1
|
Perumal SK, Arumugam MK, Osna NA, Rasineni K, Kharbanda KK. Betaine regulates the gut-liver axis: a therapeutic approach for chronic liver diseases. Front Nutr 2025; 12:1478542. [PMID: 40196019 PMCID: PMC11973089 DOI: 10.3389/fnut.2025.1478542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic liver disease is defined by persistent harm to the liver that might result in decreased liver function. The two prevalent chronic liver diseases are alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD). There is ample evidence that the pathogenesis of these two chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters the gut-liver crosstalk. These alterations are mediated through the imbalances in the gut microbiota composition/function that combined with disruption in the gut barrier integrity allows for harmful gut microbes and their toxins to enter the portal circulation and reach the liver to elicit an inflammatory response. This leads to further recruitment of systemic inflammatory cells, such as neutrophils, T-cells, and monocytes into the liver, which perpetuate additional inflammation and the development of progressive liver damage. Many therapeutic modalities, currently used to prevent, attenuate, or treat chronic liver diseases are aimed at modulating gut dysbiosis and improving intestinal barrier function. Betaine is a choline-derived metabolite and a methyl group donor with antioxidant, anti-inflammatory and osmoprotectant properties. Studies have shown that low betaine levels are associated with higher levels of organ damage. There have been several publications demonstrating the role of betaine supplementation in preventing the development of ALD and MASLD. This review explores the protective effects of betaine through its role as a methyl donor and its capacity to regulate the protective gut microbiota and maintain intestinal barrier integrity to prevent the development of these chronic liver diseases. Further studies are needed to enhance our understanding of its therapeutic potential that could pave the way for targeted interventions in the management of not only chronic liver diseases, but other inflammatory bowel diseases or systemic inflammatory conditions.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Li Y, Zhao J. Xiaohua Funing decoction ameliorates non-alcoholic fatty liver disease by modulating the gut microbiota and bile acids. Front Microbiol 2025; 16:1511885. [PMID: 40012777 PMCID: PMC11863611 DOI: 10.3389/fmicb.2025.1511885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction The gut microbiota and bile acids (BAs) have emerged as factors involved in the development of non-alcoholic fatty liver disease (NAFLD). Xiaohua Funing decoction (XFD) is a traditional Chinese medicine formula used for the treatment of NAFLD. Previous studies have indicated that XFD protects liver function, but the underlying mechanism remains unclear. Methods In this study, a Wistar rat model of NAFLD (Mod) was established via a high-fat diet. The effects of obeticholic acid (OCA) and XFD on Mod rats were subsequently evaluated. Wistar rats in the control (Con) group were fed a standard diet. There were eight rats in each group, and the treatment lasted for 12 weeks. Furthermore, metagenomic sequencing and BA metabolomic analyses were performed. Results Compared to the Con group, the Mod group presented significant differences in body and liver weights; serum total cholesterol (TC) and triglyceride (TG) levels; and liver TG, TC, and bile salt hydrolase levels (p < 0.05 or p < 0.01). Importantly, OCA and XFD administration normalized these indicators (p < 0.05 or p < 0.01). Pathology of the liver and white fat steatosis was observed in the Mod group, but steatosis was significantly alleviated in the OCA and XFD groups (p < 0.05 or p < 0.01). The abundances of Bacteroidales_bacterium, Prevotella_sp., bacterium_0.1xD8-71, and unclassified_g_Turicibacter in the Mod group were significantly different from those in the Con group (p < 0.05 or p < 0.01), whereas the abundance of Bacteroidales_bacterium was greater in the XFD group. A total of 17, 24, and 24 differentially abundant BAs were detected in the feces, liver, and serum samples from the Mod and Con groups, respectively (p < 0.05 or p < 0.01). In the feces, liver, and serum, XFD normalized the levels of 16, 23, and 14 BAs, respectively, including glycochenodeoxycholic acid, deoxycholic acid, murideoxycholic acid, lithocholic acid, 23-nordeoxycholic acid, and 3β-ursodeoxycholic acid. In addition, glycochenodeoxycholic acid was identified as a potential biomarker of NAFLD. Discussion In summary, our experiments revealed that XFD regulates the gut microbiota and BAs, providing beneficial effects on liver lipid accumulation in NAFLD.
Collapse
Affiliation(s)
- Yan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Huang L, Rao Q, Wang C, Mou Y, Zheng X, Hu E, Zheng J, Li Y, Liu L. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156026. [PMID: 39388921 DOI: 10.1016/j.phymed.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid β-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang 550006, China
| | - Enming Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Liu Y, Fan Y, Liu J, Liu X, Li X, Hu J. Application and mechanism of Chinese herb medicine in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1499602. [PMID: 39605910 PMCID: PMC11598537 DOI: 10.3389/fphar.2024.1499602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver condition closely associated with metabolic syndrome, with its incidence rate continuously rising globally. Recent studies have shown that the development of NAFLD is associated with insulin resistance, lipid metabolism disorder, oxidative stress and endoplasmic reticulum stress. Therapeutic strategies for NAFLD include lifestyle modifications, pharmacological treatments, and emerging biological therapies; however, there is currently no specific drug to treat NAFLD. However Chinese herb medicine (CHM) has shown potential in the treatment of NAFLD due to its unique therapeutic concepts and methods for centuries in China. This review aims to summarize the pathogenesis of NAFLD and some CHMs that have been shown to have therapeutic effects on NAFLD, thus enriching the scientific connotation of TCM theories and facilitating the exploration of TCM in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuqiao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Fan
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuyan Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingqing Hu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Wang C, Zhao M, Yue Y, Hu C, Zhou C, Zhang Z, He Y, Luo Y, Shen T, Dang S, Yang Y, Zhang Y. Protective Effect of Modified Suanmei-Tang on Metabolic-Associated Fatty Liver Disease: An Integrated Strategy of Network Pharmacology, Metabolomics, and Transcriptomics. Drug Des Devel Ther 2024; 18:5161-5182. [PMID: 39559790 PMCID: PMC11572505 DOI: 10.2147/dddt.s478072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
Background Modified Suanmei-Tang (MST) comprises four plants common to both traditional Chinese medicine and culinary applications, and it can potentially alleviate metabolic-associated fatty liver disease (MAFLD) triggered by a high-fat diet (HFD). Purpose This research aims to investigate the impact and underlying mechanisms of MST in ameliorating MAFLD caused by an HFD. Methods UHPLC-Q-Orbitrap-MS/MS was used to determine the constituents of MST and to evaluate its effects on MAFLD mouse models. Transcriptomics, network pharmacology, and bioinformatics analysis (including Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis) were utilized to further clarify the mechanisms by which MST acts on MAFLD. The experimental methods included ELISA, real time quantitative PCR (RT-qPCR), Western blot, immunohistochemistry, molecular docking, and metabolomics. Transcriptomics was integrated with metabolomics to find correlations between differentially expressed genes and metabolites, and crucial genes were validated through RT-qPCR. Results A total of 23 components of MST were identified. The formulation was found to alleviate metabolic disorders, obesity, insulin resistance, inflammation, and oxidative stress in mice with MAFLD. The findings indicate that MST promoted autophagy by suppressing phosphorylation in the PI3K/AKT/mTOR pathway and enhancing lipid management in the livers of MAFLD mice. Conclusion MST could effectively improve lipid metabolism disorders and liver lipid deposition in MAFLD mice, and its mechanism might be related to regulating the PI3K/AKT/mTOR pathway to improve autophagy.
