai Pailee
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Paratchata Batsomboon
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Wiriya Yaosanit
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Theerawat Thananthaisong
- Department of National Parks, Wildlife and Plant Conservation, Forest Herbarium, Bangkok, 10900, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| | - Nanthawan Reuk-Ngam
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Panita Khlaychan
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Supanna Techasakul
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| | - Vilailak Prachyawarakorn
- Laboratory of Natural Products, Medicinal Chemistry and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Gonçalves GEG, Oliveira S, de Souza Gomes K, Costa-Silva TA, Tempone AG, Lago JHG, Caseli L. Effect of partial O-methylation in dehydrodieugenol on its antitrypanosomal activity - correlation with the toxicity using cell membrane models. Biophys Chem 2023; 296:106975. [PMID: 36842251 DOI: 10.1016/j.bpc.2023.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Biseugenol (1), a neolignan with antiprotozoal activity against Trypanosoma cruzi, was partially methylated, and the compound obtained - methyl biseugenol (2) - had its activity evaluated against the extracellular (trypomastigotes) and intracellular (amastigotes) forms of T. cruzi. It was observed that both compounds 1 and 2 exhibited similar effects against trypomastigotes (IC50 of 11.7 and 16.2 μM, respectively), whereas compound 2 displayed higher activity against amastigotes (IC50 = 8.2 μM) in comparison with biseugenol (IC50 = 15.4 μM). Additionally, reduced toxicity against NCTC cells for compound 2 was observed (CC50 > 200 μM), differently from compound 1 with CC50 = 58.0 μM. Aiming to understand better the molecular mechanism of the biological action of compound 2, the prodrug was incorporated into cellular membrane models constituted of Langmuir monolayers of the lipids dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), and dipalmitoylphosphatidylglycerol (DPPG). The lipid-drug interaction was inferred through tensiometry, surface potential, infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The prodrug expanded DPPC and DPPG monolayers and condensed DPPE ones, as well as presented characteristic behaviors regarding the chemical structure of the lipid considering expansion-compression curves, surface potential-area isotherms, and stability of previously compressed monolayers to relevant-biological surface pressures. PM-IRRAS indicated a molecular disorder for DPPC and DPPS alkyl chains in the presence of the drug. BAM revealed the presence of domains in the DPPG and DPPE monolayers, which was probably induced by the prodrug. These data suggest, in general, that the lipid composition modulates the interaction of compound 2, whose results are expected to correlate to its trypanocidal activity, which involves the plasma membrane of T. cruzi as the primary target, i.e., the first barrier that the compound should encounter to interact with the microorganism.
Collapse
Affiliation(s)
| | - Samuel Oliveira
- Federal University of ABC, Center of Natural and Human Sciences, Santo André, SP, Brazil
| | - Kaio de Souza Gomes
- Federal University of ABC, Center of Natural and Human Sciences, Santo André, SP, Brazil
| | | | | | | | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
4
|
Ledoux A, Hamann C, Bonnet O, Jullien K, Quetin-Leclercq J, Tchinda A, Smadja J, Gauvin-Bialecki A, Maquoi E, Frédérich M. Bioactive Clerodane Diterpenoids from the Leaves of Casearia coriacea Vent. Molecules 2023; 28:molecules28031197. [PMID: 36770864 PMCID: PMC9918898 DOI: 10.3390/molecules28031197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Casearia coriacea Vent., an endemic plant from the Mascarene Islands, was investigated following its antiplasmodial potentialities highlighted during a previous screening. Three clerodane diterpene compounds were isolated and identified as being responsible for the antiplasmodial activity of the leaves of the plant: caseamembrin T (1), corybulosin I (2), and isocaseamembrin E (3), which exhibited half maximal inhibitory concentrations (IC50) of 0.25 to 0.51 µg/mL. These compounds were tested on two other parasites, Leishmania mexicana mexicana and Trypanosoma brucei brucei, to identify possible selectivity in one of them. Although these products possess both antileishmanial and antitrypanosomal properties, they displayed selectivity for the malaria parasite, with a selectivity index between 6 and 12 regarding antitrypanosomal activity and between 25 and 100 regarding antileishmanial activity. These compounds were tested on three cell lines, breast cancer cells MDA-MB-231, pulmonary adenocarcinoma cells A549, and pancreatic carcinoma cells PANC-1, to evaluate their selectivity towards Plasmodium. This has not enabled us to establish selectivity for Plasmodium, but has revealed the promising activity of compounds 1-3 (IC50 < 2 µg/mL), particularly against pancreatic carcinoma cells (IC50 < 1 µg/mL). The toxicity of the main compound, caseamembrin T (1), was then evaluated on zebrafish embryos to extend our cytotoxicity study to normal, non-cancerous cells. This highlighted the non-negligible toxicity of caseamembrin T (1).
