1
|
Qi J, Gao X, Han Y, Yang M, Wei C, Zhang L, Chu J. Qing-Xin-Jie-Yu Granule attenuates myocardial infarction-induced inflammatory response by regulating the MK2/TTP pathway. PHARMACEUTICAL BIOLOGY 2025; 63:128-140. [PMID: 39980416 PMCID: PMC11849043 DOI: 10.1080/13880209.2025.2467377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
CONTEXT Qing-Xin-Jie-Yu Granule (QXJYG) has shown promise in the treatment of myocardial infarction. However, the mechanism of action of QXJYG underlying its anti-inflammation remain unknown. OBJECTIVE The study aimed to evaluate the effectiveness and mechanism of QXJYG in a mouse model of myocardial infarction and hypoxia-induced H9C2 cells. MATERIALS AND METHODS Myocardial infarction was induced in mice via left anterior descending coronary artery ligation, and hypoxia-induced H9C2 cells was served as the in vitro model. The cardiac function was evaluated by echocardiography, while myocardial tissue pathology was examined using HE and Masson's trichrome staining. Changes in serum markers of cardiac injury were measured using ELISA kits. The levels of inflammatory cytokines in both the serum and cardiac tissue were quantified using the Bio-Plex Pro Mouse Chemokine assay, and hypoxia-induced inflammatory factors in H9C2 cells were assessed by RT-qPCR. Additionally, western blot analysis was conducted to evaluate the expression of proteins related to the MK2/TTP signaling pathway both in vivo and in vitro experiments. RESULTS QXJYG significantly enhanced cardiac function in mice with myocardial infarction, as evidenced by improved myocardial tissue structure, reduced collagen fiber deposition, and lowered serum levels of creatine kinase isoenzyme MB (CK-MB), cardiac Troponin T (cTnT), and brain Natriuretic Peptide (BNP). QXJYG may reduce the expression of inflammatory factors in both the heart and serum of myocardial infarction-induced mice and attenuate hypoxia-induced levels of inflammatory factors in cardiomyocytes by decreasing the ratio of p-MK2/MK2 and increasing the protein expression of TTP. DISCUSSION AND CONCLUSIONS QXJYG improved cardiac function and reduced injury, fibrosis, and inflammation after myocardial infarction, likely through modulation of the MK2/TTP signaling pathway.
Collapse
Affiliation(s)
- Jianghan Qi
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaoyao Gao
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ying Han
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meiling Yang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Chenyi Wei
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ling Zhang
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfeng Chu
- College of Integrative Medicine, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Chao J, Wang Y, Huang Q, Zhang H, Chen Y, Cheng X, Mao J, Yu J, Yan M, Chen S, Lv G, Su J. The n-butanol extract of Polygonatum sibiricum improves spleen aging via p53 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 144:156888. [PMID: 40494016 DOI: 10.1016/j.phymed.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/29/2025] [Accepted: 05/19/2025] [Indexed: 06/22/2025]
Abstract
BACKGROUND Aging affects the function of multiple organs, including the spleen, which undergoes age-related structural changes and functional decline. Polygonatum sibiricum, a traditional anti-aging herbal medicine, contains saponins as its primary active components. However, the potential effects and underlying mechanisms of Polygonatum n-butanol extract (PNBE), which is rich in saponins, on splenic aging remain to be elucidated. PURPOSE This study aimed to investigate the effects and molecular mechanisms of PNBE on splenic aging. METHODS PNBE was prepared by n-butanol extraction to obtain a high concentration of saponins, and its main components were identified using UPLC-Q-TOF/MS. Naturally aged mice were treated with PNBE, after which splenic morphology, aging markers, and DNA damage were assessed. Flow cytometry was employed to analyze splenic lymphocyte subsets, proliferation capacity, cell cycle distribution, and apoptosis. Transcriptomic analysis was performed to identify potential target pathways, and the p53 signaling pathway was verified by WB and qRT-PR analyses. RESULTS PNBE, primarily containing saponins, aldehydes, and glycosides, significantly improved splenic morphological alterations, attenuated DNA damage, and suppressed the mRNA expression of aging-related genes p21 Cip1/Wαf1, p16 INK4α, and p19 Arf in aged mice. PNBE also increased the proportion of naive T cells, reduced the percentage of cells arrested in G1 phase, enhanced T/B lymphocyte proliferation, and decreased late apoptotic cell populations, thus maintaining splenic lymphocyte homeostasis. Transcriptomic analysis revealed that the p53 signaling pathway likely mediates PNBE's anti-aging effects in the spleen. Further validation demonstrated that PNBE inhibited p53 protein phosphorylation and regulated the expression of downstream genes including Cdk2, Gadd45, Bax, and Bcl-2. CONCLUSIONS PNBE delays splenic aging by inhibiting the p53 signaling pathway and regulating downstream cell cycle and apoptosis-related gene expression, thereby alleviating cell cycle arrest, proliferation inhibition, and excessive apoptosis in splenic lymphocytes.
Collapse
Affiliation(s)
- Jingtong Chao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qidi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Huiwen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yigong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiamei Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiayin Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingjing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Meiqiu Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Suhong Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Guiyuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Jie Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
3
|
Bi D, Hu Y, Hua S, Liu J, Guo S. The regulatory mechanisms of mitophagy and oxidative stress in androgenetic alopecia. Cell Signal 2025; 132:111862. [PMID: 40373842 DOI: 10.1016/j.cellsig.2025.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/02/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Androgenetic alopecia (AGA), the most common type of non-scarring hair loss in dermatology, result from a multifaceted interplay of genetic susceptibility, abnormal androgen metabolism, and dysregulation within the follicular microenvironment. Recent studies have highlighted the crucial roles of mitophagy and oxidative stress in the pathogenesis and progression of AGA. Mitophagy, a selective process by which damaged mitochondria are eliminated, is essential for maintaining cellular energy metabolism homeostasis and redox balance. In contrast, oxidative stress results from excessive accumulation of reactive oxygen species (ROS), which induces cellular damage and accelerates disease progression. The disruption of the dynamic balance between mitophagy and oxidative stress is increasingly recognized as a key factor in the development and exacerbation of AGA. Despite initial studies elucidating the interaction between these two processes, the precise molecular mechanisms and regulatory networks governing AGA remain insufficiently understood. This review aims to systematically synthesize the latest findings concerning the interplay between mitophagy and oxidative stress in AGA. By examining their roles in the disease's onset and progression, we identify potential therapeutic targets for intervention. Additionally, we discuss relevant signaling pathways and cellular mechanisms, evaluating the therapeutic potential of targeting mitophagy and oxidative stress for the treatment of AGA.
Collapse
Affiliation(s)
- Dezhao Bi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunyao Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; Nanjing University of Chinese Medicine, Nanjing, China
| | - Songmao Hua
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shun Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Zhang X, Hao C, Li T, Gao W, Ren Y, Wang J, Zhang Y. Leptin attenuates diabetic cardiomyopathy-induced cardiac remodeling via regulating cGAS/STING signaling and Opa1-mediated mitochondrial fusion. Cell Signal 2025; 132:111805. [PMID: 40246132 DOI: 10.1016/j.cellsig.2025.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE This investigation seeks to elucidate the contribution of leptin to the pathogenesis of diabetic cardiomyopathy (DCM). METHODS Mice were rendered diabetic through the administration of streptozotocin (STZ). Leptin was delivered via subcutaneously implanted osmotic pumps. Assessments of cardiac performance, hypertrophy, and fibrosis were conducted using echocardiography, Hematoxylin and Eosin (H&E), Wheat Germ Agglutinin (WGA), and Masson trichrome staining. Myocardial apoptosis and oxidative stress were quantified through TUNEL assay and biochemical markers of oxidative stress, including Malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), and 3-Nitrotyrosine (3NT). Mitochondrial structure was examined using Transmission Electron Microscopy (TEM). Primary neonatal cardiomyocytes were subjected to high glucose (HG) conditions. The fluorescent indicators MitoTracker Green and MitoSOX Red were employed to evaluate mitochondrial morphology and function within the cardiomyocytes. RESULTS Mice with diabetes displayed marked cardiac hypertrophy and fibrosis, as indicated by H&E, WGA, and Masson staining. The administration of leptin significantly mitigated the cardiac pathological manifestations in diabetic mice. Leptin increased the expression of Opa1 and enhanced mitochondrial fusion and function in cardiomyocytes exposed to HG. The cGAS/STING signaling pathway may serve as a pivotal intermediary for leptin to facilitate Opa1-driven mitochondrial fusion. CONCLUSIONS Leptin appears to safeguard against hyperglycemia-induced mitochondrial oxidative damage and DCM by modulating the cGAS/STING signaling cascade and Opa1-mediated mitochondrial fusion. These results propose that leptin could be a promising agent for promoting mitochondrial fusion and preventing diabetes-associated cardiac pathologies.
Collapse
Affiliation(s)
| | - Chunyuan Hao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Tonghua Li
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Weihua Gao
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yang Ren
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Junzhe Wang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China
| | - Yuyang Zhang
- Cardiovascular Department, Xi'an No.1 Hospital, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Zhu X, Zhao Z, Zhang Y, Li H, Zhou X, Zhu Y, Chen Q, Kan S, Zhou L, Zhao G. p38γ modulates ferroptosis in brain injury caused by ethanol and cerebral ischemia/reperfusion by regulating the p53/SLC7A11 signaling pathway. Cell Signal 2025; 131:111728. [PMID: 40074192 DOI: 10.1016/j.cellsig.2025.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Ischemic stroke, a neurological condition with a complicated etiology that is accompanied by severe inflammation and oxidative stress, and ethanol (EtOH) may aggravate ischemia/reperfusion (I/R)-induced brain damage. However, the effect of prolonged alcohol intake on acute brain injury remains ambiguous. As part of the mitogen-activated protein kinase (MAPK) family, p38γ is involved in ferroptosis and inflammation in various diseases. This study explored how p38γ is involved in the effects of chronic EtOH consumption and brain injury caused by cerebral I/R. Brain damage was induced in the mice via the administration of a liquid alcohol-containing diet for 8 weeks, middle cerebral artery occlusion reperfusion (MCAO/R), or a combination of both. We verified that EtOH significantly exacerbated MCAO/R-induced brain damage, ferroptosis and inflammation. Notably, p38γ levels were increased in experimental mouse and cell models. p38γ knockdown markedly attenuated brain tissue damage, oxidative stress, and inflammatory cell infiltration in EtOH + MCAO/R-treated mice. Mechanistic experiments revealed that p38γ may regulate inflammation and ferroptosis through the p53/SLC7A11 pathway. Overall, our experimental results indicate that p38γ is crucial for regulating EtOH- and I/R-induced brain damage by modulating the p53/SLC7A11 pathway.