Collapse
Affiliation(s)
- Chao Wang
- Traditional Chinese Medicine Department, Qitai Hospital of the Sixth Division, Xinjiang, 831899, People’s Republic of China
| | - Mei Zhao
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yuanyuan Yue
- Department of Ultrasound, Chengdu First People’s Hospital, Chengdu, 610095, People’s Republic of China
| | - Chao Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chunqiu Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Zhongyi Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yunliang He
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yaqi Luo
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Tao Shen
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Sijie Dang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yang Yang
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| | - Yong Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610014, People’s Republic of China
| |
Collapse
|
6
|
Poo CL, Lau MS, Nasir NLM, Nik Zainuddin NAS, Rahman MRAA, Mustapha Kamal SK, Awang N, Muhammad H. A Scoping Review on Hepatoprotective Mechanism of Herbal Preparations through Gut Microbiota Modulation. Curr Issues Mol Biol 2024; 46:11460-11502. [PMID: 39451562 PMCID: PMC11506797 DOI: 10.3390/cimb46100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Liver diseases cause millions of deaths globally. Current treatments are often limited in effectiveness and availability, driving the search for alternatives. Herbal preparations offer potential hepatoprotective properties. Disrupted gut microbiota is linked to liver disorders. This scoping review aims to explore the effects of herbal preparations on hepatoprotective mechanisms, particularly in the context of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatic steatosis, with a focus on gut microbiota modulation. A systematic search was performed using predetermined keywords in four electronic databases (PubMed, Scopus, EMBASE, and Web of Science). A total of 55 studies were included for descriptive analysis, covering study characteristics such as disease model, dietary model, animal model, intervention details, comparators, and study outcomes. The findings of this review suggest that the hepatoprotective effects of herbal preparations are closely related to their interactions with the gut microbiota. The hepatoprotective mechanisms of herbal preparations are shown through their effects on the gut microbiota composition, intestinal barrier, and microbial metabolites, which resulted in decreased serum levels of liver enzymes and lipids, improved liver pathology, inhibition of hepatic fatty acid accumulation, suppression of inflammation and oxidative stress, reduced insulin resistance, and altered bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hussin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia; (C.L.P.); (M.S.L.); (N.L.M.N.); (N.A.S.N.Z.); (M.R.A.A.R.); (S.K.M.K.); (N.A.)
| |
Collapse
|
7
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
8
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
9
|
Winiarska-Mieczan A, Jachimowicz-Rogowska K, Kwiecień M, Borsuk-Stanulewicz M, Tomczyk-Warunek A, Stamirowska-Krzaczek E, Purwin C, Stryjecka M, Tomaszewska M. Regular Consumption of Green Tea as an Element of Diet Therapy in Drug-Induced Liver Injury (DILI). Nutrients 2024; 16:2837. [PMID: 39275155 PMCID: PMC11396919 DOI: 10.3390/nu16172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The liver is a highly metabolically active organ, and one of the causes of its dysfunction is the damage caused by drugs and their metabolites as well as dietary supplements and herbal preparations. A common feature of such damage is drugs, which allows it to be defined as drug-induced liver injury (DILI). In this review, we analysed available research findings in the global literature regarding the effects of green tea and/or its phenolic compounds on liver function in the context of protective action during prolonged exposure to xenobiotics. We focused on the direct detoxifying action of epigallocatechin gallate (EGCG) in the liver, the impact of EGCG on gut microbiota, and the influence of microbiota on liver health. We used 127 scientific research publications published between 2014 and 2024. Improving the effectiveness of DILI detection is essential to enhance the safety of patients at risk of liver damage and to develop methods for assessing the potential hepatotoxicity of a drug during the research phase. Often, drugs cannot be eliminated, but appropriate nutrition can strengthen the body and liver, which may mitigate adverse changes resulting from DILI. Polyphenols are promising owing to their strong antioxidant and anti-inflammatory properties as well as their prebiotic effects. Notably, EGCG is found in green tea. The results of the studies presented by various authors are very promising, although not without uncertainties. Therefore, future research should focus on elucidating the therapeutic and preventive mechanisms of polyphenols in the context of liver health through the functioning of gut microbiota affecting overall health, with particular emphasis on epigenetic pathways.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Marta Borsuk-Stanulewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor Systems Research, Department of Rehabilitation and Physiotherapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Ewa Stamirowska-Krzaczek
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Cezary Purwin
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Małgorzata Stryjecka
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| | - Marzena Tomaszewska
- Institute of Human Nutrition and Agriculture, The University College of Applied Sciences in Chełm, Pocztowa 54, 22-100 Chełm, Poland
| |
Collapse
|
10
|
Qian F, Ouyang B, Cai Z, Zhu D, Yu S, Zhao J, Wei N, Wang G, Wang L, Zhang J. Compound Shouwu Jiangzhi Granule regulates triacylglyceride synthesis to alleviate hepatic lipid accumulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155691. [PMID: 38744232 DOI: 10.1016/j.phymed.2024.155691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.