Collapse
Affiliation(s)
- Allison Ledoux
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
- Correspondence: ; Tel.: +32-4366-43-90
| | - Carla Hamann
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
- Laboratory of Biology of Tumor and Development, GIGA/CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Olivier Bonnet
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Kateline Jullien
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, LDRI, Université Catholique de Louvain, UCLouvain, Avenue E. Mounier, B1 72.03, B-1200 Brussels, Belgium
| | - Alembert Tchinda
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Jacqueline Smadja
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de Réunion, Avenue René Cassin 15, BP 7151, 97715 Saint-Denis, La Réunion, France
| | - Anne Gauvin-Bialecki
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de Réunion, Avenue René Cassin 15, BP 7151, 97715 Saint-Denis, La Réunion, France
| | - Erik Maquoi
- Laboratory of Biology of Tumor and Development, GIGA/CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
5
|
Caseatardies A-K, eleven undescribed clerodane diterpenoids isolated from Casearia tardieuae and their anti-inflammatory activity. Fitoterapia 2022; 163:105328. [DOI: 10.1016/j.fitote.2022.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
|
6
|
Dos Santos AL, Amaral M, Hasegawa FR, Lago JHG, Tempone AG, Sartorelli P. (-)-T-Cadinol-a Sesquiterpene Isolated From Casearia sylvestris (Salicaceae)-Displayed In Vitro Activity and Causes Hyperpolarization of the Membrane Potential of Trypanosoma cruzi. Front Pharmacol 2021; 12:734127. [PMID: 34803682 PMCID: PMC8595124 DOI: 10.3389/fphar.2021.734127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 6-8 million people worldwide, mainly from developing countries. The treatment is limited to two approved nitro-derivatives, nifurtimox and benznidazole, with several side effects and reduced efficacy. Casearia sylvestris has been used in folk medicine as an antiseptic and cicatrizing in skin diseases. In the present work, the hexane phase from the MeOH extract from the leaves of Casearia sylvestris afforded a fraction composed by the sesquiterpene T-cadinol, which was chemically characterized by NMR and HRMS. The activity of T-cadinol was evaluated against T. cruzi, and IC50 values of 18 (trypomastigotes) and 15 (amastigotes) µM were established. The relation between the mammalian toxicity and the antiparasitic activity resulted in a selectivity index >12. Based on this promising activity, the mechanism of action was investigated by different approaches using fluorescent-based techniques such as plasma membrane permeability, plasma membrane electric potential, mitochondrial membrane electric potential, reactive oxygen species, and the intracellular calcium (Ca2+) levels. The obtained results demonstrated that T-cadinol affected neither the parasite plasma membrane nor the electric potential of the membrane. Nevertheless, this compound induced a mitochondrial impairment, resulting in a hyperpolarization of the membrane potential, with decreased levels of reactive oxygen species. No alterations in Ca2+ levels were observed, suggesting that T-cadinol may affect the single mitochondria of the parasite. This is the first report about the occurrence of T-cadinol in C. sylvestris, and our data suggest this sesquiterpene as an interesting hit compound for future optimizations in drug discovery studies for Chagas disease.
Collapse
Affiliation(s)
- Augusto L Dos Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Maiara Amaral
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Santo André, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Rie Hasegawa
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Santo André, Brazil
| | - Patricia Sartorelli
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
7
|
Afifi NI, Moawad AS, Zaki MA, Rateb ME, Rashed MH, Saleh IG, Hetta MH, Mohammed RM. Four new phenolics and antiparasitic secondary metabolites from Flacourtia rukam Zoll. & Mortizi. Nat Prod Res 2021; 36:3626-3637. [PMID: 33899619 DOI: 10.1080/14786419.2021.1875462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phytochemical investigation of Flacourtia rukam Zoll. & Mortizi (F. rukam) leaves and bark led to the isolation and characterization of seventeen compounds of which four phenolics were not previously described; 2-[(benzoyloxy)methyl]-phenyl-O-β-xylosyl-(1→2)-β-glucopyranoside (1), 2-[(benzoyloxy)methyl]-4-hydroxyphenyl-O-β-xylosyl-(1→2)-β-D-glucopyranoside (2), 2-hydroxy-5-(2-hydroxyphenoxy)phenoxy-β-glucopyranoside (3) and biphenyl-1,1',2,2'-tetraol (5). Interestingly, the later compound is known as a synthetic but this is the first report for its isolation from nature. Chemical structures were established using extensive analysis of spectroscopic data (1 D and 2 D NMR and HRESIMS). Biphenyl-1,1,2,2'-tetrol (5) exhibited a good activity against Trypanosoma brucei trypomastigotes with IC50= 6.66 ug/mL. Compounds 2, 5, 9, 10, 11 and 12 showed a good in-vitro anti-inflammatory activity using proteinase inhibitory assay. On the contrary, all tested compounds were inactive as antileishmanial or antimalarial.