Collapse
Affiliation(s)
- Xingyu Zhu
- The College of Life Sciences, Northwest University, Xi'an 710068, China; Department of Neurology, Northwest University School of Medicine, Xi'an 710068, China
| | - Zhihan Zhao
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Yan Zhang
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Hao Li
- Department of Neurology, Northwest University School of Medicine, Xi'an 710068, China
| | - Xiaofei Zhou
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Yanzhao Zhu
- Department of Neurology, Northwest University School of Medicine, Xi'an 710068, China
| | - Qiaoxi Chen
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Shangguang Kan
- The College of Life Sciences, Northwest University, Xi'an 710068, China
| | - Linfu Zhou
- Northwest University First Hospital, Xi'an 710043, China.
| | - Gang Zhao
- Department of Neurology, Northwest University School of Medicine, Xi'an 710068, China; Northwest University First Hospital, Xi'an 710043, China.
| |
Collapse
|
6
|
Yang J, Zhang CR, Li ZX, Gao YH, Jiang L, Zhang J, Wang PY, Liu T. Spermine alleviates myocardial cell aging by inhibiting mitochondrial oxidative stress damage. Eur J Pharmacol 2025; 997:177477. [PMID: 40058754 DOI: 10.1016/j.ejphar.2025.177477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Myocardial aging, involving oxidative stress, mitochondrial dysfunction, and cellular senescence, is crucial to DOX - induced heart failure. DOX has dose - dependent cardiotoxicity. Sper a natural polyamine with antioxidant and anti - aging effects, remains unstudied in this context. AIM This study hypothesizes Sper can alleviate DOX - induced heart failure by curbing myocardial aging and oxidative stress. It aims to assess Sper's protective impacts on cardiac function, pathology, oxidative stress, mitochondrial damage, and aging in a rat model, using captopril as a control. METHODS 80 male Sprague Dawley rats were assigned to 8 groups: normal control, 150 mg/kg Sper, DOX, and DOX +10/50/100/150 mg/kg Sper, DOX +30 mg/kg captopril. DOX was given intraperitoneally at 15 mg/kg total dose, while Sper or captopril was administered daily via gavage for six weeks. Cardiac function was evaluated using echocardiography, and histopathological changes, oxidative stress markers, mitochondrial damage, and myocardial aging were assessed via H&E staining, immunofluorescence, Western blot, and electron microscopy. RESULTS Sper boosted cardiac function in DOX - treated rats, upping EF and SV, and lessening cardiac tissue damage. It cut oxidative stress by reducing MDA levels and boosting SOD activity. Sper also eased mitochondrial damage by enhancing mitochondrial membrane potential and cutting mitochondrial fission proteins (Drp1 and Fis1). Plus, Sper held back myocardial aging by trimming β - galactosidase activity and downregulating p - P53 and p21 expression. At 150 mg/kg/day, Sper worked much like 30 mg/kg/day captopril. CONCLUSION Sper effectively eased DOX - induced heart failure by targeting oxidative stress and aging, showing potential as an adjunct therapy for DOX - related cardiotoxicity. Future research should explore Sper's molecular mechanisms and clinical efficacy.
Collapse
Affiliation(s)
- Jing Yang
- Puyang Medical College, Puyang, 457000, China.
| | - Chun-Rui Zhang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Zi-Xuan Li
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Yi-He Gao
- Xinxiang University Affiliated Middle School, Xinxiang, 453000, China
| | - Li Jiang
- Cardiovascular Laboratory of Xinxiang, Xinxiang, 453003, China
| | - Jing Zhang
- Puyang Medical College, Puyang, 457000, China
| | | | - Tong Liu
- Puyang Medical College, Puyang, 457000, China
| |
Collapse
|
7
|
Wang X, Xie Y, Du H, Chang C, Tian C, Yin Y, Li X, Pan Y. Dipeptidyl peptidase 3 induces myocardial ischemia-reperfusion injury by mediating mitophagy and the intrinsic apoptotic pathway. Eur J Pharmacol 2025; 997:177592. [PMID: 40189079 DOI: 10.1016/j.ejphar.2025.177592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that is regarded as a "myocardial inhibitor". However, the role of DPP3 in myocardial ischemia-reperfusion injury (MIRI) remain to be investigated. The present study aimed to investigate the potential role of DPP3 in MIRI and elucidate the underlying mechanisms. METHODS The AC16 cardiomyocyte cell line was used to investigate the interactions between DPP3 and its protein interactors, and assess its effects on the apoptosis of cardiomyocytes following oxygen glucose deprivation/reperfusion (OGD/R) treatment in vitro. An animal model of ischemia/reperfusion (I/R) injury was established using C57BL/6J mice for in vivo analyses. The role of DPP3 and the underlying mechanisms were investigated both in vitro and in vivo following DPP3 knockdown and overexpression. RESULTS DPP3 interacted with Parkinson's disease protein 7 (Park7), and DPP3 overexpression altered the expression levels of proteins related to the intrinsic apoptotic pathway and autophagy. This significantly downregulated the mitochondrial expression of cytochrome C, thereby exacerbating mitochondrial injury and increasing the rate of apoptosis following reperfusion. DPP3 knockdown reversed these effects; however, the simultaneous knockdown of DPP3 and Park7 did not confer the beneficial effects observed with DPP3 knockdown alone. DPP3 knockdown alleviated the extent of myocardial injury and improved cardiac function in the mouse model of I/R injury. CONCLUSIONS The study demonstrated that DPP3 mediates mitophagy and apoptosis in MIRI through its interaction with Park7. These findings have important implications, suggesting that targeting DPP3 and its associated signaling pathways may serve as a potential therapeutic strategy, and that the downregulation of DPP3 can potentially alleviate MIRI.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaofeng Xie
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongjiao Du
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cheng Chang
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunyang Tian
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuyao Yin
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaodong Li
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yilong Pan
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Allegra S, Chiara F, Abbadessa G, Di Pietro A, Caudana M, De Francia S. Interactions between phytotherapeutics and chemotherapeutics: the current evidence. Expert Opin Drug Metab Toxicol 2025:1-15. [PMID: 40491352 DOI: 10.1080/17425255.2025.2517733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025]
Abstract
INTRODUCTION The historical context of phytotherapy affects its potential as therapeutic products, and bioactive metabolites are crucial to the pharmacological effects, safety and effectiveness of alternative medicines. AREAS COVERED Phytotherapy is of great interest to cancer patients. Therefore, the purpose of this study was to gather publications about the interactions between chemotherapy and phytotherapeutics, medicinal plants, and similar formulations. To find publications published between January 2015 and January 2025, a MEDLINE PubMed search was conducted. EXPERT OPINION Several scientists and medical specialists have been looking into the potential of natural items to heal microbial cancer and chemotherapy-related adverse effects. The main factor influencing phytochemicals anticancer effectiveness is their ability to target a variety of pathways, including antimutagenic, antioxidant, and antiproliferative qualities. They can also regulate the host immune response to cancer by improving the surveillance of lymphocytes in cancer cells and lowering the inflammatory milieu. Because carcinogenesis is complex and involves a wide range of factors and signaling cascades, phytochemicals that target several targets may be useful anticancer drugs.
Collapse
Affiliation(s)
- Sarah Allegra
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
| | - Francesco Chiara
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
- Department of Physics, University of Trento, Povo, Italy
| | - Giuliana Abbadessa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
| | - Asia Di Pietro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
| | - Maura Caudana
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
| | - Silvia De Francia
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Turin, Italy
| |
Collapse
|
9
|
Chang X, Zhu H, Guo Z, Shi H, Tian Y, Hao Q, Zhang H, Zou R, Fan X, Zhang Q, Ong SB, He Q, Zhou H. Expert Consensus on the Diagnosis and Management of Carotid Atherosclerotic Plaque: Pathophysiology, Clinical Management, and Preventive Approaches. Int J Med Sci 2025; 22:2738-2756. [PMID: 40520900 PMCID: PMC12163606 DOI: 10.7150/ijms.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/15/2025] [Indexed: 06/18/2025] Open
Abstract
To standardize and harmonize pharmacist-led cholesterol-lowering medication therapy management (MTM) for patients with carotid atherosclerosis and plaque, the Expert Consensus on Lipid-Lowering Pharmacotherapy Management in Patients with Carotid Atherosclerosis and Plaque was developed under the leadership of the PLA General Hospital. This consensus establishes a systematic framework spanning the full-cycle management process: data collection, analytical evaluation, intervention implementation, and long-term follow-up, supported by standardized protocols, documentation forms, and assessment tools. It prioritizes seven evidence-based evaluation domains: therapeutic efficacy, drug selection, dosing appropriateness, adverse reactions, drug-drug/food interactions, cost-effectiveness, and medication adherence. By integrating practical workflows with clinical decision-support tools, the consensus aims to optimize therapeutic outcomes, mitigate safety risks, and provide actionable guidance for healthcare professionals managing this high-risk population.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Hang Zhu
- The Sixth Medical Center of PLA General Hospital, Beijing, 100048
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Hongshuo Shi
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203
| | - Yingjie Tian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Qianying Hao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
- Beijing University of Chinese Medicine, Beijing, 100029
| | - Hui Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
- Hubei University of Chinese Medicine, Hubei, Wuhan, 430065
| | - Rongjun Zou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Xiaoping Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Qihui Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, 100078
| | - Sang-Bing Ong
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Qingyong He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Hao Zhou
- The Sixth Medical Center of PLA General Hospital, Beijing, 100048
| |
Collapse
|
10
|
Zhou Y, Huang Y, Liang H, Yang X, Zhang S, Huang Y, Wan Y, Zhou H, Huang A, Chen Y, Li X, Peng Y, Liao Z. Resveratrol inhibits autophagy in cardiomyocytes subjected anoxia/reoxygenation injury: involved in VDAC1/PINK1/Parkin pathway. Toxicol Appl Pharmacol 2025:117421. [PMID: 40449754 DOI: 10.1016/j.taap.2025.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/19/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Resveratrol has confirmed effectiveness in alleviating myocardial ischemia/reperfusion(I/R) injury. However, the underlying mechanisms remain unclear. Mitochondrial dysfunction in injured cardiomyocytes activates autophagy, and excessive autophagy during reperfusion implicates aggravated injury. Considering that resveratrol preserves mitochondrial function by down-regulating VDAC1 expression, we speculated that the cardioprotective effect of resveratrol is achieved by mitochondrial regulation, and we wonder whether it is accomplished by ultimately modulating autophagy. Therefore, this study investigated the mechanism of resveratrol against myocardial I/R injury regarding autophagy regulation and explored the signal pathway. Herein, we established an anoxia/reoxygenation(A/R) model to simulate myocardial I/R injury in vitro. The expressions of VDAC1, Beclin1, LC3-II/I, Parkin, and PINK1 were detected by Western blot; the LDH activity and mPTP opening were measured by spectrophotometry; the ROS levels and mitochondrial membrane potential (ΔΨm) were examined by flow cytometry; the sublocalisation of Parkin and the autophagic vacuoles (AVs) were observed by laser confocal microscopy. Results suggested that resveratrol attenuated A/R injury by inhibiting autophagy, manifested as lower LDH activity, higher cell viability with decreased LC3-II/LC3-I ratio, down-regulated Beclin1 expression, and reduced number of AVs. In addition, stabilised mitochondrial membrane potential, inhibited ROS production and mPTP opening indicated maintained mitochondrial homeostasis. Compared with the A/R group, resveratrol pretreatment down-regulated the PINK1, Parkin, and VDAC1 expressions, accompanied by decreased colocalization of mitochondria with Parkin, suggesting the involved PINK1/Parkin signal pathway. Transfection with pFLAG-VDAC1 reversed resveratrol-induced mitophagy inhibition and cardioprotection. In conclusion, resveratrol protects cardiomyocytes by inhibiting excessive autophagy induced by the VDAC1/PINK1/Parkin pathway during A/R injury.