Collapse
Affiliation(s)
- Fei Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Zuhuan Cai
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Dan Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Simiao Yu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Jingcheng Zhao
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Naijie Wei
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China.
| | - Jingwei Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
11
|
Zhang P, Cao J, Liang X, Su Z, Zhang B, Wang Z, Xie J, Chen G, Chen X, Zhang J, Feng Y, Xu Q, Song J, Hong A, Chen X, Zhang Y. Lian-Mei-Yin formula alleviates diet-induced hepatic steatosis by suppressing Yap1/FOXM1 pathway-dependent lipid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:621-633. [PMID: 38516704 DOI: 10.3724/abbs.2024025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with a global prevalence of 25%. Patients with NAFLD are more likely to suffer from advanced liver disease, cardiovascular disease, or type II diabetes. However, unfortunately, there is still a shortage of FDA-approved therapeutic agents for NAFLD. Lian-Mei-Yin (LMY) is a traditional Chinese medicine formula used for decades to treat liver disorders. It has recently been applied to type II diabetes which is closely related to insulin resistance. Given that NAFLD is another disease involved in insulin resistance, we hypothesize that LMY might be a promising formula for NAFLD therapy. Herein, we verify that the LMY formula effectively reduces hepatic steatosis in diet-induced zebrafish and NAFLD model mice in a time- and dose-dependent manner. Mechanistically, LMY suppresses Yap1-mediated Foxm1 activation, which is crucial for the occurrence and development of NAFLD. Consequently, lipogenesis is ameliorated by LMY administration. In summary, the LMY formula alleviates diet-induced NAFLD in zebrafish and mice by inhibiting Yap1/Foxm1 signaling-mediated NAFLD pathology.
Collapse
Affiliation(s)
- Peiguang Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Xujing Liang
- Department of Infectious Disease, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Zhenyu Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Gengrui Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xue Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Qin Xu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - Jianping Song
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510006, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Chen P, Luo Z, Lu C, Jian G, Qi X, Xiong H. Gut-immunity-joint axis: a new therapeutic target for gouty arthritis. Front Pharmacol 2024; 15:1353615. [PMID: 38464719 PMCID: PMC10920255 DOI: 10.3389/fphar.2024.1353615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease characterized by pain. The primary goal of current treatment strategies during GA flares remains the reduction of inflammation and pain. Research suggests that the gut microbiota and microbial metabolites contribute to the modulation of the inflammatory mechanism associated with GA, particularly through their effect on macrophage polarization. The increasing understanding of the gut-joint axis emphasizes the importance of this interaction. The primary objective of this review is to summarize existing research on the gut-immune-joint axis in GA, aiming to enhance understanding of the intricate processes and pathogenic pathways associated with pain and inflammation in GA, as documented in the published literature. The refined comprehension of the gut-joint axis may potentially contribute to the future development of analgesic drugs targeting gut microbes for GA.
Collapse
Affiliation(s)
- Pei Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| | - Zhiqiang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gonghui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- College of Integrative Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Qi
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- The First Hospital of Hunan University Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
14
|
Peng W, He CX, Li RL, Qian D, Wang LY, Chen WW, Zhang Q, Wu CJ. Zanthoxylum bungeanum amides ameliorates nonalcoholic fatty liver via regulating gut microbiota and activating AMPK/Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116848. [PMID: 37423515 DOI: 10.1016/j.jep.2023.116848] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim. (Rutaceae) is a known herbal medicine with various bioactivities, including anti-obesity, lipid-lowering, learning & memory improving and anti-diabetes, and amides in Z. bungeanum (AZB) are considered as the major active agents for its bioactivities. AIM OF THE STUDY This research was carried out to uncover the anti-NAFL effect of AZB and its corresponding molecular mechanisms. METHODS The central composite design-response surface methodology (CCD-RSM) was utilized to optimize the AZB extraction process, and the anti-NAFL effect of AZB was investigated on high fat diet (HFD) fed mice (HFD mice). The levels of ROS in liver tissues were determined using laser confocal microscopy with DCFH-DA probe staining, and anti-enzymes (such as HO-1, SOD, CAT & GSH-PX) and MDA in liver tissues were measured using commercial detecting kits. GC-MS was used to determine the short-chain fatty acids (SCFAs) contents in feces and blood of mice. 16S high-throughput sequencing, western blotting (WB) assay and immunofluorescence (IF) were used to explore the intestinal flora changes in mice and the potential mechanisms of AZB for treatment of NAFL. RESULTS Our results showed AZB reduced body weight, alleviated liver pathological changes, reduced fat accumulation, and improved oxidative stress in HFD mice. In addition, we also found AZB improved OGTT and ITT, reduced TG, TC, LDL-C, whereas increased HDL-C in HFD mice. AZB increased total number of the species and interspecies kinship of gut microbiota and reduced the richness and diversity of gut microbiota in HFD mice. Moreover, AZB decreased the ratio of Firmicutes/Bacteroidota, whereas increased the abundance of Allobaculum, Bacteroides and Dubosiella in feces of HFD-fed mice. Furthermore, AZB increased the production of SCFAs, and up-regulated the phosphorylation of AMPK and increased the nuclear transcription of Nrf2 in liver of HFD mice. CONCLUSION Collectively, our results suggested AZB can improve NAFL, which could reduce body weight, reverse liver lesions and fat accumulation, improve oxidative stress in liver tissues of HFD mice. Furthermore, the mechanisms are related to increase of the abundance of high-producing bacteria for SCFAs (e.g. Allobaculum, Bacteroides and Dubosiella) to activate AMPK/Nrf2 signaling.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng-Xun He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Die Qian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wen-Wen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chun-Jie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
15
|
Li Y, Zheng N, Gao X, Huang W, Wang H, Bao Y, Ge X, Tao X, Sheng L, Li H. The identification of material basis of Si Miao Formula effective for attenuating non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116988. [PMID: 37541401 DOI: 10.1016/j.jep.2023.116988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Si Miao Formula (SMF), a traditional Chinese medicine, originated from the "Cheng Fang Bian Du" during the Qing Dynasty and is commonly employed for the treatment of gout and hyperuricemia. We have demonstrated the anti-NAFLD effect of SMF by regulating hepatic lipid metabolism in high fat and high sucrose (HFHS) feeding mice in our previous report. However, the material basis of SMF for its anti-NAFLD effect remains unknown. AIM OF THE STUDY To compare the effeciacy of different components of SMF and identify the material basis for its anti-NAFLD effect. MATERIALS AND METHODS In the present study, a "Leave-one out" strategy was adopted by removing one herb from SMF each time, and the anti-NAFLD effects of four decomposed recipes containing three herbs were evaluated in C57BL/6J mice fed with an HFHS diet for 16 weeks. The chemical components of SMF and the absorbed entities in serum were assayed using UHPLC-Q-Exactive-Orbitrap HRMS. Finally, a new chemical combination with four compounds (berberine, betaine, caffeic acid, p-coumaric acid, 2:2:1:1) were generated (SMF component composition, SMF_CC), and its anti-NAFLD effect was evaluated by comparing with the original SMF in the mouse model. RESULTS Varified effects on NAFLD mice were observed among the decomposed recipes of SMF, while the original SMF showed advantages over its decomposed recipes. A total of 111 chemicals were identified from SMF, and 21 of them were detected in serum after oral administration of SMF. Comparing to SMF, SMF_CC showed comparable anti-NAFLD effect in HFHS-diet-fed mice, which was associated with the inhibition of hepatic fatty acid synthesis and transport, as well as inflammation. CONCLUSION Our current results suggested that the original SMF was better than its decomposed recipes in NAFLD management, and the derived SMF_CC was also effective in inhibiting NAFLD formation, highlighting its potential of being a novel natural agent for NAFLD therapy.
