1
|
Canak HN, Bas K, Yağmur EA, Karakurt S. Mesobuthus eupeus venom modulates colorectal carcinoma signaling pathways and induces apoptosis. Med Oncol 2025; 42:163. [PMID: 40229568 PMCID: PMC11996983 DOI: 10.1007/s12032-025-02689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Colorectal cancer (CRC) is a significant global health concern, often challenging to treat effectively with conventional methods and burdened by adverse effects. Scorpion venoms offer a unique avenue for exploration, given their ability to disrupt the cell cycle, inhibit growth, and trigger apoptosis. This study delves into the impact of Mesobuthus eupeus (M. eupeus) scorpion venom on the proliferation and progression of colorectal cancer at the molecular level. The total protein concentration in the venom (607.5 µg/mL) also emphasized the rich composition and potential for therapeutic applications. The study reveals that M. eupeus venom effectively reduced the proliferation of DLD-1 and HT-29 colorectal cancer cells in a dose-dependent manner with IC50 values of 4.32 and 7.61 µg/mL, respectively. The venom also impedes cell migration, diminishes colony formation, and triggers apoptosis in the cancer cells. The venom also induced early and late apoptosis in the two cancer cell lines. The human colorectal cancer and apoptotic pathways were clarified at the molecular level using pathway panels, which revealed that 16 genes involved in colorectal cancer increased while 23 decreased. In the HT-29 cell line, 57 genes increased, and 1 decreased following venom treatment. Besides, the mRNA expression of 19 genes involved in the apoptotic pathway was increased, while 22 were reduced in DLD-1 cells. This study underscores the potential of M. eupeus venom as a natural therapeutic approach in the quest for cancer treatments.
Collapse
Affiliation(s)
- Havva Nur Canak
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Kemal Bas
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye
| | - Ersen Aydın Yağmur
- Department of Plant and Animal Production, Alasehir Vocational High School, Manisa Celal Bayar University, Manisa, Türkiye
| | - Serdar Karakurt
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Türkiye.
| |
Collapse
|
2
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2025; 17:279-291. [PMID: 40256718 PMCID: PMC12009074 DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Wenze Wu
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yan Mi
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Qingqi Meng
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yue Hou
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
3
|
Ding Y, Yu Y. Therapeutic potential of flavonoids in gastrointestinal cancer: Focus on signaling pathways and improvement strategies (Review). Mol Med Rep 2025; 31:109. [PMID: 40017144 PMCID: PMC11884236 DOI: 10.3892/mmr.2025.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/30/2025] [Indexed: 03/01/2025] Open
Abstract
Flavonoids are a group of polyphenolic compounds distributed in vegetables, fruits and other plants, which have considerable antioxidant, anti‑tumor and anti‑inflammatory activities. Several types of gastrointestinal (GI) cancer are the most common malignant tumors in the world. A large number of studies have shown that flavonoids have inhibitory effects on cancer, and they are recognized as a class of potential anti‑tumor drugs. Therefore, the present review investigated the molecular mechanisms of flavonoids in the treatment of different types of GI cancer and summarized the drug delivery systems commonly used to improve their bioavailability. First, the classification of flavonoids and the therapeutic effects of various flavonoids on human diseases were briefly introduced. Then, to clarify the mechanism of action of flavonoids on different types of GI cancer in the human body, the metabolic process of flavonoids in the human body and the associated signaling pathways causing five common types of GI cancer were discussed, as well as the corresponding therapeutic targets of flavonoids. Finally, in clinical settings, flavonoids have poor water solubility, low permeability and inferior stability, which lead to low absorption efficiency in vivo. Therefore, the three most widely used drug delivery systems were summarized. Suggestions for improving the bioavailability of flavonoids and the focus of the next stage of research were also put forward.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori and Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
4
|
Patil R, Bule P, Chella N. Exploration of Conventional and FDM-Mediated 3D Printed Tablets Fabricated Using HME-Based Filaments for pH-Dependent Drug Delivery. AAPS PharmSciTech 2025; 26:96. [PMID: 40148671 DOI: 10.1208/s12249-025-03088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Hot melt extrusion (HME) helps to improve the solubility of BCS class II and IV molecules. The downstream processing of the resulting filaments was crucial in developing the final dosage form. The present work investigates advantages of combining HME with fused deposition modelling (FDM) 3-Dimensional (3D) printing in delivering the naringenin to the colon to treat inflammatory bowel disease. HME filaments were made using a pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate for the localized delivery of naringenin at the colonic pH. Polyethylene glycol (PEG - 4000) and Aerosil 200 were incorporated as plasticizer and flow modulator respectively, to facilitate the extrusion process. Naringenin was converted to amorphous form as confirmed by differential scanning calorimetry and powder x-ray diffraction. The optimized filament showed 0.03, 11.52 and 77.80% drug release at pH 1.2, 6.8 and 7.4 respectively. The tablets produced with the optimized filament by compression and 3D printing also confirmed the presence of naringenin in amorphous form and demonstrated pH-dependent release followed by zero-order release independent of the concentration. The dissolution profiles of FDM 3D printed (3DP) tablets with varying dimensions and infill densities suggested that both significantly influenced drug release from the tablets without altering the composition of tablets, indicating the potential application of 3D printing technology in developing personalized medicine according to patient requirements. These promising results may be valuable in evaluating the potential of naringenin in animal models, which may further facilitate clinical applications.