Collapse
Affiliation(s)
- Ying Zhou
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Yongzhe Huang
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Haiyan Liang
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xiaomei Yang
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Shulin Zhang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Yinru Huang
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Yanping Wan
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Hangfei Zhou
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - An Huang
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Yue Chen
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xiao Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, PR China
| | - Yian Peng
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Drug Target Discovery and Validation, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, PR China.
| |
Collapse
|
11
|
Wang J, Zhuang H, Li C, Cai R, Shi H, Pang B, Guo Z, Ong SB, Nie Y, Du Y, Zhou H, Chang X. Ligustrazine nano-drug delivery system ameliorates doxorubicin-mediated myocardial injury via piezo-type mechanosensitive ion channel component 1-prohibitin 2-mediated mitochondrial quality surveillance. J Nanobiotechnology 2025; 23:383. [PMID: 40426179 PMCID: PMC12117932 DOI: 10.1186/s12951-025-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX) demonstrates significant therapeutic and anticancer efficacy. Nevertheless, it demonstrates significant cardiotoxicity, resulting in permanent cardiac damage. Ligustrazine (LIG) is a bioactive alkaloid derived from the rhizome of the medicinal plant Ligusticum chuanxiong Hort. The alkaloid has exhibited cardioprotective properties. The therapeutic application of LIG is constrained by inadequate water solubility, fast breakdown, and low bioavailability. Nanoparticle drug delivery technologies effectively address these constraints by encapsulating LIG into nanocarriers, significantly enhancing its solubility and bioavailability, hence maximizing its therapeutic efficacy. Consequently, this study employed tetrahedral backbone nucleic acid molecules as LIG carriers. Furthermore, animal models and single-cell sequencing analyses were employed to forecast the mechanisms and targets of pertinent studies. A mouse model genetically modified for the piezo type mechanosensitive ion channel component 1 (PIEZO1), transmembrane BAX inhibitor motif containing 6 (TMBIM6), and prohibitin 2 (PHB2), along with an in vivo and in vitro model of DOX-induced cardiomyopathy (DIC), was established, and a gene-modified cellular system comprising upstream genes and downstream effector targets was constructed. The mechanism of LIG was validated by molecular biology and integrated pharmacology with the implementation of the LIG nano-drug loading method. RESULTS LIG nano-delivery enhanced DOX-induced cardiac dysfunction and mitochondrial impairment by modulating the PHB2Ser91/Ser176 phosphorylation axis through PIEZO1-TMBIM6, and significantly suppressed cardiomyocyte pyroptosis resulting from mitochondrial homeostasis dysregulation. The findings indicate that LIG nano-delivery is a promising therapeutic approach for addressing DIC. CONCLUSION The PHB2Ser91/Ser176 phosphorylation axis regulated by PIEZO1-TMBIM6 is an important target for LIG nano-drug delivery systems to improve mitochondrial damage in DIC.
Collapse
Affiliation(s)
- Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Haowen Zhuang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ruiqi Cai
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Hongshuo Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boxian Pang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Zhijiang Guo
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong, SAR, China
| | - Sang-Bing Ong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong (CUHK), Hong Kong, SAR, China
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| | - Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, 100048, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
Fu W, Liu SC, Xu TX, Liu Y, Zhang T, Liu DJ, Wang X, Wang JY, He YX, Ma T. Emodin Inhibits NLRP3 Inflammasome Activation and Protects Against Sepsis via Promoting FUNDC1-Mediated Mitophagy. Int J Biol Sci 2025; 21:3631-3648. [PMID: 40520006 PMCID: PMC12160860 DOI: 10.7150/ijbs.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/30/2025] [Indexed: 06/18/2025] Open
Abstract
Dysregulated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome contributes to the pathogenesis of numerous inflammatory and infectious diseases; however, effective targeted therapies remain elusive. In this study, we identify emodin-a bioactive anthraquinone derived from Rheum palmatum (radix Rhei) and Polygonum cuspidatum (Polygonaceae)-as a potent and selective inhibitor of NLRP3 inflammasome activation. Notably, emodin disrupts the assembly of the NLRP3 complex without impairing inflammasome priming. Transcriptomic profiling via RNA sequencing reveals that emodin reprograms mitochondrial quality control pathways, markedly enhancing mitophagy flux. Mechanistically, emodin suppresses casein kinase II (CK2)-mediated phosphorylation of FUNDC1, a pivotal mitophagy receptor, thereby promoting mitochondrial clearance and preventing mitochondrial reactive oxygen species-induced NLRP3 inflammasome assembly. Both genetic silencing of FUNDC1 and pharmacological inhibition of mitophagy with 3-methyladenine abrogated abrogate the inhibitory effects of emodin, establishing a direct mechanistic link between FUNDC1-dependent mitophagy and NLRP3 regulation. In vivo, emodin confers significant protection in sepsis models, with these protective effects being lost in NLRP3-deficient mice or upon macrophage-specific deletion of FUNDC1. Collectively, our findings uncover a novel CK2-FUNDC1-mitophagy axis through which emodin inhibits NLRP3 inflammasome activation, highlighting its promise as a clinically translatable candidate for the treatment of NLRP3-driven inflammatory diseases.
Collapse
Affiliation(s)
- Wei Fu
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Shu-chang Liu
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300152, China
| | - Tong-xiang Xu
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Ying Liu
- Department of Integrative Chinese and Western Medicine, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Teng Zhang
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300152, China
| | - Dong-jie Liu
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Xiao Wang
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Jian-yao Wang
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Yu-xin He
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
| | - Tao Ma
- Department of Integrative Chinese and Western Medicine, Tianjin Medical University General Hospital, Tianjin, 300152, China
- Unit of Infection and Immunity, Tianjin Medical University General Hospital Institute of General Surgery, Tianjin, 300152, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300152, China
| |
Collapse
|
13
|
Yao X, Zhang H, Lu X. Meta-analysis of the efficacy and safety of SGLT-2 inhibitors in patients with heart failure and type 2 diabetes mellitus. Medicine (Baltimore) 2025; 104:e42196. [PMID: 40324226 PMCID: PMC12055074 DOI: 10.1097/md.0000000000042196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/23/2024] [Accepted: 04/03/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND To investigate the efficacy and safety of sodium-glucose cotransporter 2 (SGLT-2) inhibitors in patients with heart failure (HF) and type 2 diabetes mellitus (T2DM). METHODS A manual search was conducted in 3 prestigious English databases, Cochrane Library, PubMed, and Web of Science, for studies published within the last decade, from July 2014 to July 2024. The extracted literature was synthesized to analyze the efficacy outcomes, survival prognostic indicators, and safety profiles of SGLT-2 inhibitors in patients with HF and T2DM. The Cochrane bias risk assessment scale was used as a tool to evaluate the quality of the literature, and Review Manager 5.4 software was used to create the bias risk chart. Data analysis and merging were completed with the help of Review Manager 5.4 and Stata 15.0 statistical software. RESULTS Twelve studies encompassing 9509 patients were included in the meta-analysis. The results revealed that compared to the control group, the SGLT-2 inhibitor-treated group demonstrated significantly greater reductions in left ventricular end-diastolic volume index [mean difference (MD) = -7.25, 95% confidence intervals [95% CI] (-9.83, -4.67)], brain natriuretic peptide levels [MD = -36.96, 95% CI (-63.51, -10.41)], and N-terminal pro-brain natriuretic peptide [MD = -519.27, 95% CI (-660.77, -377.78)]. Furthermore, the SGLT-2 inhibitor-treated group exhibited significantly higher increases in Kansas City Cardiomyopathy Questionnaire scores [MD = 3.32, 95% CI (3.30, 3.34)], indicating improved quality of life. Additionally, the incidence of adverse events was significantly lower in the SGLT-2 inhibitor-treated group compared to the control group [OR = 0.78, 95% CI (0.69, 0.88)]. The pooled results of the meta-analysis indicated that SGLT-2 inhibitor therapy reduced the risk of cardiovascular death or HF hospitalization by 23%, the risk of cardiovascular death by 19%, and the risk of all-cause mortality by 9%. CONCLUSION SGLT-2 inhibitor therapy significantly reduced the risks of all-cause mortality, cardiovascular death, and hospitalization for HF in patients with HF and T2DM. Additionally, SGLT-2 inhibitors significantly improve cardiac function, decrease the incidence of adverse events, and enhance the quality of life in these patients.