Collapse
Affiliation(s)
- Yan Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Zheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinxin Gao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenjin Huang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiyang Bao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinyu Ge
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Tao
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Sheng
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Houkai Li
- Functional Metabolomics and Gut Microbiome Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
16
|
Shang Z, Gao Y, Xue Y, Zhang C, Qiu J, Qian Y, Fang M, Zhang X, Sun X, Kong X, Gao Y. Shenge Formula attenuates high-fat diet-induced obesity and fatty liver via inhibiting ACOX1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155183. [PMID: 37992491 DOI: 10.1016/j.phymed.2023.155183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Shenge Formula (SGF) is a traditional Chinese medicine that has been used in the clinical treatment of NAFLD, and its therapeutic potential in patients and NAFLD animal models has been demonstrated in numerous studies. However, its underlying mechanism for treating NAFLD remains unclear. PURPOSE The aim of this study was to investigate the mechanism of SGF in the treatment of NAFLD using the proteomics strategy. METHODS Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the main components of SGF. A mouse model of nonalcoholic fatty liver disease was constructed by feeding mice with a high-fat diet for 16 weeks. SGF was administered for an additional 8 weeks, and metformin was used as a positive control. Liver sections were subjected to histopathological assessments. LC-MS/MS was used for the label-free quantitative proteomic analysis of liver tissues. Candidate proteins and pathways were validated both in vivo and in vitro through qRT-PCR, western blot, and immunohistochemistry. The functions of the validated pathways were further investigated using the inhibition strategy. RESULTS Thirty-nine ingredients were identified in SGF extracts, which were considered to be key compounds in the treatment of NAFLD. SGF administration attenuated obesity and fatty liver by reducing the body weight and liver weight in HFD-fed mice. It also relieved HFD-induced insulin resistance. More importantly, hepatic steatosis was significantly attenuated by SGF administration both in vivo and in vitro. Proteomic profiling of mouse liver tissues identified 184 differential expressed proteins (DEPs) associated with SGF treatment. Bioinformatic analysis of DEPs revealed that regulating the lipid metabolism and energy consumption process of hepatocytes was the main role of SGF in NAFLD treatment. This also indicated that ACOX1 might be the potential target of SGF, which was subsequently verified both in vitro and in vivo. The results demonstrated that SGF inhibited ACOX1 activity, thereby activating PPARα and upregulating CPT1A expression. Increased CPT1A expression promoted mitochondrial β-oxidation, leading to reduced lipid accumulation in hepatocytes. CONCLUSIONS Overall, our findings confirmed the protective effect of SGF against NAFLD and revealed the underlying molecular mechanism of regulating lipid metabolism.
Collapse
Affiliation(s)
- Zhi Shang
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Congcong Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahao Qiu
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yueqiu Gao
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
17
|
Tang Y, Du Y, Ye J, Deng L, Cui W. Intestine-Targeted Explosive Hydrogel Microsphere Promotes Uric Acid Excretion for Gout Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310492. [PMID: 37997010 DOI: 10.1002/adma.202310492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Uric acid metabolism disorder triggers metabolic diseases, especially gout. However, increasing uric acid excretion remains a challenge. Here, an accelerative uric acid excretion pathway via an oral intestine-explosive hydrogel microsphere merely containing uricase and dopamine is reported. After oral administration, uricase is exposed and immobilized on intestinal mucosa along with an in situ dopamine polymerization via a cascade reaction triggered by the intestinal specific environment. By this means, trace amount of uricase is required to in situ up-regulate uric acid transporter proteins of intestinal epithelial cells, causing accelerated intestinal uric acid excretion. From in vitro data, the uric acid in fecal samples from gout patients could be significantly reduced by up to 37% by the mimic mucosa-immobilized uricase on the isolated porcine tissues. Both hyperuricemia and acute gouty arthritis in vivo mouse models confirm the uric acid excretion efficacy of intestine-explosive hydrogel microspheres. Fecal uric acid excretion is increased around 30% and blood uric acid is reduced more than 70%. In addition, 16S ribosomal RNA sequencing showed that the microspheres optimized intestinal flora composition as well. In conclusion, a unique pathway via the intestine in situ regulation to realize an efficient uric acid intestinal excretion for gout therapy is developed.