Collapse
Affiliation(s)
- Ruchira Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101
| | - Prajakta Bule
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sila Village, Changsari, Kamrup District, Guwahati, Assam, India, 781101.
| |
Collapse
|
5
|
Wang X, Su Z, Li X, Chen J, Li G, Shan Y, Pan Z, Fu F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata 'Chachi' from Citrus reticulata Blanco. Food Chem 2025; 462:140806. [PMID: 39241684 DOI: 10.1016/j.foodchem.2024.140806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.
Collapse
Affiliation(s)
- Xue Wang
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhipeng Su
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Xiang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiaxu Chen
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Gaoyang Li
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Zhaoping Pan
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Fuhua Fu
- Dongting Laboratory, Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
6
|
Chen L, Chen WD, Xu YX, Ren YY, Zheng C, Lin YY, Zhou JL. Strategies for enhancing non-small cell lung cancer treatment: Integrating Chinese herbal medicines with epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur J Pharmacol 2024; 980:176871. [PMID: 39117263 DOI: 10.1016/j.ejphar.2024.176871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Da Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, 310052, China.
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
7
|
Wen LP, Gao SW, Chen HX, Liu Q, Xiao GZ, Lin HC, He QL. Astragaloside IV Ameliorates Colonic Adenomatous Polyps Development by Orchestrating Gut Bifidobacterium and Serum Metabolome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1527-1554. [PMID: 39164214 DOI: 10.1142/s0192415x24500605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1β, IL-6, and TNF-α), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/β-catenin pathway proteins (Wnt3a, β-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/β-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.
Collapse
Affiliation(s)
- Lu-Ping Wen
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Department of Coloproctology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, P. R. China
| | - Shao-Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Hua-Xian Chen
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Guo-Zhong Xiao
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Hong-Cheng Lin
- Department of General Surgery (Department of Coloproctology), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, P. R. China
| | - Qiu-Lan He
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| |
Collapse
|
8
|
Yang X, Yan Y, Wang F, Tian J, Cao Q, Liu M, Ma B, Su C, Duan X. Aspirin prevents colorectal cancer by regulating the abundance of Enterococcus cecorum and TIGIT +Treg cells. Sci Rep 2024; 14:13592. [PMID: 38867002 PMCID: PMC11169407 DOI: 10.1038/s41598-024-64447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Although aspirin can reduce the incidence of colorectal cancer (CRC), there is still uncertainty about its significance as a treatment for CRC, and the mechanism of aspirin in CRC is not well understood. In this study, we used aspirin to prevent AOM/DSS-induced CRC in mice, and the anti-CRC efficacy of aspirin was assessed using haematoxylin and eosin (H&E) staining and by determining the mouse survival rate and tumour size. 16S rDNA sequencing, flow cytometry (FCM), and Western blotting were also conducted to investigate the changes in the gut microbiota, tumour immune microenvironment, and apoptotic proteins, respectively. The results demonstrated that aspirin significantly exerted anti-CRC effects in mice. According to 16S rDNA sequencing, aspirin regulated the composition of the gut microbiota and dramatically reduced the abundance of Enterococcus cecorum. FCM demonstrated that there were more CD155 tumour cells and CD4 + CD25 + Treg cells showed increased TIGIT levels. Moreover, increased TIGIT expression on Treg cells is associated with reduced Treg cell functionality. Importantly, the inhibition of Treg cells is accompanied by the promotion of CD19 + GL-7 + B cells, CD8 + T cells, CD4 + CCR4 + Th2 cells, and CD4 + CCR6 + Th17 cells. Overall, aspirin prevents colorectal cancer by regulating the abundance of Enterococcus cecorum and TIGIT + Treg cells.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China
| | - Yajuan Yan
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Fengkui Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinhua Tian
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Qian Cao
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Liu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, 750004, China.