Collapse
Affiliation(s)
- Xinliang Yao
- Department of Cardiology, Huaihe Hospital of Henan University, Gulou District, Kaifeng, Henan Province, China
| | - Han Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Gulou District, Kaifeng, Henan Province, China
| | - Xueli Lu
- Department of Cardiology, Huaihe Hospital of Henan University, Gulou District, Kaifeng, Henan Province, China
| |
Collapse
|
14
|
Pan D, Chen P, Zhang H, Zhao Q, Fang W, Ji S, Chen T. Mitochondrial quality control: A promising target of traditional Chinese medicine in the treatment of cardiovascular disease. Pharmacol Res 2025; 215:107712. [PMID: 40154932 DOI: 10.1016/j.phrs.2025.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular disease remains the leading cause of death globally, and drugs for new targets are urgently needed. Mitochondria are the primary sources of cellular energy, play crucial roles in regulating cellular homeostasis, and are tightly associated with pathological processes in cardiovascular disease. In response to physiological signals and external stimuli in cardiovascular disease, mitochondrial quality control, which mainly includes mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, is initiated to meet cellular requirements and maintain cellular homeostasis. Traditional Chinese Medicine (TCM) has been shown to have pharmacological effects on alleviating cardiac injury in various cardiovascular diseases, including myocardial ischemia/reperfusion, myocardial infarction, and heart failure, by regulating mitochondrial quality control. Recently, several molecular mechanisms of TCM in the treatment of cardiovascular disease have been elucidated. However, mitochondrial quality control by TCM for treating cardiovascular disease has not been investigated. In this review, we aim to decipher the pharmacological effects and molecular mechanisms of TCM in regulating mitochondrial quality in various cardiovascular diseases. We also present our perspectives regarding future research in this field.
Collapse
Affiliation(s)
- Deng Pan
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Wei Fang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China
| | - Siyan Ji
- Stomatology Department of Qiqihar Medical College School, Heilongjiang, China
| | - Tielong Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
15
|
Zhang X, Chang X, Chai R, Zhang X, Li J, Guo Z, Qiu Z, Song Y, Shi S, Hu Y, Du B. Xin-Fu-Kang oral liquid mitigates chronic heart failure through NR4A1-Dependent regulation of endoplasmic reticulum-mitochondrial crosstalk in Cardiomyocytes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156467. [PMID: 40036990 DOI: 10.1016/j.phymed.2025.156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Chronic heart failure (CHF) is the terminus of a variety of cardiovascular diseases. Xin-Fu-Kang oral liquid (XFK), a natural herbal compound, has been used in CHF treatment for decades. However, further investigation is required to elucidate the fundamental mechanisms. STUDY DESIGN AND METHODS Transverse aortic constriction (TAC) was performed in mouse models. The pharmacological efficacy of XFK was confirmed by assessing cardiac function and the observation of pathological alterations in myocardial tissue. Following this, single-cell sequencing (scRNA-seq) was implemented. With the identification of XFK metabolites in rat serum via UPLC-QE MS, molecular docking was utilized to conduct preliminary validation of putative therapeutic targets. Subsequently, the phenylephrine-induced model of cardiac pressure overload was established for conducting additional verification and rescue experiments by silencing NR4A1 in vitro. RESULTS XFK intervention significantly ameliorated cardiac function in the TAC-induced CHF model. Based on scRNA-seq, cardiomyocytes exhibited the most notable alterations following XFK intervention, with NR4A1 identified as a significantly differentially expressed gene after both TAC induction and XFK intervention. In vitro experiments demonstrated that XFK enhanced mitochondrial function, mitigated oxidative stress, and restored mitophagy in a NR4A1-dependent manner, consequently decreasing apoptosis in PE-induced H9C2. Furthermore, the upstream mechanism was associated with capacity of XFK to mitigate endoplasmic reticulum stress and regulate crosstalk between the two organelles. CONCLUSION XFK counteracts cardiac chronic pressure overload through regulating NR4A1-mediated functional interaction between endoplasmic reticulum and mitochondria in cardiomyocytes, further preserves mitochondria function and prevents apoptosis. This finding indicates a novel pharmacological therapy for CHF.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaran Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Zhiling Qiu
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguo Song
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Siang W, Li Jin J, Yinming J, Wenji L, Yan F. Effects of Dietary Fiber and Acetate on Alcoholic Heart Disease and Intestinal Microbes in Mice. Mol Nutr Food Res 2025:e70040. [PMID: 40249113 DOI: 10.1002/mnfr.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
Alcoholic heart disease (AHD) is a severe cardiovascular condition linked to chronic alcohol consumption. This study investigates the effects of a high-fiber diet and acetate on gut microbiota and cardiac function in AHD mouse models. Sixty male C57BL/6 mice were divided into six groups, receiving either a control diet, high-fiber diet, or acetate supplementation alongside alcohol treatment. Results revealed that cardiac fibrosis and heart failure were notably improved in the AHD mice receiving high-fiber or acetate diets. Transcriptomic analyses indicated that dietary interventions modulated the expression of genes involved in lipid metabolism and the TGF-β signaling pathway. Additionally, 16S rRNA sequencing showed that the high-fiber diet and acetate altered gut microbiota composition, enhancing the abundance of beneficial bacteria such as Akkermansia muciniphila, Lactobacillus intestinalis, and Bacteroides acidifaciens. These microbes exhibited positive correlations with genes related to fat metabolism and TGF-β signaling, suggesting a potential mechanism for gut microbiota's role in AHD pathology. ROC analysis identified these bacteria as promising biomarkers for AHD detection. Overall, our findings underscore the therapeutic potential of dietary fiber and acetate in modulating gut microbiota and improving cardiac function in AHD, highlighting the intricate relationship between gut health and cardiovascular disease management.
Collapse
Affiliation(s)
- Wei Siang
- College of Life Science, Shanxi Agricultural University, Jinzhong, People's Republic of China
- Beijing Medi Intelligent Pharmaceutical Technology Co., Ltd, Beijing, People's Republic of China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiang Li Jin
- College of Life Science, Shanxi Agricultural University, Jinzhong, People's Republic of China
| | - Jiao Yinming
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, People's Republic of China
| | - Lin Wenji
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, People's Republic of China
| | - Feng Yan
- College of Life Science, Shanxi Agricultural University, Jinzhong, People's Republic of China
| |
Collapse
|
17
|
Jasim MH, Saadoon Abbood R, Sanghvi G, Roopashree R, Uthirapathy S, Kashyap A, Sabarivani A, Ray S, Mustafa YF, Yasin HA. Flavonoids in the regulation of microglial-mediated neuroinflammation; focus on fisetin, rutin, and quercetin. Exp Cell Res 2025; 447:114537. [PMID: 40147710 DOI: 10.1016/j.yexcr.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Neuroinflammation is a critical mechanism in central nervous system (CNS) inflammatory disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), traumatic brain injury (TBI), encephalitis, spinal cord injury (SCI), and cerebral stroke. Neuroinflammation is characterized by increased blood vessel permeability, leukocyte infiltration, glial cell activation, and elevated production of inflammatory mediators, such as chemokines and cytokines. Microglia act as the resident macrophages of the central nervous system, serving as the principal defense mechanism in brain tissue. After CNS injury, microglia modify their morphology and downregulate genes that promote homeostatic functions. Despite comprehensive transcriptome analyses revealing specific gene modifications in "pathological" microglia, microglia's precise protective or harmful functions in neurological disorders remain insufficiently comprehended. Accumulating data suggests that the polarization of microglia into the M1 proinflammatory phenotype or the M2 antiinflammatory phenotype may serve as a sensible therapeutic strategy for neuroinflammation. Flavonoids, including rutin, fisetin, and quercetin, function as crucial chemical reservoirs with unique structures and diverse actions and are extensively used to modulate microglial polarization in treating neuroinflammation. This paper highlights the detrimental effects of neuroinflammation seen in neurological disorders such as stroke. Furthermore, we investigate their therapeutic benefits in alleviating neuroinflammation via the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq.
| | - Rosull Saadoon Abbood
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| |
Collapse
|
18
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Chang X, Zhou S, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishen Huoxue decoction (ZSHX) alleviates ischemic myocardial injury (MI) via Sirt5-β-tubulin mediated synergistic mechanism of "mitophagy-unfolded protein response" and mitophagy. Chin J Nat Med 2025; 23:311-321. [PMID: 40122661 DOI: 10.1016/s1875-5364(25)60838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 03/25/2025]
Abstract
Zishen Huoxue decoction (ZSHX) enhances cardiomyocyte viability following hypoxic stress; however, its upstream therapeutic targets remain unclear. Network pharmacology and RNA sequencing analyses revealed that ZSHX target genes were closely associated with mitophagy and apoptosis in the mitochondrial pathway. In vitro, ZSHX inhibited pathological mitochondrial fission following hypoxic stress, regulated FUN14 domain-containing protein 1 (FUNDC1)-related mitophagy, and increased the levels of mitophagy lysosomes and microtubule-associated protein 1 light chain 3 beta II (LC3II)/translocase of outer mitochondrial membrane 20 (TOM20) expression while inhibiting the over-activated mitochondrial unfolded protein response. Additionally, ZSHX regulated the stability of beta-tubulin through Sirtuin 5 (SIRT5) and could modulate FUNDC1-related synergistic mechanisms of mitophagy and unfolded protein response in the mitochondria (UPRmt) via the SIRT5 and -β-tubulin axis. This targeting pathway may be crucial for cardiomyocytes to resist hypoxia. Collectively, these findings suggest that ZSHX can protect against cardiomyocyte injury via the SIRT5-β-tubulin axis, which may be associated with the synergistic protective mechanism of SIRT5-β-tubulin axis-related mitophagy and UPRmt on cardiomyocytes.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053,.
| |
Collapse
|
20
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
21
|
Velayati E, Sarihi A, Zarei M, Komaki A, Ramezani-Aliakbari F. Diminazine protects against cardiac aging through the improvement of mitophagy and apoptosis in aging rats induced by D-galactose. BMC Cardiovasc Disord 2025; 25:110. [PMID: 39966715 PMCID: PMC11834546 DOI: 10.1186/s12872-025-04572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a main feature of the aged heart. However, there is still no effective treatment against cardiac aging. Diminazine (DIZE) is an anti-infective agent for animals. It is effective against cardiac disorders. The present study aimed to investigate the effects of DIZE on age-related cardiac dysfunction. METHODS AND RESULTS Wistar rats were randomly divided into four groups, with eight rats per group: control rats (CONT), control rats treated with DIZE (CONT + DIZE), aged rats induced by D-galactose (D-GAL), aged rats treated with DIZE (D-GAL + DIZE). Rats received intraperitoneal (IP) injection of D-GAL at 150 mg/kg daily for 8 weeks to induce aging. The aging animals in the D-GAL + DIZE group were treated with subcutaneous injection of DIZE at 15 mg/kg daily for 8 weeks. Heart tissues were harvested to assay molecular parameters. Our results exhibited cardiac hypertrophy and a significant increase in the expression of cardiac BCL2-associated X (Bax) along with a significant decrease in the expression of cardiac Mitofusin 2 (Mfn2), Phosphatase, and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Dynamin-related protein 1 (Drp1), and B-cell lymphoma 2 (Bcl2) in the aged rats compared with the control animals. DIZE treatment improved cardiac hypertrophy and the expression of genes. CONCLUSIONS Overall, DIZE treatment significantly reversed the downregulation of PINK1, Mfn2, and Drp1. Moreover, DIZE significantly inhibited apoptosis though improving the gene expression of Bax and Bcl-2 in the heart. DIZE is effective in reducing cardiac hypertrophy induced aging through regulating mitochondrial dynamics, mitophagy and apoptosis.