Collapse
Affiliation(s)
- Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
18
|
Tian J, Cai M, Jin S, Chen Q, Xu J, Guo Q, Yan Z, Han X, Lu H. JianPi-QingHua formula attenuates nonalcoholic fatty liver disease by regulating the AMPK/SIRT1/NF-κB pathway in high-fat-diet-fed C57BL/6 mice. PHARMACEUTICAL BIOLOGY 2023; 61:647-656. [PMID: 37038833 PMCID: PMC10101667 DOI: 10.1080/13880209.2023.2188549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, accompanied by liver lipid accumulation and inflammation. JianPi-QingHua formula (JPQH), a Chinese herbal formula, exhibits effects on obesity and T2DM. However, the hepatoprotective effect of JPQH has not been elucidated. OBJECTIVE To investigate the hepatoprotective effect of JPQH in NAFLD induced by a high-fat diet (HFD) in mice. MATERIALS AND METHODS C57BL/6J mice were divided into four groups and fed a normal-fat diet (ND), high-fat diet (HFD), HFD + JPQH (2.5 g/kg), or HFD + metformin (300 mg/kg) for 6 weeks, respectively. Furthermore, the body weight, epididymal fat mass, blood glucose, and liver weight were measured. Serum total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were performed. Hematoxylin and eosin staining and Oil Red O staining were observed in hepatic histopathological changes. Western blotting and quantitative real-time polymerase chain reaction were utilized to assess the key protein expression of hepatic lipid metabolism and inflammation. RESULTS Compared with the HFD group, JPQH could reduce body weight, epididymal fat mass, blood glucose and liver weight (p < 0.05), and markedly decreased the levels of serum TC, TG, ALT, AST (p < 0.05). Additionally, JPQH improved liver pathological changes. Consistent with the hepatic histological analysis, JPQH intervention suppressed lipid accumulation and inflammatory responses. Mechanistically, JPQH boosted SIRT1/AMPK signalling, and attenuated NF-κB pathway, which suppressed inflammatory responses. DISCUSSION AND CONCLUSIONS These findings indicate that JPQH supplementation protected against HFD-induced NAFLD by regulating SIRT1/AMPK/NF-κB pathway, which provides a theoretical basis for the clinical treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Jing Tian
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Mengjie Cai
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Shenyi Jin
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qingguang Chen
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jiahui Xu
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Qiuyue Guo
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zihui Yan
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xu Han
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hao Lu
- Diabetes Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
19
|
Jiang S, Wei X, Zhang Y, Wang L, Wang L, Wang M, Rong Y, Zhou J, Zhou Y, Wang H, Li T, Si N, Bian B, Zhao H. Biotransformed bear bile powder ameliorates diet-induced nonalcoholic steatohepatitis in mice through modulating arginine biosynthesis via FXR/PXR-PI3K-AKT-NOS3 axis. Biomed Pharmacother 2023; 168:115640. [PMID: 37806086 DOI: 10.1016/j.biopha.2023.115640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
NASH is a highly prevalent metabolic syndrome that has no specific approved agents up to now. BBBP, which mainly contains bile acids, possess various pharmacological properties and some bile acids are available for NASH treatment. Herein, the therapeutic effects and underlying mechanisms of BBBP against NASH were systemically evaluated. In this study, mice received an HFHS diet over a 20-week period to induce NASH with or without BBBP intervention were used to evaluate the effect and underlying mechanisms of BBBP against NASH. Our results demonstrated that BBBP attenuated hepatic steatosis, reduced body weight gain and lipid concentrations, and improved sensitivity to insulin and tolerance to glucose in mice fed an HFHS diet. Metabolomics and transcriptomic analysis revealed that BBBP suppressed the arginine biosynthesis by up-regulating NOS3 expression and the PI3K-Akt signaling pathway was also regulated by BBBP, as indicated by 55 DEGs. Bioinformatic analysis predicted the regulatory effect of the FXR/PXR-PI3K-AKT-NOS3 axis on arginine biosynthesis-related metabolites. These results were further confirmed by the significantly increased mRNA and protein levels of NOS3, PI3K (Pik3r2), and AKT1. And the increased levels of arginine biosynthesis related-metabolites, such as urea, aspartic acid, glutamic acid, citrulline, arginine, and ornithine, were confirmed accurately based on targeted metabolomics analysis. Together, our study uncoded the complicated mechanisms of anti-NASH activities of BBBP, and provided critical evidence inspiring the discovery of innovative therapies based on BBBP in the treatment of NASH.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linna Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lianmei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Rong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junyi Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
20
|
Bao L, Hao P, Jiang M, Chu W. Liquiritigenin regulates insulin sensitivity and ameliorates inflammatory responses in the nonalcoholic fatty liver by activation PI3K/AKT pathway. Chem Biol Drug Des 2023; 102:793-804. [PMID: 37455324 DOI: 10.1111/cbdd.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent long-term disease in the world. Liquiritigenin (LQ) is protective against a variety of hepatotoxins. Herein, we report the potential mechanism of LQ on a high-fat diet (HFD) induced NAFLD. NAFLD mice model was established by HFD for 12 weeks, and LQ treatment for 1 week. Commercially available assay kits measure liver triglycerides (TG) and total cholesterol (TC) levels. Plasm TC, TG, high-density-lipoprotein (HDL-C), and low-density-lipoprotein cholesterol (LDL-C) levels were also monitored by biochemistry. Enzyme linked immunosorbent assay (ELISA) kits were performed to analyze the pro-inflammatory factors, and intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and serum insulin were also determined. GO and KEGG pathway enrichment analysis was employed to analyze the overlapping genes of LQ targets and NAFLD development-related targets. Western blot was performed on key proteins of the enriched signaling pathway. HFD mice showed significant increases in hepatic TG and TC, and plasm TC, TG, and LDL-C in blood lipids, while HDL-C significantly decreased, and LQ treatment reversed their levels (p < 0.05). LQ also alleviated HFD-induced elevated levels of IPGTT, IPITT, and homeostasis model assessment of insulin resistance (HOMA-IR). And serum levels of the pro-inflammatory factor were also suppressed by LQ. PI3K/AKT pathway was enriched by KEGG pathway enrichment, and its key proteins p-PI3K and p-AKT were elevated after LQ treatment (p < 0.05). We found for the first time that LQ improves lipid accumulation, alleviates insulin resistance, and suppresses inflammatory responses in NAFLD mice, which might be associated with the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lei Bao
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Pei Hao
- Department of Traditional Chinese Medicine, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Meiju Jiang
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Weijiang Chu
- Department of Endocrinology, Laizhou City People's Hospital, Laizhou, China
| |
Collapse
|
21
|