Collapse
Affiliation(s)
- Naglaa I Afifi
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer S Moawad
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa E Rateb
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,School of Computing, Engineering & Physical sciences, University of the West of Scotland, Paisley, United Kingdom
| | | | | | - Mona H Hetta
- Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Rabab M Mohammed
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
9
|
Heymanns AC, Albano MN, da Silveira MR, Muller SD, Petronilho FC, Gainski LD, Cargnin-Ferreira E, Piovezan AP. Macroscopic, biochemical and hystological evaluation of topical anti-inflammatory activity of Casearia sylvestris (Flacourtiaceae) in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113139. [PMID: 32726679 DOI: 10.1016/j.jep.2020.113139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory skin diseases presents high prevalence and lack of alternatives that can be used for self-care by the population. Casearia sylvestris is a plant used topically in different communities in Brazil, to treat wounds or promote cutaneous healing. To evaluate the topical anti-inflammatory activity for the crude hydroalcoholic extract of Casearia sylvestris (HCE-CS) in the models of single or multiple administration of chroton oil to induce ear edema in mice. MATERIALS AND METHODS Experimental study using male Swiss mice (25-35g) kept under constant conditions in the Laboratory of Experimental Neuroscience (LaNEx)-UNISUL. Edema was induced in both models, respectively, by the single or multiple application of croton oil (CO, 2.5%, in 20 μl) on the external surface of the ear. The different groups of animals (n = 8) received different treatments: vehicle, dexamethasone (DEXA) or different doses of HCE-CS. Edema was evaluated macroscopically for 6 h (early edema) or 8 days (late edema) after the first application of the CO and immediately after the animals were submitted to euthanasia for the collection of the samples (treated ears). For early edema, the tissue was biochemically evaluated for myeloperoxidase activity (MPO) and levels of nitrite/nitrate. In the late edema model, the ears were histologically evaluated for general morphometry, degranulated and non-degranulated mast cells, as well as acanthosis. RESULTS Topic treatment with HCE-CS significantly reduced the early and late edema, as well as MPO activity and tissue levels of nitrite/nitrate. Finally, in the late edema model there was a lower density of degranulated mast cells in relation to the vehicle treated group and decreased thickness of the epidermis (acanthosis). CONCLUSION These results suggest a possible benefit of topical treatment with HCE-CS in inflammatory conditions of the skin.
Collapse
Affiliation(s)
- Ana Caroline Heymanns
- Post-graduate Programm in Health Science, University of Southern Catarina (UNISUL), Tubarão, SC, Brazil; Laboratory of Experimental Neuroscience (LANEX)-UNISUL, Palhoça, SC, Brazil.
| | | | | | | | - Fabrícia C Petronilho
- Post-graduate Programm in Health Science, University of Southern Catarina (UNISUL), Tubarão, SC, Brazil.
| | - Lucinéia D Gainski
- Post-graduate Programm in Health Science, University of Southern Catarina (UNISUL), Tubarão, SC, Brazil.
| | - Eduardo Cargnin-Ferreira
- Laboratory of Histological Markers, Federal Institute of Santa Catarina (IFSC), Garopaba, SC, Brazil.
| | - Anna P Piovezan
- Post-graduate Programm in Health Science, University of Southern Catarina (UNISUL), Tubarão, SC, Brazil; Laboratory of Experimental Neuroscience (LANEX)-UNISUL, Palhoça, SC, Brazil.
| |
Collapse
|
10
|
Rocha ACFS, Morais GO, da Silva MM, Kovatch PY, Ferreira DS, Esperandim VR, Pagotti MC, Magalhães LG, Heleno VCG. In vitro anti-trypanosomal potential of kaurane and pimarane semi-synthetic derivatives. Nat Prod Res 2020; 36:875-884. [PMID: 33096959 DOI: 10.1080/14786419.2020.1837824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As part of the search for anti-trypanosomal agents, this work presents the production of sixteen derivatives. All of them were obtained from two natural diterpenes, one with kaurane skeleton (ent-kaurenoic acid) and other with a pimarane skeleton (ent-pimaradienoic acid). Then, the eighteen compounds were assayed against epimastigote form of Trypanosoma cruzi, with the derivatives showing increase of activity in relation to their precursors. Moreover, the most active derivative presented an IC50 <12.5 µM (estimated 0.8 µM), lower than Benznidazole (IC50 = 9.8 µM), used as control. The esterification of acid diterpenes showed to be an interesting way in the search for anti-trypanosomal agents.