Collapse
MESH Headings
- Animals
- Galactose
- Apoptosis/drug effects
- Rats, Wistar
- Mitophagy/drug effects
- Aging/pathology
- Aging/metabolism
- Aging/drug effects
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/pathology
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Disease Models, Animal
- Age Factors
- bcl-2-Associated X Protein/metabolism
- bcl-2-Associated X Protein/genetics
- Mitochondrial Dynamics/drug effects
- Signal Transduction
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/genetics
- Dynamins/metabolism
- Dynamins/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Protein Kinases/metabolism
- Protein Kinases/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/prevention & control
- Cardiomegaly/chemically induced
- Cardiomegaly/physiopathology
- Rats
Collapse
Affiliation(s)
- Ensiyeh Velayati
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Oh JM, Kim G, Jeong J, Chun S. Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway. Biomed Pharmacother 2025; 183:117838. [PMID: 39799670 DOI: 10.1016/j.biopha.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells. CK increased the expression of UCP1 and other brown/beige adipocyte markers (Cd137, Cytb, Letm1, Pgc1α, Prdm16, Tbp1, Tbx1, Uqcrc1) and mitochondrial biogenesis/dynamics factors (Cidea, Cox8b, Cycs, Dio2, Drp1, Fis1, Fgf21, Nrf1, Sirt3, Tfam) in 3T3-L1/iWAT SVF cells. CK enhanced mitochondrial respiration, reduced mitochondrial ROS levels, and restored MMP in iWAT SVF cells, leading to the differentiation of WAT into beige adipocytes, and that was also observed in cold-exposed subcutaneous tissue. CK administration to cold-exposed mice reduced fat droplet size and increased the number of mitochondria. Additionally, CK stimulated non-shivering thermogenesis, indicated by the upregulation of thermogenic and mitochondrial division proteins. The browning effect of CK was nullified by SIRT3 knockdown, suggesting that CK induces beige remodeling of WAT by regulating mitochondrial dynamics and SIRT3 expression. These findings suggest CK's potential as a therapeutic agent for obesity and metabolic disorders that promotes the transformation of WAT into a metabolically active beige phenotype.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea
| | - Geonhyeong Kim
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Jiho Jeong
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea.
| |
Collapse
|
23
|
Liu S, Chen J, Li L, Ye Z, Liu J, Chen Y, Hu B, Tang J, Feng G, Li Z, Deng C, Deng R, Zhu X, Zhang H. Susceptibility of Mitophagy-Deficient Tumors to Ferroptosis Induction by Relieving the Suppression of Lipid Peroxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412593. [PMID: 39679775 PMCID: PMC11809388 DOI: 10.1002/advs.202412593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The identification of ferroptosis-sensitive cancers is critical for the application of ferroptosis-inducing therapies in cancer therapy. Here, patient-derived organoid screening models of colorectal cancer are established to identify tumors that are sensitive to ferroptosis-inducing therapy. This study discovers that patient-derived tumors characterized by mitophagy deficiency are hypersensitive to ferroptosis-inducing therapies. Mechanistically, a novel negative feedback regulatory pathway of lipid peroxidation is identified, which is one of the important intrinsic anti-ferroptosis mechanisms of cancer cells. Lipid peroxidation-mediated endoplasmic reticulum stress transcriptionally upregulates Parkin to promote mitophagy through ATF4. Mitophagy limits the generation of lipid peroxidation products and subsequently inhibits ferroptosis by inhibiting the accumulation of mitochondrial ROS. Mitophagy-deficient tumors lack this anti-ferroptotic mechanism, unleashing the generation of lipid peroxidation and potent ferroptotic cell death induced by erastin, RSL3, cysteine deprivation, radiotherapy, and immunotherapy. More importantly, ferroptosis-inducing therapy selectively inhibits the growth and distant metastasis of mitophagy-deficient tumors in vivo. In summary, patient-derived organoids of colorectal cancer patients for screening ferroptosis-sensitive tumors are established, providing a paradigm for identifying that patient-derived tumors are sensitive to ferroptosis-inducing therapies. This study concludes that mitophagy-deficient tumors are vulnerable to ferroptosis induction, which may lead to the development of new therapeutic strategies for tumors deficient in mitophagy.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Medical OncologyThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jing‐Hong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Li‐Chao Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Peng Ye
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jian‐Nan Liu
- Department of OncologyThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai264000China
| | - Yu‐Hong Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bing‐Xin Hu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Jia‐Hong Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gong‐Kan Feng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhi‐Ming Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Chu‐Xia Deng
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Rong Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiao‐Feng Zhu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Liang Zhang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
24
|
Méndez D, Tellería F, Alarcón M, Montecino-Garrido H, Molina-Gutiérrez N, Morales-Malvarez L, Deras B, Mansilla S, Castro L, Trostchansky A, Araya-Maturana R, Fuentes E. MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE. Biomed Pharmacother 2025; 183:117840. [PMID: 39842272 DOI: 10.1016/j.biopha.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro. Cytotoxicity and viability tests were performed on human platelets from volunteer donors, together with experiments on aggregation, platelet activation, mitochondrial function, mitochondrial respiration, and thioredoxin reductase 2 (TrxR2) enzymatic activity in isolated platelet mitochondria. The compound MitoCDNB, corresponding to the molecule 5-chloro-2,4-dinitrophenylamino linked with triphenylphosphonium cation (TPP+) by a butyl chain and methanesulfonate as the counterion, was evaluated. MitoCDNB demonstrates potent, high mitochondria-selective antiplatelet effects that provide a novel approach to platelet inhibition with potentially minimized systemic risks. Here, we describe the first compound that inhibits platelet activation by decreasing TrxR2 enzymatic activity and collagen-stimulated maximal mitochondrial respiration, preventing aggregation and platelet activation. These results can be used to develop new antiplatelet drugs targeting mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Nacim Molina-Gutiérrez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Lisandra Morales-Malvarez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Bessy Deras
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
25
|
Wei M, Chen S, Huang Z, Zhang P, Yang Y, Chen S, Wan P, Huang Z, Chen X. Multi-omics analysis reveals the protective effects of Chinese yam polysaccharide against cisplatin-induced renal interstitial fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156200. [PMID: 39603894 DOI: 10.1016/j.phymed.2024.156200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Chinese yam polysaccharide (SYDT) has been reported to protect renal function and mitigate renal fibrosis in mice with diabetic nephropathy. Based on a multi-omics analysis, the objectives of this study were to determine the effect of SYDT on cisplatin (CDDP)-induced chronic renal interstitial fibrosis (RIF) and the underlying molecular mechanisms using an in vivo model. METHODS Rats were intraperitoneally injected with a single dose of CDDP and then treated with SYDT or amifostine (AMF). The levels of urinary N-acetyl-β-d-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were detected to assess renal function. Renal tissue damage and fibrosis were evaluated using hematoxylin and eosin (H&E) and Masson's trichrome staining, respectively. In addition, this study applied transcriptomics and metabolomics to predict the possible mechanism of SYDT action, which was verified by several relevant examinations. RESULTS SYDT significantly protected the renal function, alleviated renal tissue damage and fibrosis, as well as decreased the protein levels of vimentin, α-SMA and CTGF, whereas SYDT significantly increased MMP-1 protein level in renal tissues from rats treated with CDDP. There were 1130 differently expressed genes (DEGs) between the CDDP model and SYDT-M groups proved by transcriptome analysis, indicating that metabolic pathways were likely the primary targets of relevance. Consistent with the transcriptome analysis, metabolome analysis identified 276 differentially expressed metabolites (DEMs) between the SYDT-M and CDDP model groups, with predominant clustering within glycerophospholipid metabolism. Integrative analysis of the transcriptome and metabolome indicated that SYDT inhibited the glycerophospholipid metabolism pathway by regulating the target genes Gpd2, Gpam, Agpat3, Lcat, and Pla2g4b. Notably, integrative analysis showed that the Phospholipase D (PLD) signaling pathway may be the most relevant target. Moreover, related signaling pathway analysis confirmed that SYDT inhibited CDDP-induced RIF in rats by down-regulating the PLD pathway. CONCLUSION Our study showed that the alleviation of CDDP-induced RIF in vivo can be achieved through the inhibition of glycerophospholipid metabolism and PLD signaling pathways by SYDT.