Kang YM, Kim KY, Kim TI, Kim YJ, Kim HH, Kim K. Cheong-sang-bang-pung-san alleviated hepatic lipid accumulation by regulating lipid metabolism in vitro and in vivo. Front Pharmacol 2023; 14:1223534. [PMID: 37745047 PMCID: PMC10511874 DOI: 10.3389/fphar.2023.1223534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: The occurrence of fatty liver disease, resulting from the accumulation of excessive fat within the liver, has been showing a significant and rapid increase. This study aimed to evaluate the therapeutic effects of Cheong-sang-bang-pung-san extract (CB) on fatty liver disease, and to elucidate the underlying mechanisms. Methods: We used a high-fat diet (HFD)-fed fatty liver mice and free fatty acid (FFA) induced HepG2 cell lipid accumulation model. The levels of serum, hepatic, and intracellular lipid content were assessed. Histopathological staining was used to evaluate the extent of hepatic lipid accumulation. Real-time polymerase chain reaction and Western blotting were conducted to examine the expression of factors associated with lipid metabolism. Results: We demonstrated that treatment with CB dramatically reduced body weight, liver weight, and fat mass, and improved the serum and hepatic lipid profiles in HFD-induced fatty liver mice. Additionally, CB alleviated lipid accumulation in HFD-fed mice by controlling lipid metabolism, including fatty acid uptake, triglyceride and cholesterol synthesis, and fatty acid oxidation, at the mRNA as well as protein levels. In free fatty acid-treated HepG2 cells, CB significantly reduced intracellular lipid accumulation by regulating lipid metabolism via the activation of AMP-activated protein kinase. Conclusion: These findings provide insights into the mechanisms underlying CB's effects on liver steatosis and position of CB as a potential therapeutic candidate for managing lipid metabolic disorders.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Kwang-Youn Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Tae In Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Yeon-Ji Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Han-Hae Kim
- Korean Medicine Life Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyungho Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
- Korean Medicine Life Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Zhu M, Wang X, Wang K, Zhao Z, Dang Y, Ji G, Li F, Zhou W. Lingguizhugan decoction improves non-alcoholic steatohepatitis partially by modulating gut microbiota and correlated metabolites. Front Cell Infect Microbiol 2023; 13:1066053. [PMID: 36779187 PMCID: PMC9908757 DOI: 10.3389/fcimb.2023.1066053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Lingguizhugan decoction is a traditional Chinese medicine prescription that has been used to improve non-alcoholic fatty liver disease and its progressive form, non-alcoholic steatohepatitis (NASH). However, the anti-NASH effects and underlying mechanisms of Lingguizhugan decoction remain unclear. METHODS Male Sprague-Dawley rats were fed a methionine- and choline-deficient (MCD) diet to induce NASH, and then given Lingguizhugan decoction orally for four weeks. NASH indexes were evaluated by histopathological analysis and biochemical parameters including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver triglycerides (TG), etc. Fecal samples of rats were subjected to profile the changes of gut microbiota and metabolites using 16S rRNA sequencing and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS). Bioinformatics was used to identify Lingguizhugan decoction reversed candidates, and Spearman's correlation analysis was performed to uncover the relationship among gut microbiota, fecal metabolites, and NASH indexes. RESULTS Four-week Lingguizhugan decoction treatment ameliorated MCD diet-induced NASH features, as evidenced by improved hepatic steatosis and inflammation, as well as decreased serum AST and ALT levels. Besides, Lingguizhugan decoction partially restored the changes in gut microbial community composition in NASH rats. Meanwhile, the relative abundance of 26 genera was significantly changed in NASH rats, and 11 genera (such as odoribacter, Ruminococcus_1, Ruminococcaceae_UCG-004, etc.) were identified as significantly reversed by Lingguizhugan decoction. Additionally, a total of 99 metabolites were significantly altered in NASH rats, and 57 metabolites (such as TDCA, Glutamic acid, Isocaproic acid, etc.) enriched in different pathways were reversed by Lingguizhugan decoction. Furthermore, Spearman's correlation analyses revealed that most of the 57 metabolites were significantly correlated with 11 genera and NASH indexes. CONCLUSION Lingguizhugan decoction may exert protective effects on NASH partially by modulating gut microbiota and correlated metabolites.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Wang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenghua Li
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Zhu LR, Li SS, Zheng WQ, Ni WJ, Cai M, Liu HP. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front Immunol 2023; 14:1086078. [PMID: 36817459 PMCID: PMC9933143 DOI: 10.3389/fimmu.2023.1086078] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota not only constitutes intestinal microenvironment homeostasis and human health but also exerts indispensable roles in the occurrence and progression of multiple liver diseases, including alcohol-related liver disease, nonalcoholic fatty liver disease, autoimmune liver disease and liver cancer. Given the therapeutic status of these diseases, their prevention and early therapy are crucial, and the detailed mechanism of gut microbiota in liver disease urgently needs to be explored. Meanwhile, multiple studies have shown that various traditional Chinese medicines, such as Si Miao Formula, Jiangzhi Granules, Liushen Capsules, Chaihu-Shugan Power, Cassiae Semen and Gynostemma, as well as some natural products, including Costunolide, Coprinus comatus polysaccharide, Antarctic krill oil, Oridonin and Berberine, can repair liver injury, improve fatty liver, regulate liver immunity, and even inhibit liver cancer through multiple targets, links, and pathways. Intriguingly, the aforementioned effects demonstrated by these traditional Chinese medicines and natural products have been shown to be closely related to the gut microbiota, directly driving the strategy of traditional Chinese medicines and natural products to regulate the gut microbiota as one of the breakthroughs in the treatment of liver diseases. Based on this, this review comprehensively summarizes and discusses the characteristics, functions and potential mechanisms of these medicines targeting gut microbiota during liver disease treatment. Research on the potential effects on gut microbiota and the regulatory mechanisms of traditional Chinese medicine and natural products provides novel insights and significant references for developing liver disease treatment strategies. In parallel, such explorations will enhance the comprehension of traditional Chinese medicine and natural products modulating gut microbiota during disease treatment, thus facilitating their clinical investigation and application.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Shan-Shan Li
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Wan-Qun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ming Cai
- Department of Pharmacy, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| |
Collapse
|
26
|
Wang L, Gou X, Ding Y, Liu J, Wang Y, Wang Y, Zhang J, Du L, Peng W, Fan G. The interplay between herbal medicines and gut microbiota in metabolic diseases. Front Pharmacol 2023; 14:1105405. [PMID: 37033634 PMCID: PMC10079915 DOI: 10.3389/fphar.2023.1105405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Globally, metabolic diseases are becoming a major public health problem. Herbal medicines are medicinal materials or preparations derived from plants and are widely used in the treatment of metabolic diseases due to their good curative effects and minimal side effects. Recent studies have shown that gut microbiota plays an important role in the herbal treatment of metabolic diseases. However, the mechanisms involved are still not fully understood. This review provides a timely and comprehensive summary of the interactions between herbal medicines and gut microbiota in metabolic diseases. Mechanisms by which herbal medicines treat metabolic diseases include their effects on the gut microbial composition, the intestinal barrier, inflammation, and microbial metabolites (e.g., short-chain fatty acids and bile acids). Herbal medicines can increase the abundance of beneficial bacteria (e.g., Akkermansia and Blautia), reduce the abundance of harmful bacteria (e.g., Escherichia-Shigella), protect the intestinal barrier, and alleviate inflammation. In turn, gut microbes can metabolize herbal compounds and thereby increase their bioavailability and bioactivity, in addition to reducing their toxicity. These findings suggest that the therapeutic effects of herbal medicines on metabolic diseases are closely related to their interactions with the gut microbiota. In addition, some methods, and techniques for studying the bidirectional interaction between herbal medicines and gut microbiota are proposed and discussed. The information presented in this review will help with a better understanding of the therapeutic mechanisms of herbal medicines and the key role of gut microbiota.