Collapse
Affiliation(s)
- Ana Carolina F S Rocha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Gustavo O Morais
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Marcela M da Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Pedro Y Kovatch
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Daniele S Ferreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Viviane R Esperandim
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Mariana C Pagotti
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Vladimir C G Heleno
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| |
Collapse
|
11
|
Zhang Y, Kong J, Zhang JH, Wang L, Zhang W, Liu B, Jiang YY. Chemical Constituents and Pharmacological Activities of Family Flacourtiaceae: A Class of Important Phytomedicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:287-328. [PMID: 32160758 DOI: 10.1142/s0192415x20500159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flacourtiaceae plants are widely used as folk medicines in traditional medicine systems for its chemical diversity and pharmacological activities. In many different areas, Flacourtiaceae plants are used as traditional medicines for the treatment of ulcers, malaria, rheumatism. The Flacourtiaceae plants contain a very plentiful chemical composition, and phytochemical studies show that the Flacourtiaceae plants contained terpenoids, aromatic glycosides, flavnoids, phenylpropanoids, alkaloids, fatty hydrocarbon, and other compounds. In pharmacological studies, various extract and isolated individual compounds exhibited antitumor, anti-oxidation, and anti-inflammatory activities. In this review, the literature data on the chemical constituents and pharmacological investigations of the Flacourtiaceae plants are summarized, to provide information about a more comprehensive chemical composition and detailed pharmacological activities of Flacourtiaceae plants, with a view of further development of clinical medication. However, research on quantitative analysis, toxicity, and drug safety in vitro and in vivo is still insufficient, and further research is required.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jing Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jin-Hua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Lu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Wei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
12
|
Liang Y, Zhang Q, Yang X, Li Y, Zhang X, Li Y, Du Q, Jin DQ, Cui J, Lall N, Tuerhong M, Lee D, Abudukeremu M, Xu J, Shuai L, Guo Y. Diterpenoids from the leaves of Casearia kurzii showing cytotoxic activities. Bioorg Chem 2020; 98:103741. [PMID: 32213364 DOI: 10.1016/j.bioorg.2020.103741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022]
Abstract
A phytochemical investigation to obtain bioactive substances as lead compounds or agents for cancer led to the obtainment of six new and two known clerodane diterpenoids from the leaves of Casearia kurzii. Their structures were elucidated using NMR techniques and electronic circular dichroism (ECD) calculations. The subsequent biological cytotoxicity evaluation of these isolates toward human lung cancer A549, human cervical cancer HeLa, human chronic myeloid leukemia K562, and human hepatocellular carcinoma HepG2 was carried out. The most active compound 4 with an IC50 value of 9.7 μM against HepG2 cells was selected to examine the cytotoxic mechanism, which induced the apoptosis and arrested the HepG2 cell cycle at S stage. The in vivo zebrafish experiments revealed that compound 4 had the property of inhibiting tumor proliferation and migration.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ying Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing Du
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
13
|
Soares ACF, Matos PM, Dias HJ, Aguiar GDP, dos Santos ES, Martins CHG, Veneziani RCS, Ambrósio SR, Heleno VCG. Variability of the antibacterial potential among analogue diterpenes against Gram-positive bacteria: considerations on the structure–activity relationship. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The search for new antibacterial agents and a better comprehension of substances with antimicrobial behavior is mandatory nowadays due to the serious public health problem of infection diseases. In the present work, 30 diterpenes were studied, with 2 natural derivatives, named ent-16-kauren-19-oic acid and ent-pimara-8(14),15-dien-19-oic acid, and 28 semi-synthetic derivatives. The natural diterpenes were isolated from Mikania glomerata and Viguiera arenaria, respectively. All diterpenes were submitted to antimicrobial assays against six different Gram-positive microorganisms to better understand the structure–activity relationship of antimicrobial diterpenes. The semi-synthetic derivatives were all obtained from the two natural derivatives by structural modifications, mainly esterification reactions. Both natural derivatives, together with the derivative ent-8(14)-pimaren-19-oic acid, displayed the most relevant antibacterial activities, with minimal inhibitory concentration (MIC) values that were less than 10 μg mL–1 for most pathogens; thus, they were considered promising antimicrobial agents. Moreover, in light of the hypothesis of Urzúa and colleagues, several considerations about the structure–activity relationship of antimicrobial diterpenes could be stated.