Collapse
Affiliation(s)
- Meizhen Wei
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Shurui Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Pingli Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Shasha Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Peiyuan Wan
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Zhiling Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Xingqing Chen
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| |
Collapse
|
26
|
Li Y, Liu Z, Yan H, Zhou T, Zheng L, Wen F, Guo G, Zhang Z. Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging and mitochondrial dysfunction via PI3K/Akt/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156316. [PMID: 39674120 DOI: 10.1016/j.phymed.2024.156316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Sarcopenia is currently a life-threatening disease for the elderly. Polygonatum sibiricum polysaccharide (PSP) has anti-oxidative stress and anti-inflammatory effects. However, the effects of PSP on skeletal muscle aging, myoblast differentiation and mitochondrial dysfunction through PI3K/Akt/mTOR signaling pathway has not been explored. PURPOSE To explore the effects and related mechanisms of PSP on muscle aging, myoblast differentiation and mitochondrial dysfunction. METHODS The chemical components of Polygonatum sibiricum were determined using the UHPLC-MS/MS method. The common targets and biological pathways between PSP and sarcopenia were investigated by network pharmacology analysis. In vitro C2C12 cells experiments were performed to reveal the effects of PSP on muscle aging, myotube differentiation, and mitochondrial damage. In addition, in vivo experiments were designed with the mouse model of D-gal-induced aging to evaluate the ameliorative impact of PSP on the skeletal muscle mass and function. RESULTS Polygonatum sibiricum mainly included 466 bioactive components. Polygonatum sibiricum and sarcopenia had 278 common targets by network pharmacology analysis, which were associated with mitochondrial function and PI3K/Akt/mTOR pathway. In vitro experiment indicated that PSP significantly enhanced the viability of C2C12 cells and myotube differentiation by down-regulating p21, p53, p16, MuRF1 and Atrogin-1and up-regulating MyoD, Myogenin, and MyHC. However, the addition of LY294002, PI3K/Akt/mTOR pathway inhibitor, partially reversed the anti-aging and anti-oxidative stress effects of PSP. PSP also significantly improved mitochondrial membrane potential and decreased mitochondrial ROS levels by upregulating the phosphorylation of the PI3K/Akt/mTOR pathway. In vivo experimental data indicated that PSP significantly enhanced muscle strength, endurance, mass of skeletal muscle (quadriceps and gastrocnemius) and cross-sectional area (CSA) of skeletal muscle in D-gal induced aging mice. CONCLUSION PSP exhibits significant ameliorative effects on skeletal muscle aging and atrophy, as well as mitochondrial dysfunction by activating the PI3K/Akt/mTOR signaling pathway. Our study uniquely investigates the effects of PSP on skeletal muscle aging and mitochondrial dysfunction with a specific focus on the PI3K/Akt/mTOR signaling pathway, which highlights the potential of PSP as a novel therapeutic agent for sarcopenia, offering an alternative to current treatment strategies.
Collapse
Affiliation(s)
- Yang Li
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Shizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Zhongyuan Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Hongyu Yan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Tianle Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Liming Zheng
- China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Feng Wen
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Shizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Guanghui Guo
- Department of Pulmonology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Shizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China
| | - Zhiwen Zhang
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Shizhen Laboratory, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, China.
| |
Collapse
|
27
|
Peng X, Ji HY, Gao JW, Hong SH, Zhang T, Yang G, Wu X, Gao Y, Wang K. YAP1 exacerbates pyroptosis and senescence in nucleus pulposus cells by promoting BNIP3-mediated mitophagy. Int Immunopharmacol 2024; 143:113434. [PMID: 39442189 DOI: 10.1016/j.intimp.2024.113434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Yes-associated protein 1 (YAP1) is a crucial downstream effector of the Hippo pathway that plays a role in regulating inflammation and mitochondrial function. However, whether YAP1 regulates pyroptosis in nucleus pulposus (NP) cells caused by inflammation via mitophagy remains unclear. This study aimed to investigate the effects of YAP1 on the pyroptosis of NP cells induced by LPS. Here, we demonstrated that the protein expression of YAP1 in the NP tissue of degenerative discs was significantly reduced. Next, we found that NLRP3 inflammasome activation in YAP1-overexpressing (YAP1-ov) NP cells was further enhanced in the LPS-induced inflammatory microenvironment. YAP1-ov strongly aggravated inflammation-induced pyroptosis and senescence, but these effects were reversed by the inhibition of BNIP3-mediated mitophagy. However, comparative analysis of the overexpression of YAP1 in normal discs and discs after annulus fibrosus puncture revealed that YAP1-ov accelerated the degeneration of normal discs and attenuated the degeneration of annulus fibrosus punctured discs in vivo. Additionally, YAP1-ov upregulated the expression of TNFAIP3, an anti-inflammatory protective protein, and CLPP, a vital protein in the mitochondrial unfolded protein response, in NP cells. Collectively, the above results revealed that YAP1 exacerbates LPS-induced pyroptosis and senescence of NP cells by promoting BNIP3-mediated mitophagy, which causes disc degeneration. Notably, YAP1-ov mitigated the degeneration of the disc caused by annular needle puncture in vivo, suggesting its potential as a therapeutic candidate foracute IDD injury.
Collapse
Affiliation(s)
- Xin Peng
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang-Yu Ji
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jia-Wei Gao
- Medical School of Southeast University, Nanjing, China
| | - Shang-Hao Hong
- Department of Orthopedics, Xuyi County Hospital, Huaian, Jiangsu, China
| | - Tong Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yanzheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
28
|
Lin YH, Lin KJ, Chen JY. The interplay between aging, testosterone, and mitochondrial dysfunction: Revisiting the role of hormonal regulation in urological health. Biomed Pharmacother 2024; 181:117722. [PMID: 39615167 DOI: 10.1016/j.biopha.2024.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, TaoYuan 333, Taiwan.
| | - Kou-Jen Lin
- Department of Urology, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, TaoYuan 333, Taiwan
| | - Jau-Yuan Chen
- School of Medicine, Chang Gung University, TaoYuan 333, Taiwan; Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
29
|
Wang J, Pu X, Zhuang H, Guo Z, Wang M, Yang H, Li C, Chang X. Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy. J Adv Res 2024:S2090-1232(24)00471-5. [PMID: 39550027 DOI: 10.1016/j.jare.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
INTRODUCTION Septic cardiomyopathy (SCM) is a complication of myocardial injury in patients with severe sepsis. OBJECTIVES This study highlights the potential of Astragaloside IV(AS) in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2-related mitochondria-ER interaction. METHODS Dual specificity phosphatase-1 (DUSP1)/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) /DUSP1 transgenic mice (DUSP1/PHB2TG) were used to generate LPS-induced sepsis models. The pathological mechanism by which AS-IV improves heart injury was detected using cardiac ultrasound, fluorescence staining, transmission electron microscopy, and western blotting. After siRNA treatment of cardiomyocytes with DUSP-1/PHB2, changes in mitochondrial function and morphology were determined using qPCR, western blotting, ELISA, and laser confocal microscopy, and the targeted therapeutic effects of AS-IV were further examined. RESULTS SCM treatment leads to severe mitochondrial dysfunction. However, Astragaloside IV (AS) treatment normalizes mitochondrial homeostasis and ER function. Notably, the protective effect was blocked in DUSP1/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) but remained unaffected in DUSP1 transgenic mice (DUSP1/PHB2TG). CONCLUSION This study highlights the potential of AS in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2 related mitochondria-ER interaction.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huaihong Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Chun Li
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin 519000, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
30
|
Yan J, Liu H, Shang J, Fang Q, Ye J, Lu X, Fan X. Protective effects of Shexiang-Tongxin dropping pill against acute myocardial infarction in rats through inhibition of apoptosis and ERK/MAPK signaling pathways. Heliyon 2024; 10:e39939. [PMID: 39553562 PMCID: PMC11565526 DOI: 10.1016/j.heliyon.2024.e39939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Acute myocardial infarction (AMI) remains a significant health challenge globally, highlighting the ongoing need for effective treatments. Shexiang-Tongxin dropping pill (STDP) is widely utilized as a therapeutic option for AMI in China and Southeast Asia. However, the intricate mechanisms of action of STDP against AMI remain largely unknown. The pharmacodynamic effects of STDP in treating AMI were evaluated both in vitro and in vivo using human umbilical vein endothelial cell oxygen-glucose deprivation, RAW264.7 cell inflammatory injury, and rat left anterior descending surgery models. The whole transcriptome sequencing was performed to analyze gene expression changes in experimental rat hearts after left anterior descending surgery. An integrative approach combining network pharmacology and sequencing data was used to determine the multi-target and multi-pathway mechanisms underlying the action of STDP against AMI. Molecular docking was conducted to identify the primary anti-AMI ingredients in STDP. STDP treatment significantly resisted AMI in vivo and protected against inflammatory and hypoxic injuries in vitro. It resulted in 63 % (901 of 1430) of genes showing restorative regulation in the AMI disease network, relating to the TGF-β, PI3K, apoptosis, and MAPK pathways. Validation experiments indicated that inhibiting apoptosis and ERK/MAPK pathways by reducing Bax and p-ERK1/2 expression levels in rat hearts may be a crucial mechanism of STDP against AMI. Molecular target prediction indicated that tanshinone IIA, salvianolic acid A, salvianolic acid B, and resibufogenin were the essential pharmacodynamic substances of STDP in AMI treatment. This study sheds light on novel mechanisms by which STDP rebalances the AMI disease network through its multi-target and multi-pathway effects. The findings offer data support for the more precise clinical application of STDP.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanbing Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Fang
- Inner Mongolia Conba Pharmaceutical Co., Ltd., Ordos, 017000, China
| | - Jianfeng Ye
- Inner Mongolia Conba Pharmaceutical Co., Ltd., Ordos, 017000, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Xiaohui Fan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
31
|
Pan L, Fu M, Tang XL, Ling Y, Su Y, Ge J. Kirenol Ameliorates Myocardial Ischemia-Reperfusion Injury by Promoting Mitochondrial Function and Inhibiting Inflammasome Activation. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07635-4. [PMID: 39531114 DOI: 10.1007/s10557-024-07635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Macrophage-mediated inflammation plays a crucial role in the pathophysiological process of myocardial ischemia/reperfusion (I/R) injury. Recent studies have highlighted the importance of mitochondrial function and inflammasome activation in the inflammatory process. Kirenol, a well-known natural compound, has been shown to regulate inflammation in various diseases. This study investigated whether Kirenol could exert anti-inflammatory effects on macrophages during myocardial I/R injury. METHODS Mouse myocardial I/R models were established by 45 min of ischemia followed by 24 h of reperfusion. Saline or Kirenol treatment was administered. In vivo assessments included the evaluation of cardiac function, infarcted area, and immune cell infiltration. Subsequently, bone marrow-derived macrophages (BMDMs) were isolated, and mitochondrial function and pyroptosis were assessed. Furthermore, the study compared the cardioprotective effects of Kirenol with a specific NOX1/NOX4 inhibitor, GKT137831. RESULTS Kirenol gavage improved cardiac function, decreased infarct area, and alleviated inflammatory infiltration in mice subjected to myocardial I/R injury. Mechanistically, Kirenol inhibited NOX1 and NOX4 and enhanced mitochondrial function, ultimately attenuating the pyroptosis of macrophages. The therapeutic effects of Kirenol and GKT137831 were not significantly different. CONCLUSION This study demonstrates that Kirenol mitigates myocardial I/R injury by inhibiting NOX1 and NOX4, restoring mitochondrial function, and ameliorating macrophage pyroptosis.