Collapse
Affiliation(s)
- Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoling Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingye Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaqian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Gang Fan, ; Wei Peng, ; Leilei Du,
| |
Collapse
|
27
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|
28
|
Hang L, Wang E, Feng Y, Zhou Y, Meng Y, Jiang F, Yuan J. Metagenomics and metabolomics analysis to investigate the effect of Shugan decoction on intestinal microbiota in irritable bowel syndrome rats. Front Microbiol 2022; 13:1024822. [PMID: 36478867 PMCID: PMC9719954 DOI: 10.3389/fmicb.2022.1024822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND The effect of Shugan Decoction (SGD) on intestinal motility and visceral hypersensitivity in Water avoid stress (WAS)-induced diarrhea predominant irritable bowel syndrome (IBS-D) model rats has been confirmed. However, the mechanisms of its action involved in the treatment of IBS-D need to be further studied. Intestinal microbiota plays an important role in maintaining intestinal homeostasis and normal physiological function. Changes in the intestinal microbiota and its metabolites are thought to participate in the pathophysiological process of IBS. AIM This study aimed to analyze the influence of SGD on intestinal microbiota and fecal metabolites in IBS-D rats by multiple omics techniques, including metagenomic sequencing and metabolomics. METHODS We measured the intestinal motility and visceral sensitivity of three groups of rats by fecal pellets output and colorectal distension (CRD) experiment. In addition, metagenome sequencing analysis was performed to explore the changes in the number and types of intestinal microbiota in IBS-D model rats after SGD treatment. Finally, we also used untargeted metabolomic sequencing to screen the metabolites and metabolic pathways closely related to the therapeutic effect of SGD. RESULTS We found that compared with the rats in the control group, the fecal pellets output of the rats in the WAS group increased and the visceral sensitivity threshold was decreased (P < 0.05). Compared with the rats in the WAS group, the fecal pellets output of the SGD group was significantly decreased, and the visceral sensitivity threshold increased (P < 0.05). Besides, compared with the rats in the WAS group, the relative abundance of Bacteroidetes increased in SGD group, while that of Firmicutes decreased at the phylum level, and at the species level, the relative abundance of Bacteroides sp. CAG:714, Lactobacillus reuteri and Bacteroides Barnesiae in SGD group increased, but that of bacterium D42-87 decreased. In addition, compared with the WAS group, several metabolic pathways were significantly changed in SGD group, including Taurine and hypotaurine metabolism, Purine metabolism, Sulfur metabolism, ABC transporters, Arginine and proline metabolism and Bile secretion. CONCLUSION SGD can regulate specific intestinal microbiota and some metabolic pathways, which may explain its effect of alleviating visceral hypersensitivity and abnormal intestinal motility in WAS-induced IBS-D rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Han Y, Li L, Wang B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: current knowledge and perspectives. Front Med 2022; 16:667-685. [PMID: 36318353 DOI: 10.1007/s11684-022-0960-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
|
30
|
Xia W, Liu B, Tang S, Yasir M, Khan I. The science behind TCM and Gut microbiota interaction-their combinatorial approach holds promising therapeutic applications. Front Cell Infect Microbiol 2022; 12:875513. [PMID: 36176581 PMCID: PMC9513201 DOI: 10.3389/fcimb.2022.875513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The trend toward herbal medicine as an alternative treatment for disease medication is increasing worldwide. However, insufficient pharmacologic information is available about the orally taken medicines. Not only herbal medicine, but also Western drugs, when passing through the gastrointestinal tract, interact with trillions of microbes (known as the gut microbiome [GM]) and their enzymes. Gut microbiome enzymes induce massive structural and functional changes to the herbal products and impact the bioavailability and efficacy of the herbal therapeutics. Therefore, traditional Chinese medicine (TCM) researchers extend the horizon of TCM research to the GM to better understand TCM pharmacology and enhance its efficacy and bioavailability. The study investigating the interaction between herbal medicine and gut microbes utilizes the holistic approach, making landmark achievements in the field of disease prognosis and treatment. The effectiveness of TCM is a multipathway modulation, and so is the GM. This review provides an insight into the understanding of a holistic view of TCM and GM interaction. Furthermore, this review briefly describes the mechanism of how the TCM-GM interaction deals with various illnesses.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- National Drug Clinical Trial Agency, Teaching Hospital of Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
31
|
Cao B, Wang S, Li R, Wang Z, Li T, Zhang Y, Dong B, Li Y, Lin M, Li X, Xiao X, Li C, Li G. Xihuang Pill enhances anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Biomed Pharmacother 2022; 151:113081. [PMID: 35605293 DOI: 10.1016/j.biopha.2022.113081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Lung cancer poses a serious threat to human health. Although targeted therapies have led to breakthroughs in the treatment of lung cancer, drug resistance and side effects limit their clinical applications. Xihuang pill (XHW), a classical anti-cancer traditional Chinese medicine formula, has been clinically proven to be an effective complementary therapy in the treatment of various of cancers. However, the underlying mechanism for its use in combination with anti-cancer drugs remains unclear. Here, we explored the anti-lung cancer effect of XHW combined with anlotinib in mice bearing Lewis lung cancer (LLC). We used gut microbiota and transcriptomics to elucidate the regulatory properties of XHW in improving anti-lung cancer effect of anlotinib. The results showed that combination treatment of XHW with Anlotinib significantly inhibited tumor growth in LLC-bearing mice. We found that XHW played a key role in the regulation of gut microbiota using 16 s rRNA sequencing analysis. Specifically, XHW increased the proportion of the beneficial bacteria Bacteroides and g_norank_f_Muribaculaceae. Based on transcriptomic analysis of tumor tissues, differentially expressed genes in the combination therapy group were related to biological processes concerning angiogenesis, such as regulation of blood vessel diameter, regulation of tube diameter, and regulation of tube size. Our data suggest that XWH enhances the anticancer effect of anlotinib by regulating gut microbiota composition and tumor angiogenesis pathway. Combination therapy with anlotinib and XHW may be a novel therapeutic strategy for lung cancer patients.