Collapse
Affiliation(s)
| | - Priscilla Mendonça Matos
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Herbert Júnior Dias
- Departamento de Química — FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela de Paula Aguiar
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | | | | | | | - Sérgio Ricardo Ambrósio
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | | |
Collapse
|
14
|
Cytotoxic clerodane diterpenoids from the leaves of Casearia kurzii. Bioorg Chem 2019; 85:558-567. [DOI: 10.1016/j.bioorg.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
15
|
Caldas LA, Yoshinaga ML, Ferreira MJ, Lago JH, de Souza AB, Laurenti MD, Passero LFD, Sartorelli P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg Chem 2019; 83:348-353. [DOI: 10.1016/j.bioorg.2018.10.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023]
|
16
|
Funes M, Garro MF, Tosso RD, Maria AO, Saad JR, Enriz RD. Antinociceptive effect of neo-clerodane diterpenes obtained from Baccharis flabellata. Fitoterapia 2018; 130:94-99. [DOI: 10.1016/j.fitote.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
17
|
Costa RS, Souza Filho OP, Júnior OCD, Silva JJ, Hyaric ML, Santos MA, Velozo ES. In vitro antileishmanial and antitrypanosomal activity of compounds isolated from the roots of Zanthoxylum tingoassuiba. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Vieira Júnior GM, Dutra LA, Torres RB, Boralle N, Bolzani VDS, Silva DHS, Chaves MH, Cavalheiro AJ. Chemical constituents from Casearia spp. (Flacourtiaceae/Salicaceae sensu lato ). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Santos AL, Yamamoto ES, Passero LFD, Laurenti MD, Martins LF, Lima ML, Uemi M, Soares MG, Lago JHG, Tempone AG, Sartorelli P. Antileishmanial Activity and Immunomodulatory Effects of Tricin Isolated from Leaves of Casearia arborea (Salicaceae). Chem Biodivers 2017; 14. [PMID: 28054741 DOI: 10.1002/cbdv.201600458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023]
Abstract
Bioactivity-guided fractionation of antileishmanial active extract from leaves of Casearia arborea led to isolation of three metabolites: tricin (1), 1',6'-di-O-β-d-vanilloyl glucopyranoside (2) and vanillic acid (3). Compound 1 demonstrated the highest activity against the intracellular amastigotes of Leishmania infantum, with an IC50 value of 56 μm. Tricin (1) demonstrated selectivity in mammalian cells (SI > 7) and elicited immunomodulatory effect on host cells. The present work suggests that tricin modulated the respiratory burst of macrophages to a leishmanicidal state, contributing to the parasite elimination. Therefore, the natural compound tricin could be further explored in drug design studies for leishmaniasis treatment.
Collapse
Affiliation(s)
- Augusto L Santos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, CEP 01246-903, São Paulo, SP, Brazil
| | - Luiz Felipe D Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n - Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, CEP 01246-903, São Paulo, SP, Brazil
| | - Ligia F Martins
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil
| | - Marta L Lima
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil.,São Paulo Tropical Medicine Institute, University of São Paulo, Avenida Dr. Enéas Carvalho de Aguiar, 470, CEP 05403-000, São Paulo, SP, Brazil
| | - Miriam Uemi
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| | - Marisi G Soares
- Chemistry Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700 Centro, CEP 37130-001, Alfenas, MG, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, CEP 09210-580, Santo Andre, SP, Brazil
| | - Andre G Tempone
- Center of Parasitology and Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 - Cerqueira César, CEP 01246-000, São Paulo, SP, Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua Prof. Artur Riedel, n° 275 - Jd. Eldorado, CEP 09972-270, Diadema, São Paulo, Brazil
| |
Collapse
|
20
|
Efficacy of botanical extracts from Brazilian savannah against Diabrotica speciosa and associated bacteria. Ecol Res 2017. [DOI: 10.1007/s11284-017-1454-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Perifosine Mechanisms of Action in Leishmania Species. Antimicrob Agents Chemother 2017; 61:AAC.02127-16. [PMID: 28096161 DOI: 10.1128/aac.02127-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/08/2017] [Indexed: 12/22/2022] Open
Abstract
Here the mechanism by which perifosine induced cell death in Leishmania donovani and Leishmania amazonensis is described. The drug reduced Leishmania mitochondrial membrane potential and decreased cellular ATP levels while increasing phosphatidylserine externalization. Perifosine did not increase membrane permeabilization. We also found that the drug inhibited the phosphorylation of Akt in the parasites. These results highlight the potential use of perifosine as an alternative to miltefosine against Leishmania.