Collapse
Affiliation(s)
- Lei Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqiang Fu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang-Lin Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunlong Ling
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangang Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fenglin Road 180, Shanghai, 200032, Xuhui District, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Li Y, Jin M, Guo D, Shen S, Lu K, Pan R, Sun L, Zhang H, Shao J, Pan G. Unveiling the immunogenicity of allogeneic mesenchymal stromal cells: Challenges and strategies for enhanced therapeutic efficacy. Biomed Pharmacother 2024; 180:117537. [PMID: 39405918 DOI: 10.1016/j.biopha.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) exhibit significant potential in the context of cell therapy because of their capacity to perform a range of interconnected functions in damaged tissues, including immune modulation, hematopoietic support, and tissue regeneration. MSCs are hypoimmunogenic because of their diminished expression of major histocompatibility molecules, absence of costimulatory molecules, and presence of coinhibitory molecules. While autologous MSCs reduce the risk of rejection and infection, variability in cell numbers and proliferation limits their potential applications. Conversely, allogeneic MSCs (allo-MSCs) possess broad clinical applications unconstrained by donor physiology. Nonetheless, preclinical and clinical investigations highlight that transplanted allo-MSCs are subject to immune attack from recipients. These cells exhibit anti-inflammatory and proinflammatory phenotypes contingent on the microenvironment. Notably, the proinflammatory phenotype features enhanced immunogenicity and diminished immunosuppression, potentially triggering allogeneic immune reactions that impede long-term clinical efficacy. Consequently, preserving the low immunogenicity of allo-MSCs in vivo and mitigating immune rejection in diverse microenvironments represent crucial challenges for the widespread clinical application of MSCs. In this review, we elucidate the immune regulation of allo-MSCs, specifically focusing on two distinct subgroups, MSC1 and MSC2, that exhibit varying polarization states and immunogenicity. We discuss the factors and underlying mechanisms that induce MSC immunogenicity and polarization, highlighting the crucial role of major histocompatibility complex class I/II molecules in rejection post-transplantation. Additionally, we summarize the immunogenic regulatory targets and applications of allo-MSCs and outline strategies to address challenges in this promising field, aiming to enhance allo-MSC therapeutic efficacy for patients.
Collapse
Affiliation(s)
- Yuanhui Li
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Mengting Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dongyang Guo
- Hangzhou City University, School of Medicine, 50 Huzhou Street, Hangzhou, China
| | - Shuang Shen
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Kaining Lu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Li Sun
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Hongchen Zhang
- Department of Gatroenterology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, No. 261 HuanSha Road, Hangzhou, China.
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Gang Pan
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Feger M, Hammerschmidt K, Liesche I, Rausch S, Alber J, Föller M. Prostaglandin E 2 signaling through prostaglandin E receptor subtype 2 and Nurr1 induces fibroblast growth factor 23 production. Biomed Pharmacother 2024; 180:117475. [PMID: 39332190 DOI: 10.1016/j.biopha.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Bone cells produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D homeostasis, and a paracrine factor produced in further tissues. Chronic kidney disease and cardiovascular disorders are associated with early elevations of plasma FGF23 levels associated with clinical outcomes. FGF23 production is dependent on many conditions including inflammation. Prostaglandin E2 (PGE2) is a major eicosanoid with a broad role in pain, inflammation, and fever. Moreover, it regulates renal blood flow, renin secretion, natriuresis as well as bone formation through prostaglandin E receptor 2 (EP2). Here, we studied the role of PGE2 and its signaling for the production of FGF23. Osteoblast-like UMR-106 cells were exposed to EP receptor agonists, antagonists or RNAi. Wild type and EP2 knockout mice were treated with stable EP2 agonist misoprostol. Fgf23 or Nurr1 gene expression was determined by quantitative real-time PCR, hormone and further blood parameters by enzyme-linked immunosorbent assay and colorimetric methods. PGE2 and EP2 agonists misoprostol and butaprost enhanced FGF23 production in UMR-106 cells, effects mediated by EP2 and transcription factor Nurr1. A single dose of misoprostol up-regulated bone Fgf23 expression and FGF23 serum levels in wild type mice with subtle effects on parameters of mineral metabolism only. Compared to wild type mice, the FGF23 effect of misoprostol was significantly lower in EP2-deficient mice. To conclude, PGE2 signaling through EP2 and Nurr1 induces FGF23 production. Given the broad physiological and pathophysiological implications of PGE2 signaling, this effect is likely of clinical relevance.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Dinoprostone/metabolism
- Fibroblast Growth Factor-23
- Signal Transduction
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Mice, Knockout
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Mice
- Osteoblasts/metabolism
- Osteoblasts/drug effects
- Cell Line
- Mice, Inbred C57BL
- Misoprostol/pharmacology
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | | | - Ilona Liesche
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Steffen Rausch
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany.
| |
Collapse
|
34
|
Siquan L, Weilin C, Xiuwen C, Meiyan Z, Weihong G, Xiaoli F. Evaluating the safety and efficiency of nanomaterials: A focus on mitochondrial health. Biomed Pharmacother 2024; 180:117484. [PMID: 39316969 DOI: 10.1016/j.biopha.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
Nanomaterials (NMs) have extensive application potential in drug delivery, tissue engineering, and various other domains, attributable to their exceptional physical and chemical properties. Nevertheless, an increasing body of literature underscores the diverse safety risks are associated with NMs upon interaction with the human body, including oxidative stress and programmed cell death. Mitochondria, serving as cellular energy factories, play a pivotal role in energy metabolism and the regulation of cell fate. Organs with substantial energy demands, including the heart and brain, are highly sensitive to mitochondrial integrity, with mitochondrial impairment potentially resulting in significant dysfunction and pathologies such as as heart failure and neurodegenerative disease. This review elucidates the pathways by which NMs translocate into mitochondria, their intracellular dynamics, and their impact on mitochondrial morphology, respiratory chain activity, and metabolic processes. We further investigate associated molecular mechanisms, including mitochondrial dynamic imbalance, calcium overload, and oxidative stress, and elucidate the pivotal roles of mitochondria in different forms of programmed cell death such as apoptosis and autophagy. Finally, we offer recommendations regarding the safety and efficacy of NMs for medical applications. By systematically analyzing the interactions and molecular mechanisms between NMs and mitochondria, this paper aims to enhance the toxicological evaluation framework of NMs and provide a foundational reference and theoretical basis for their clinical utilization.
Collapse
Affiliation(s)
- Liu Siquan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Cheng Weilin
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Chen Xiuwen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Zou Meiyan
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China
| | - Guo Weihong
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Feng Xiaoli
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
35
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Pu X, Zhang Q, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R, Chang X. Ginsenoside Rb1 ameliorates heart failure through DUSP-1-TMBIM-6-mediated mitochondrial quality control and gut flora interactions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155880. [PMID: 39053246 DOI: 10.1016/j.phymed.2024.155880] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND There is currently no specific therapeutic drug available for heart failure in clinical practice. Numerous studies have validated the efficacy of Ginsenoside Rb1, an active component found in various herbal remedies used for heart failure treatment, in effectively ameliorating myocardial ischemia. However, the precise mechanism of action and molecular targets of Ginsenoside Rb1 remain unclear. PURPOSE This study aims to explore the molecular mechanisms through which Ginsenoside Rb1 synergistically modulates the gut flora and mitochondrial quality control network in heart failure by targeting the DUSP-1-TMBIM-6-VDAC1 axis. STUDY DESIGN This study utilized DUSP-1/VDAC1 knockout (DUSP-1-/-/VDAC1-/-) and DUSP-1/VDAC1 transgenic (DUSP-1+/+/VDAC1+/+) mouse models of heart failure, established through Transverse Aortic Constriction (TAC) surgery and genetic modification techniques. The mice were subsequently subjected to treatment with Ginsenoside Rb1. METHODS A series of follow-up multi-omics analyses were conducted, including assessments of intestinal flora, gene transcription sequencing, single-cell databases, and molecular biology assays of primary cardiomyocytes, to investigate the mechanism of action of Ginsenoside Rb1. RESULTS Ginsenoside Rb1 was found to have multiple regulatory mechanisms on mitochondria. Notably, DUSP-1 was discovered to be a crucial molecular target of Ginsenoside Rb1, controlling both intestinal flora and mitochondrial function. The regulatory effects of DUSP-1 on inflammation and mitochondrial quality control were mediated by changes in TMBIM-6 and VDAC1. Furthermore, NLRP3-mediated inflammatory responses were found to interact with mitochondrial quality control, exacerbating myocardial injury under stress conditions. Ginsenoside Rb1 modulated the DUSP-1-TMBIM-6-VDAC1 axis, inhibited the release of pro-inflammatory factors, altered the structural composition of the gut flora, and protected impaired heart function. These effects indirectly influenced the crosstalk between inflammation, mitochondria, and gut flora. CONCLUSION The DUSP-1-TMBIM-6-VDAC1 axis, an upstream pathway regulated by Ginsenoside Rb1, is a profound mechanism through which Ginsenoside Rb1 improves cardiac function in heart failure by modulating inflammation, mitochondria, and gut flora.
Collapse
Affiliation(s)
- Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
37
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155331. [PMID: 38870748 DOI: 10.1016/j.phymed.2023.155331] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 06/15/2024]
Abstract
BACKGROUND Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| |
Collapse
|
38
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Wu Q, Chang X, Wang Y, Liu J, Guan X, Liu Z, Liu R. The electrophysiological effects of Tongyang Huoxue granules on the ignition phase during hypoxia/reoxygenation injury in sinoatrial node cells. Front Physiol 2024; 15:1402478. [PMID: 38911325 PMCID: PMC11190314 DOI: 10.3389/fphys.2024.1402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction This study was undertaken to explore the potential therapeutic effects of Tongyang Huoxue Granules (TYHX) on sinoatrial node (SAN) dysfunction, a cardiac disorder characterized by impaired impulse generation or conduction. The research question addressed whether TYHX could positively influence SAN ion channel function, specifically targeting the sodium-calcium exchanger (I NCX) and L-type calcium channel (I CaL) of the SAN. Methods Sinoatrial node cells (SANCs) were isolated and cultured from neonatal Japanese big-eared white rabbits within 24 h of birth. The study encompassed five groups: Control, H/R (hypoxia/reoxygenation), H/R+100 μg/mL TYHX, H/R+200 μg/mL TYHX, and H/R+400 μg/mL TYHX. The H/R model, simulating hypoxia/reoxygenation stress, was induced within 5 days of culture. Whole-cell patch clamp technique was employed to record currents following a 3-min perfusion and stabilization period with TYHX. Results TYHX administration demonstrated improvements in the ignition phase of impaired SANCs. The half-maximal effective dose of TYHX, as determined by SANC beating frequency, was found to be 323.63 μg/mL. Inward current density of I NCX increased in response to TYHX (200 and 400 μg/mL), while TYHX enhanced I CaL current density in H/R SANCs, with 400 μg/mL exhibiting greater efficacy. Additionally, TYHX regulated the gating mechanisms of I CaL by right-shifting the steady-state inactivation curve and accelerating recovery from inactivation. Notably, TYHX increased the activation time constant under 200 and 400 μg/mL, prolonged the fast inactivation time constant τ1 with 400 μg/mL, and extended the slow inactivation time constant τ2 with 100 and 400 μg/mL. Discussion and conclusion The findings suggest that TYHX may hold promise as a therapeutic intervention for sinus node dysfunction, offering potential avenues for drug development aimed at safeguarding SAN function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruxiu Liu
- Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Wang Y, Ren T, Li C, Wu Q, Liu J, Guan X, Chang X, Liu Z, Liu R. Mechanisms involved in the regulation of mitochondrial quality control by PGAM5 in heart failure. Cell Stress Chaperones 2024; 29:510-518. [PMID: 38821173 PMCID: PMC11214171 DOI: 10.1016/j.cstres.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.