Collapse
Affiliation(s)
- Bo Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shiyuan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhihong Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Taifeng Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yuanyuan Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Bin Dong
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yingying Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Mengmeng Lin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xingjie Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Guohui Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
32
|
Ji L, Li Q, He Y, Zhang X, Zhou Z, Gao Y, Fang M, Yu Z, Rodrigues RM, Gao Y, Li M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: a promising drug Potentilla discolor Bunge. Acta Pharm Sin B 2022; 12:3529-3547. [PMID: 36176915 PMCID: PMC9513494 DOI: 10.1016/j.apsb.2022.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid metabolism and reversal of insulin resistance. In this review, we summarize potential therapeutic effects of TCM formulas for the treatment of NAFLD, focusing on the medicinal properties of natural active compounds from PDB and their underlying mechanisms. We point out that PDB can be classified as a novel candidate for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Qian Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Robim M. Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium
- Corresponding authors.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
33
|
Zhou Z, Zhang J, You L, Wang T, Wang K, Wang L, Kong X, Gao Y, Sun X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front Endocrinol (Lausanne) 2022; 13:1000727. [PMID: 36204095 PMCID: PMC9530134 DOI: 10.3389/fendo.2022.1000727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global health problem, and its prevalence has been on the rise in recent years. Traditional Chinese Medicine (TCM) contains a wealth of therapeutic resources and has been in use for thousands of years regarding the prevention of liver disease and has been shown to be effective in the treatment of NAFLD in China. but the molecular mechanisms behind it have not been elucidated. In this article, we have updated and summarized the research and evidence concerning herbs and their active ingredients for the treatment in vivo and vitro models of NAFLD or NASH, by searching PubMed, Web of Science and SciFinder databases. In particular, we have found that most of the herbs and active ingredients reported so far have the effect of clearing heat and dispelling dampness, which is consistent with the concept of dampness-heat syndrome, in TCM theory. we have attempted to establish the TCM theory and modern pharmacological mechanisms links between herbs and monomers according to their TCM efficacy, experiment models, targets of modulation and amelioration of NAFLD pathology. Thus, we provide ideas and perspectives for further exploration of the pathogenesis of NAFLD and herbal therapy, helping to further the scientific connotation of TCM theories and promote the modernization of TCM.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixia Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Infection, Oriental Hospital Affiliated to Tongji University, Shanghai, China
| | - Lingtai Wang
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Yueqiu Gao
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| | - Xuehua Sun
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xiaoni Kong, ; Yueqiu Gao, ; Xuehua Sun,
| |
Collapse
|
34
|
Luo Y, Zhang X, Zhang W, Yang Q, You W, Wen J, Zhou T. Compatibility with Semen Sojae Praeparatum attenuates hepatotoxicity of Gardeniae Fructus by regulating the microbiota, promoting butyrate production and activating antioxidant response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153656. [PMID: 34332844 DOI: 10.1016/j.phymed.2021.153656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Herb-induced liver injury is a leading cause of drug-induced liver injury in China and its incidence is also increasing worldwide. Gardeniae Fructus (ZZ) has aroused wide concern for hepatotoxicity in recent decades. But when ZZ is administered in combination with Semen Sojae Praeparatum (DDC) to compose a herbal pair Zhizichi Decoction (ZZCD), lower hepatotoxicity is observed. The mechanism involved in the attenuated effect remains to be investigated. HYPOTHESIS/PURPOSE Our previous studies showed that DDC benefited host metabolism by regulating the gut microbiota and it reduced the exposure of major toxic components of ZZ. The present study was aimed to investigate how DDC attenuated hepatotoxicity of ZZ from the perspective of gut microbiota. METHODS Rats received ZZ and ZZCD treatment of different dosages and antibiotic treatment was applied to explore the involvement of gut microbiota. Biochemical assays and histopathological analysis were conducted to evaluate liver injury. Gut microbiota in caecal contents was profiled by 16S rRNA sequencing. Short-chain fatty acids (SCFAs) in caecal contents were measured by gas chromatography mass spectrometry (GCMS). To verify the protective effect of butyrate, it was administered with genipin, the major hepatotoxic metabolite of ZZ, to rats and HepG2 cells. Plasma lipopolysaccharide (LPS) level and colon tissue section were used to evaluate gut permeability. Expression level of Nuclear factor erythroid-derived 2-like 2 (Nrf2) was detected by immunohistochemistry in vitro and by western blot in vivo. RESULTS Our study showed that ZZCD displayed lower hepatotoxicity than ZZ at the same dosage. ZZ induced gut dysbiosis, significantly reducing Lactobacillus and Enterococcus levels and increasing the Parasutterella level. In combination with DDC, these alterations were reversed and beneficial genus including Akkermansia and Prevotella were significantly increased. Besides, butyrate production was diminished by ZZ but was restored when in combination with DDC. Butyrate showed detoxification on genipin-induced liver injury by promoting colon integrity and promoting Nrf2 activation. Besides, it protected genipin-induced hepatocyte damage by promoting Nrf2 activation. CONCLUSION DDC attenuates ZZ-induced liver injury by regulating the microbiota, promoting butyrate production and activating antioxidant response.
Collapse
Affiliation(s)
- Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China
| | - Qiliang Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei You
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai 200433, China.
| |
Collapse
|