Collapse
|
22
|
de Araújo ÉJF, de Almeida AAC, Silva OA, da Costa IHF, Rezende-Júnior LM, Lima FDCA, Cavalheiro AJ, Pessoa C, de Moraes MO, Ferreira PMP. Behavioral effects induced by antitumor cleronade diterpenes from Casearia sylvestris and in silico interactions with neuron receptors. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:460-467. [PMID: 28077331 DOI: 10.1016/j.jep.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris is a medicinal plant traditionally used to treat snakebites, wounds, inflammation and gastric ulcers and scientific supports for have demonstrated its antitumor, antihyperlipidemic and antiparasitic properties. AIM OF THE STUDY To assess the effects of a fraction with casearins (FC) on adult mice using classical experimental models of animal behavior and theoretical calculations to verify the interaction of Casearin X (Cas X) with neuron receptors. MATERIALS AND METHODS Animals divided in 6 groups (n=9/group) were intraperitoneally treated with vehicle (DMSO 4%), FC (2.5, 5, 10 and 25mg/kg/day) and diazepam (2mg/kg) for 7 days. Thirty minutes after the last dose of treatment, acute toxicity and behavioral experiments were performed. RESULTS The highest dose of FC (25mg/kg/day) caused diarrhea, weight loss and death of one animal. Elevated plus maze test showed that lower doses [2.5mg/kg/day (36.4±5.1s) and 5mg/kg/day (43.9±6.2s)] increased the time spent in open arms (TSOA). Open field test revealed reduction in the number of crossings (54.9%, 51.1%, 48% and 67.7% for 2.5, 5, 10 and 25mg/kg/day, respectively) in all doses of FC studied and decrease of rearings at 25mg/kg/day (p<0.05). Computational calculations showed that the inhibition constant (Ki) for the Cas X-D1 complex is up to 1000-fold more favourable than the Cas X-GABAA complex. All ∆G° values obtained for Cas X-D1 complexes were more negative than those seen with Cas X-GABAA complexes. CONCLUSIONS Findings indicate a probable anxiolytic action of the FC since it reduces the number of crossings and rearings and prolonged the time spent in open arms, without sedative and myorelaxant effects, probably due to the interaction of Cas X with dopaminergic system.
Collapse
Affiliation(s)
- Éverton José Ferreira de Araújo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Department of Pharmacy, Federal University of Piauí, Teresina, Brazil
| | | | - Oskar Almeida Silva
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | | | | | - Francisco das Chagas Alves Lima
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil; Quantum Computational Chemistry Laboratory, Department of Chemistry, State University of Piauí, Teresina, Piauí, Brazil
| | - Alberto José Cavalheiro
- Department of Organic Chemisty, Chemistry Institute, State University of São Paulo Júlio de Mesquita Filho, Araraquara, Brazil
| | - Cláudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Manoel Odorico de Moraes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Brazil; Department of Biophysics and Physiology, Laboratory of Experimental Cancerology, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
23
|
Grecco SS, Costa-Silva TA, Jerz G, de Sousa FS, Alves Conserva GA, Mesquita JT, Galuppo MK, Tempone AG, Neves BJ, Andrade CH, Cunha RLOR, Uemi M, Sartorelli P, Lago JHG. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 24:62-67. [PMID: 28160863 DOI: 10.1016/j.phymed.2016.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/26/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND From a previous screening of Brazilian biodiversity for antiprotozoal activity, the hexane extract from leaves of Nectandra leucantha (Nees & Mart.) (Lauraceae) demonstrated activity against Trypanosoma cruzi. Chromatographic separation of this extract afforded bioactive dehydrodieugenol (1). Furthermore, methylated derivative 2 (dehydrodieugenol dimethyl ether) was prepared and also tested against T. cruzi. PURPOSE To examine the therapeutical potential of compounds 1 and 2 against T. cruzi as well as to elucidate the mechanism of action of bioactive compound 1 against T. cruzi. METHODS/STUDY DESIGN Crude hexane extract from leaves was subjected to chromatographic steps to afford bioactive compound 1. In order to analyze the effect of additional methyl group in the antiparasitic activity of 1, derivative 2 was prepared (both are no pan-assay interference compounds - PAINS). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and analyzed for the potential effect in host cells through the production of nitric oxide and reactive oxygen species. Finally, the plasma membrane effect of the most potent compound 1 was investigated in T. cruzi trypomastigotes. RESULTS Compounds 1 and 2 displayed activity against amastigotes of T. cruzi. Although both compounds promoted activity against intracellular amastigotes, the production of nitric oxide and reactive oxygen species of host cells were unaltered, suggesting an antiparasitic activity other than host cell activation. Considering 1 the most effective compound against T. cruzi, the interference in the plasma membrane of the trypomastigotes was investigated using the fluorescent probe SYTOX® Green. After a short-term incubation, the fluidity and integrity of the plasma membrane was completely altered, suggesting it as a primary target for compound 1 in T. cruzi. CONCLUSION Compounds 1 and 2 selectively eliminated the intracellular parasites without host cell activation and could be important scaffolds for the search of new hit compounds.