| | - Chunxia Su
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Department of Pathogen Biology and Immunology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| | - Xiangguo Duan
- School of Inspection, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
11
|
Wang Z, Lin W, Shi M, Hou Y, Liu J, Huang Z, Zhang X, Yang Y, Liu B, Yang Z, Ma W. Involucrasin B Inhibits the Proliferation of Caco-2 Cells by Regulating the TGFβ/SMAD2-3-4 Pathway. Molecules 2024; 29:686. [PMID: 38338430 PMCID: PMC10856266 DOI: 10.3390/molecules29030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the second most common cause of cancer death. However, effective anti-CRC drugs are still lacking in clinical settings. This article investigated the anti-proliferative effect of involucrasin B on CRC Caco-2 cells. (2) Methods: This study employed a sulforhodamine B (SRB) method, colony formation experiments, flow cytometry, FastFUCCI assay, dual luciferase assay, and Western blot analysis for the investigation. (3) Results: The SRB method and colony formation experiments showed that involucrasin B exhibited an inhibitory effect on the Caco-2 cells cultured in vitro. Subsequently, the flow cytometry, FastFUCCI assay, and Western blotting results showed that involucrasin B induced cell cycle arrest in the G1 phase dose-dependently. Involucrasin B significantly enhanced the TGFβ RII protein level and SMAD3 phosphorylation, thus inhibiting the expression of CDK4 and cyclin D1 and causing G1 cell cycle arrest. (4) Conclusion: This study shows that involucrasin B exerts its anti-proliferative effect by regulating the TGFβ/SMAD2-3-4 pathway to cause G1 cycle arrest in Caco-2 cells.
Collapse
Affiliation(s)
- Zi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Yu Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Jiachen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Zifeng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Yanchao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Beijia Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| | - Zhuya Yang
- School of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (Z.W.); (W.L.); (M.S.); (Y.H.); (J.L.); (Z.H.); (X.Z.); (Y.Y.); (B.L.)
| |
Collapse
|
12
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
13
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Araujo AMD, Cerqueira SVSD, Menezes-Filho JERD, Heimfarth L, Matos KKDOG, Mota KO, Conceição MRDL, Marques LP, Roman-Campos D, Santos-Neto AGD, Albuquerque-Júnior RLCD, Santos VCDO, Vasconcelos CMLD. Naringin improves post-ischemic myocardial injury by activation of K ATP channels. Eur J Pharmacol 2023; 958:176069. [PMID: 37741428 DOI: 10.1016/j.ejphar.2023.176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Naringin (NRG) is a flavonoid with recognized cardioprotective effects. Then, it was investigated the cardioprotective mechanisms of NRG against ischemia-reperfusion (I/R) injury. The rats were pretreated for 7 days (v.o.) with NRG (25 mg/kg) or n-acetylcysteine (NAC, 100 mg/kg) and their isolated hearts were subjected to global ischemia (30 min) and reperfusion (60 min). Furthermore, isolated hearts were perfused with 5 μM NRG in the presence of 10 μM glibenclamide (GLI) and subjected to I/R protocol. In healthy ventricular cardiomyocyte, it was evaluated the acute effect of 5 μM NRG on the GLI sensitive current. The results showed that NRG pretreatment restored the cardiac function and electrocardiogram (ECG) alterations induced by I/R injury, decreasing arrhythmia scores and the occurrence of severe arrhythmias. Lactate dehydrogenase and infarct area were decreased while superoxide dismutase (SOD), catalase and citrate synthase activities increased. Expression of SOD CuZn and SOD Mn not was altered. NRG treatment decreased reactive oxygen species (ROS) generation and lipid peroxidation without alter sulfhydryl groups and protein carbonylation. Also, NRG (5 μM) increased the glibenclamide sensitive current in isolated cardiomyocytes. In isolated heart, the cardioprotection of NRG was significantly reduced by GLI. Furthermore, NRG promoted downregulation of Bax expression and Bax/Bcl-2. Histopathological analysis showed that NRG decreased cell edema, cardiomyocytes and nucleus diameter. Thus, NRG has a cardioprotective effect against cardiac I/R injury which is mediated by its antioxidant and antiapoptotic actions and KATP channels activation.