Collapse
Affiliation(s)
- Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuizhi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
41
|
Chang X, Zhang Q, Huang Y, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Quercetin inhibits necroptosis in cardiomyocytes after ischemia-reperfusion via DNA-PKcs-SIRT5-orchestrated mitochondrial quality control. Phytother Res 2024; 38:2496-2517. [PMID: 38447978 DOI: 10.1002/ptr.8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Yan J, Zhang C, Wang Y, Yan X, Jin L. Efficacy and safety of Shen Gui capsules for chronic heart failure: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1347828. [PMID: 38659585 PMCID: PMC11039789 DOI: 10.3389/fphar.2024.1347828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Although Shen Gui capsules (SGCP) are widely used as an adjuvant treatment for chronic heart failure (CHF), their clinical efficacy and safety remain controversial. Purpose To assess the efficacy and safety of SGCP in the treatment of CHF through a systematic review and meta-analysis, to provide high-quality evidence for evidence-based medicine. Methods Seven databases were searched for randomized controlled trials (RCTs) assessing SGCP for CHF, from inception to 9 January 2023. RCT quality of evidence was evaluated using the Cochrane Handbook for the Evaluation of Intervention Systems to assess risk of bias and Grading of Recommendations Assessment, Development, and Evaluation. A meta-analysis with subgroup and sensitivity analyses was performed using Review Manager 5.4 and Stata 12. Results Nine RCTs representing 888 patients with CHF were included in the review. Meta-analysis revealed that SGCP combined with conventional heart failure therapy is more advantageous for improving left ventricular ejection fraction [LVEF; mean difference (MD) = 5.26, 95% confidence interval (CI) (3.78, 6.74), p < 0.0000] and increasing effective rate [relative risk (RR) = 1.21, 95%CI (1.14, 1.29), p < 0.001] compared with conventional therapy alone. The experimental treatment also reduced brain natriuretic peptide [MD = -100.15, 95%CI (-157.83, -42.47), p = 0.0007], left ventricular end-diastolic diameter [MD = -1.93, 95%CI (-3.22, -0.64), p = 0.003], and hypersensitive C-reactive protein [MD = -2.70, 95%CI (-3.12,-2.28), p < 0.001] compared with the control group. However, there was not a statistically significant difference in tumor necrosis factor-α [MD = -14.16, 95%CI (-34.04, 5.73), p = 0.16] or left ventricular end-systolic diameter [MD = -1.56, 95%CI (-3.13, 0.01), p = 0.05]. Nor was there a statistically significant between-groups difference in incidence of adverse events (p > 0.05). Conclusion SGCP combined with conventional heart failure therapy can improve LVEF and increase the effective rate to safely treat patients with CHF. However, further high-quality studies are needed to confirm these findings, due to the overall low quality of evidence in this literature. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/logout.php, PROSPERO [CRD42023390409].
Collapse
Affiliation(s)
- Jiaqi Yan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaorong Zhang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanping Wang
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Cardiovascular Department, The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Yan
- Medical Examination Center, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Jin
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Cardiovascular Department, The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Zhang Q, Liu Z, Liu R. Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117371. [PMID: 37981118 DOI: 10.1016/j.jep.2023.117371] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Tongyang Huoxue decoction (TYHX) has been used clinically for nearly 40 years to treat sick sinus syndrome. Previous reports showed that TYHX can inhibit calcium flux by regulating mitochondrial homeostasis via β-tubulin and increase sinoatrial node cell (SNC) activity. However, the underlying mechanisms remain unclear. AIM OF THE STUDY We aimed to verify the protective effect of TYHX against SNC ischemia by regulating mitochondrial quality control (MQC) through β-tubulin and voltage-dependent anion-selective channel 1 (VDAC1) silencing. MATERIALS AND METHODS We established an in vitro model of SNC ischemia/reperfusion (I/R) injury and performed rescue experiments by silencing β-tubulin and VDAC1 expression. Cell-Counting Kit 8 assays were performed to detect cell viabilities, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays (paired with confocal microscopy) were performed to detect fragmentation. Mitochondrial-energy metabolism was detected using the Seahorse assay system. Reverse transcription-quantitative polymerase chain reaction analysis was performed to detect the mRNA-expression levels of MQC-related genes. RESULTS TYHX inhibited SNC mitochondrial injury. During I/R simulation, TYHX maintained β-tubulin stability, regulated synergy between mitophagy and the mitochondrial unfolded-protein response (UPRmt), and inhibited mitochondrial oxidative stress and overactive SNC fission. Next-generation sequencing suggested that mitochondrial-membrane injury caused SNC apoptosis. We also found that TYHX regulated β-tubulin expression through VDAC1 and inhibited dynamin-related protein 1 migration to mitochondria from the nucleus. After preventing excessive mitochondrial fission, the mitophagy-UPRmt pathway, mitochondrial-membrane potential, and mitochondrial energy were restored. VDAC1 silencing affected the regulatory mechanism of MQC in a β-tubulin-dependent manner via TYHX. CONCLUSION TYHX regulated mitochondrial membrane-permeability through VDAC1, which affected MQC through β-tubulin and inhibited mitochondrial apoptosis. Our findings may help in developing drugs to protect the sinoatrial node.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
44
|
Zhang X, Zhou Y, Chang X, Wu Q, Liu Z, Liu R. Tongyang Huoxue decoction (TYHX) ameliorating hypoxia/reoxygenation-induced disequilibrium of calcium homeostasis via regulating β-tubulin in rabbit sinoatrial node cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117006. [PMID: 37544340 DOI: 10.1016/j.jep.2023.117006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE β-tubulin is a skeletal protein of sinoatrial node cells (SANCs) that maintains the physiological structure of SANCs and inhibits calcium overload. Tongyang Huoxue decoction (TYHX) is widely used to treat sick sinus syndrome (SSS) owing to its effects on calcium channels regulation and SANCs protection. AIM OF THE STUDY This study focuses on the mechanism of TYHX in improving the hypoxia/reoxygenation (H/R)-induced disequilibrium of calcium homeostasis in SANCs via regulating β-tubulin. MATERIALS AND METHODS Real-Time PCR (RT-PCR) and Western Blot were adopted to detect the mRNA and protein expression levels of calcium channel regulatory molecules. Laser confocal method was employed to examine β-tubulin structure and fluorescence expression levels in SANCs, as well as calcium wave and calcium release levels. RESULTS It was found that the fluorescence expression level decreased and the β-tubulin structure of SANCs was damaged after H/R treatment. The mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin decreased, while the mRNA and protein expression of RyR2 increased. The results of calcium wave and calcium transient experiments showed that the fluorescence expression level of Ca2+ increased and calcium overload occurred in SANCs. After treatment with TYHX, the mRNA and protein expression levels of SERCA2a/CaV1.3/NCX and β-tubulin increased, while the mRNA and protein expression levels of RyR2 decreased and the cell structure was restored. Interestingly, the regulation of TYHX on calcium homeostasis was further enhanced after Ad-β-tubulin treatment and counteracted after siRNA-β-tubulin treatment. These results suggest that TYHX could maintain calcium homeostasis via regulating β-tubulin, thus protecting against H/R-induced SANCs injury, which may be a new target for SSS treatment.
Collapse
Affiliation(s)
- Xinai Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yutong Zhou
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaomin Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiming Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Riuxiu Liu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
45
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
46
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
47
|
Li J, Sun Y, Wang R, Ma S, Shi L, Wang K, Zhang H, Wang T, Liu L. Seasonal differences in intestinal flora are related to rats' intestinal water metabolism. Front Microbiol 2023; 14:1109696. [PMID: 36910220 PMCID: PMC9999011 DOI: 10.3389/fmicb.2023.1109696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Many studies have reported obvious seasonal differences in the intestinal flora of rats, and this stable distribution of the seasonal flora helps in maintaining the normal physiological function of the host. However, the mechanism underlying these seasonal differences in intestinal flora remains unclear. To explore the correlation among seasonal factors and intestinal water metabolism and intestinal flora, 20 Sprague Dawley (SD) rats were divided into spring, summer, autumn, and winter groups. The environment for the four seasons was simulated using the Balanced Temperature and Humidity Control system. The intestinal water metabolism was evaluated by determining the intestinal transmission function, fecal water content, water content of colonic tissue, and the colonic expression levels of AQP3, AQP4, and AQP8. The composition and relative abundance of intestinal microflora in rats in each season were assessed through 16S rDNA amplifier sequencing, and the relationship between the dominant flora and intestinal water metabolism in each season was analyzed using Spearman correlation analysis. The high temperature and humidity season could lead to an increase in intestinal water metabolism and intestinal water content in rats, whereas the low temperature and humidity season could lead to a decrease, which was closely related to the change in microflora. To explore the molecular mechanism of seasonal changes in intestinal water metabolism, the concentration of colonic 5-HT, VIP, cAMP, and PKA associated with intestinal water metabolism in rats were also examined. Seasonal changes could affect the concentration of colonic 5-HT and VIP in rats, and then regulate AQPs through cAMP/PKA pathway to affect the intestinal water metabolism. These results suggest that seasonal factors affect the level of intestinal water metabolism in rats and result in seasonal differences in intestinal flora.
Collapse
Affiliation(s)
- Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yike Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruochong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuran Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Wang
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hairong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Leilei Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|