Collapse
Affiliation(s)
- Simone S Grecco
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo 09210-180, Brazil; Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Thais A Costa-Silva
- Center of Parasitology and Mycology, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Fernanda S de Sousa
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo 09972-270, Brazil
| | - Geanne A Alves Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo 09210-180, Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo 09972-270, Brazil
| | - Juliana T Mesquita
- Center of Parasitology and Mycology, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Mariana K Galuppo
- Center of Parasitology and Mycology, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Andre G Tempone
- Center of Parasitology and Mycology, Adolfo Lutz Institute, São Paulo 01246-902, Brazil
| | - Bruno J Neves
- LabMol, Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiânia, Goiás 74605-170, Brazil
| | - Carolina H Andrade
- LabMol, Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiânia, Goiás 74605-170, Brazil
| | - Rodrigo L O R Cunha
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo 09210-180, Brazil
| | - Miriam Uemi
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo 09972-270, Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo 09972-270, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, São Paulo 09210-180, Brazil.
| |
Collapse
|
24
|
Ullah N, Nadhman A, Siddiq S, Mehwish S, Islam A, Jafri L, Hamayun M. Plants as Antileishmanial Agents: Current Scenario. Phytother Res 2016; 30:1905-1925. [PMID: 27704633 DOI: 10.1002/ptr.5710] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/18/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
Leishmaniasis is a clinical manifestation caused by the parasites of the genus Leishmania. Plants are reservoirs of bioactive compounds, which are known to be chemically balanced, effective and least injurious as compared with synthetic medicines. The current resistance and the toxic effects of the available drugs have brought the trend to assess the antileishmanial effect of various plant extracts and their purified compound/s, which are summarized in this review. Moreover, it also highlights various traditional remedies used by local healers against leishmaniasis. A systematic cross-sectional study for antileishmanial activity of natural products was carried out using multiple literature databases. The records retrieved since 2000 till year 2016 were analysed and summarized in the form of comprehensive tables and graphs. Natural products are potential source of new and selective agents that can significantly contribute to primary healthcare and probably are promising substitutes of chemicals for the treatment of protozoan diseases like leishmaniasis. Where the researchers prefer to use alcoholic solvents for the extraction of antileishmanial agents from plants, most of the studies are limited to in vitro conditions majorly on using promastigote forms of Leishmania. Thus, there is a need to carry out such activities in vivo and in host macrophages. Further, there is a need of mechanistic studies that can help taking few of the promising pure compounds to clinical level. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Akhtar Nadhman
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), International Islamic University, Islamabad, 44000, Pakistan
| | - Sumaira Siddiq
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Shaila Mehwish
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arshad Islam
- Laboratório de Immunopatologia, Núcleo de Pesquisa em Ciências Biológicas, (NUPEB), Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35.400-000, Brazil
| | - Laila Jafri
- Department of Biochemistry, Faculty of Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
25
|
Barros de Alencar MVO, de Castro E Sousa JM, Rolim HML, de Medeiros MDGF, Cerqueira GS, de Castro Almeida FR, Citó AMDGL, Ferreira PMP, Lopes JAD, de Carvalho Melo-Cavalcante AA, Islam MT. Diterpenes as lead molecules against neglected tropical diseases. Phytother Res 2016; 31:175-201. [PMID: 27896890 DOI: 10.1002/ptr.5749] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/19/2023]
Abstract
Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Picos, (Piauí), 64.607-670, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Maria das Graças Freire de Medeiros
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Gilberto Santos Cerqueira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Biotechnology, Biotechnology and Biodiversity Center for Research (BIOTEC), Federal University of Piauí (LAFFEX), Parnaíba, Piauí, 64.218-470, Brazil
| | - Fernanda Regina de Castro Almeida
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Md Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh
| |
Collapse
|
26
|
Ferreira-Silva GÁ, Lages CCL, Sartorelli P, Hasegawa FR, Soares MG, Ionta M. Casearin D inhibits ERK phosphorylation and induces downregulation of cyclin D1 in HepG2 cells. Toxicol In Vitro 2016; 38:27-32. [PMID: 27806920 DOI: 10.1016/j.tiv.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
Cancer is a public health problem which represents the second cause of death in the world. In this framework, it is necessary to identify novel compounds with antineoplastic potential. Plants are an important source for discovering novel compounds with pharmacological potential. In this study, we aimed to investigate the antiproliferative potential of isolated compounds from Casearia sylvestris on tumor cell lines. Crude extract effectively reduced cell viability of 4 tumor cell lines (HepG2, A549, U251-MG, and HT-144) after 48h treatment. HepG2 and HT-144 were the most responsive cells. Three fractions (aqueous ethanol, n-hexane and ethyl acetate) were tested against HepG2 and HT-144 cells and we observed that compounds with antiproliferative activity were concentrated in n-hexane and ethyl acetate fractions. The casearins A, G and J were isolated from n-hexane fraction, while casearin D was obtained from ethyl acetate fraction. We demonstrated that casearin D significantly inhibited the clonogenic capacity of HepG2 cells after 24h exposure indicating its antiproliferative activity. In addition, G1/S transition cell cycle arrest in HepG2 cells was also observed. These effects are related, at least in part, to ability of the casearin D in reducing ERK phosphorylation and cyclin D1 expression levels.