Collapse
Affiliation(s)
| | | | | | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Karina Oliveira Mota
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
16
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
18
|
Cheng Y, Wu C, Liu Z, Song P, Xu B, Chao Z. Evaluation and Optimization of Quality Based on the Physicochemical Characteristics and Metabolites Changes of Qingpi during Storage. Foods 2023; 12:foods12030463. [PMID: 36765992 PMCID: PMC9914837 DOI: 10.3390/foods12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Qingpi, the dried immature pericarp of Citrus reticulata Blanco, is a commonly used medicinal food with some health-promoting benefits. In general, it is essential that Qingpi be stored for a period of time, but there are no reports about the number of storage years needed to obtain the best quality of Qingpi. Our aim was to determine the best storage time of Qingpi by studying the physicochemical properties and metabolite changes in product stored from 1 to 5 years. As a result, the color of Qingpi became darker during storage. Both the levels of three flavonoids (hesperidin, nobiletin, and tangeretin) and total flavonoids (TFs) and the antioxidant activity decreased during storage and the total phenolics (TPs) content fluctuated during storage. Cluster analysis was performed on the color parameters measured using a color difference meter, revealing that the color of Qingpi differed before and after 3 years of storage. A total of 9 special differential metabolites were identified that could be used to distinguish the storage years of Qingpi. This is the first study to report the quality changes of Qingpi during storage. The optimized results of the quality evaluation indicated that Qingpi should be stored for no more than 3 years.
Collapse
|
19
|
Speciani MC, Cintolo M, Marino M, Oren M, Fiori F, Gargari G, Riso P, Ciafardini C, Mascaretti F, Parpinel M, Airoldi A, Vangeli M, Leone P, Cantù P, Lagiou P, Del Bo’ C, Vecchi M, Carnevali P, Oreggia B, Guglielmetti S, Bonzi R, Bonato G, Ferraroni M, La Vecchia C, Penagini R, Mutignani M, Rossi M. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022; 14:4516. [PMID: 36364779 PMCID: PMC9653960 DOI: 10.3390/nu14214516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have been inversely associated to colorectal cancer (CRC) and are plausible intermediaries for the relation among gut microbiome, intestinal permeability and CRC. We analyzed the relation of flavonoid intake with CRC and blood bacterial DNA. We conducted a case-control study in Italy involving 100 incident CRC cases and 200 controls. A valid and reproducible food-frequency questionnaire was used to assess dietary habits and to estimate six flavonoid subclass intakes. We applied qPCR and 16S rRNA gene profiling to assess blood bacterial DNA. We used multiple logistic regression to derive odds ratios (ORs) of CRC and Mann-Whitney and chi--square tests to evaluate abundance and prevalence of operational taxonomic units (OTUs) according to flavonoid intakes. Inverse associations with CRC were found for anthocyanidins (OR for the highest versus the lowest tertile = 0.24, 95% confidence interval, CI = 0.11-0.52) and flavanones (OR = 0.18, 95% CI = 0.08-0.42). We found different abundance and prevalence according to anthocyanidin and flavanone intake for OTUs referring to Oligoflexales order, Diplorickettsiaceae family, Staphylococcus, Brevundimonas, Pelomonas and Escherischia-Shigella genera, and Flavobacterium and Legionella species. The study provides evidence to a protective effect of dietary anthocyanidins and flavanones on CRC and suggests an influence of flavonoids on blood bacterial DNA, possibly through intestinal permeability changes.
Collapse
Affiliation(s)
- Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maya Oren
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Pierfrancesco Leone
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Paolo Cantù
- Gastroenterology and Digestive Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, GR-115 27 Athens, Greece
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Pietro Carnevali
- Division of Minimally–Invasive Surgical Oncology, Niguarda Cancer Center, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20133 Milan, Italy
| | - Barbara Oreggia
- General Surgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giulia Bonato
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Monica Ferraroni
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Roberto Penagini
- Gastroenterology and Endoscopy Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology “G.A. Maccacaro”, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|