Collapse
Affiliation(s)
- Guilherme Álvaro Ferreira-Silva
- Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil
| | - Carla Carolina Lopes Lages
- Institute of Chemistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil
| | - Patricia Sartorelli
- Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Flávia Rie Hasegawa
- Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Marisi Gomes Soares
- Institute of Chemistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
27
|
Bermudez J, Davies C, Simonazzi A, Pablo Real J, Palma S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 2016; 156:1-16. [PMID: 26747009 DOI: 10.1016/j.actatropica.2015.12.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 12/11/2022]
Abstract
One of the most significant health problems in the American continent in terms of human health, and socioeconomic impact is Chagas disease, caused by the protozoan parasite Trypanosoma cruzi. Infection was originally transmitted by reduviid insects, congenitally from mother to fetus, and by oral ingestion in sylvatic/rural environments, but blood transfusions, organ transplants, laboratory accidents, and sharing of contaminated syringes also contribute to modern day transmission. Likewise, Chagas disease used to be endemic from Northern Mexico to Argentina, but migrations have earned it global. The parasite has a complex life cycle, infecting different species, and invading a variety of cells - including muscle and nerve cells of the heart and gastrointestinal tract - in the mammalian host. Human infection outcome is a potentially fatal cardiomyopathy, and gastrointestinal tract lesions. In absence of a vaccine, vector control and treatment of patients are the only tools to control the disease. Unfortunately, the only drugs now available for Chagas' disease, Nifurtimox and Benznidazole, are relatively toxic for adult patients, and require prolonged administration. Benznidazole is the first choice for Chagas disease treatment due to its lower side effects than Nifurtimox. However, different strategies are being sought to overcome Benznidazole's toxicity including shorter or intermittent administration schedules-either alone or in combination with other drugs. In addition, a long list of compounds has shown trypanocidal activity, ranging from natural products to specially designed molecules, re-purposing drugs commercialized to treat other maladies, and homeopathy. In the present review, we will briefly summarize the upturns of current treatment of Chagas disease, discuss the increment on research and scientific publications about this topic, and give an overview of the state-of-the-art research aiming to produce an alternative medication to treat T. cruzi infection.
Collapse
|
28
|
In vitro activities of hexaazatrinaphthylenes against Leishmania spp. Antimicrob Agents Chemother 2015; 59:2867-74. [PMID: 25753635 DOI: 10.1128/aac.00226-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/01/2015] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species of Leishmania is described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC(50)s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives against Leishmania species, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.
Collapse
|
29
|
Houël E, Gonzalez G, Bessière JM, Odonne G, Eparvier V, Deharo E, Stien D. Therapeutic switching: from antidermatophytic essential oils to new leishmanicidal products. Mem Inst Oswaldo Cruz 2015; 110:106-13. [PMID: 25742270 PMCID: PMC4371224 DOI: 10.1590/0074-02760140332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
This study examined whether the antidermatophytic activity of essential oils (EOs)
can be used as an indicator for the discovery of active natural products against
Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using
broth microdilution techniques, the obtained EOs were tested against three strains of
dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum
canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities
against axenic amastigotes of L. amazonensis were concurrently evaluated. For the
most promising EOs, their antileishmanial activities against parasites infecting
peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal
candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium
heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited
the lowest 50% inhibitory concentration (IC50) values against axenic
amastigotes, thus revealing a certain correspondence between both activities. The P.
hispidum EO was identified as the most promising product in the results from the
infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most
abundant compounds found in this EO were sesquiterpenes, notably curzerene and
furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs
appears to be an efficient method for identifying new potential drugs for the
treatment of L. amazonensis.
Collapse
Affiliation(s)
- Emeline Houël
- Centre National de la Recherche Scientifique, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - German Gonzalez
- Faculté des Sciences Pharmaceutiques, Université de Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Guillaume Odonne
- Centre National de la Recherche Scientifique-Guyane, Cayenne, French Guiana
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Eric Deharo
- Faculté des Sciences Pharmaceutiques, Université de Toulouse III-Paul Sabatier, Toulouse, France
| | - Didier Stien
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|