1
|
Xia L, Alqahtani S, Ferreira CR, Aryal UK, Biggs K, Shannahan JH. Modulation of Pulmonary Toxicity in Metabolic Syndrome Due to Variations in Iron Oxide Nanoparticle-Biocorona Composition. NANOMATERIALS 2022; 12:nano12122022. [PMID: 35745361 PMCID: PMC9230893 DOI: 10.3390/nano12122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Nanoparticles (NPs) interact with biomolecules by forming a biocorona (BC) on their surface after introduction into the body and alter cell interactions and toxicity. Metabolic syndrome (MetS) is a prevalent condition and enhances susceptibility to inhaled exposures. We hypothesize that distinct NP-biomolecule interactions occur in the lungs due to MetS resulting in the formation of unique NP-BCs contributing to enhanced toxicity. Bronchoalveolar lavage fluid (BALF) was collected from healthy and MetS mouse models and used to evaluate variations in the BC formation on 20 nm iron oxide (Fe3O4) NPs. Fe3O4 NPs without or with BCs were characterized for hydrodynamic size and zeta potential. Unique and differentially associated proteins and lipids with the Fe3O4 NPs were identified through proteomic and lipidomic analyses to evaluate BC alterations based on disease state. A mouse macrophage cell line was utilized to examine alterations in cell interactions and toxicity due to BCs. Exposures to 6.25, 12.5, 25, and 50 μg/mL of Fe3O4 NPs with BCs for 1 h or 24 h did not demonstrate overt cytotoxicity. Macrophages increasingly associated Fe3O4 NPs following addition of the MetS BC compared to the healthy BC. Macrophages exposed to Fe3O4 NPs with a MetS-BC for 1 h or 24 h at a concentration of 25 μg/mL demonstrated enhanced gene expression of inflammatory markers: CCL2, IL-6, and TNF-α compared to Fe3O4 NPs with a healthy BC. Western blot analysis revealed activation of STAT3, NF-κB, and ERK pathways due to the MetS-BC. Specifically, the Jak/Stat pathway was the most upregulated inflammatory pathway following exposure to NPs with a MetS BC. Overall, our study suggests the formation of distinct BCs due to NP exposure in MetS, which may contribute to exacerbated inflammatory effects and susceptibility.
Collapse
Affiliation(s)
- Li Xia
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
| | - Saeed Alqahtani
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Christina R. Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA;
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Katelyn Biggs
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA; (L.X.); (S.A.); (K.B.)
- Correspondence:
| |
Collapse
|
2
|
Chassé É, Guay F, Bach Knudsen KE, Zijlstra RT, Létourneau-Montminy MP. Toward Precise Nutrient Value of Feed in Growing Pigs: Effect of Meal Size, Frequency and Dietary Fibre on Nutrient Utilisation. Animals (Basel) 2021; 11:ani11092598. [PMID: 34573564 PMCID: PMC8471499 DOI: 10.3390/ani11092598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Feed costs are the most important in swine production. Precise determination of nutritional values of pig diets can help reducing feed costs by reducing security margins for nutrients and therefore provide a more sustainable swine production. In commercial farms, pigs have free access to feed and eat with no limitation according to their natural behaviour. In contrast, during digestibility trials, pigs are restricted in their daily intake of feed, which is distributed in a limited number of meals. The number of meals per day and the amount of feed consumed daily can affect the digestibility of the nutrients, the transit time and the metabolism. To reduce feed costs, by-products are frequently added to diets. Most by-products are rich in dietary fibre, which are known to have negative effects on digestibility. Enzymes can be supplemented in the diet to counteract the negative aspects of dietary fibre, but their efficiency can vary depending on the number of meals per day and the amount of feed consumed daily. Abstract Nutritional values of ingredients have been and still are the subject of many studies to reduce security margins of nutrients when formulating diets to reduce feed cost. In most studies, pigs are fed a limited amount of feed in a limited number of meals that do not represent how pigs are fed in commercial farm conditions. With free access to feed, pigs follow their intrinsic feeding behaviour. Feed intake is regulated by satiety and satiation signals. Reducing the feed intake level or feeding frequency can affect digestibility and transit time and induce metabolic changes. To reduce feed costs, alternative ingredients that are frequently rich in dietary fibre are added to diets. Fibre acts on the digestion process and transit time by decreasing energy density and causing viscosity. Various analyses of fibre can be realised, and the measured fibre fraction can vary. Exogenous enzymes can be added to counteract the effect of fibre, but digestive tract conditions, influenced by meal size and frequency, can affect the efficiency of supplemented enzymes. In conclusion, the frequency and size of the meals can affect the digestibility of nutrients by modulating gastrointestinal tract conditions (pH and transit time), metabolites (glucose and short-chain fatty acids) and hormones (glucagon-like peptide 1 and peptide tyrosine tyrosine).
Collapse
Affiliation(s)
- Élisabeth Chassé
- Department of Animal Science, Université Laval, 2425 Rue de l’Agriculture, Québec, QC G1V 0A6, Canada; (F.G.); (M.-P.L.-M.)
- Correspondence:
| | - Frédéric Guay
- Department of Animal Science, Université Laval, 2425 Rue de l’Agriculture, Québec, QC G1V 0A6, Canada; (F.G.); (M.-P.L.-M.)
| | | | - Ruurd T. Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | | |
Collapse
|
3
|
Guo QW, Si YJ, Shen YL, Chen X, Yang M, Fang DZ, Lin J. Depression Augments Plasma APOA4 without Changes of Plasma Lipids and Glucose in Female Adolescents Carrying G Allele of APOA4 rs5104. J Mol Neurosci 2021; 71:2060-2070. [PMID: 33403595 DOI: 10.1007/s12031-020-01766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The association of apolipoprotein AIV (APOA4) with depression or plasma levels of lipids and glucose has been inconsistently reported. However, interplays between APOA4 and depression on the levels have not been explored yet. The present study aimed to investigate plasma levels of APOA4, lipids, and glucose in adolescents with different genotypes of APOA4 rs5104 and with or without depression. Depressive symptoms were assessed in 631 adolescents by Beck Depression Inventory (BDI). A total score of 14 was defined as the cutoff point for depression. Plasma levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glucose, and insulin were measured by routine methods, and APOA4 by enzyme-linked immunosorbent assays. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism analyses and verified by DNA sequencing. Female adolescents had higher prevalence of depression than male subjects only in G allele carriers (p = 0.015), but not in AA homozygotes. Risk factors of depression and predictors of depression severity were different between G allele carriers and AA homozygotes. Lower levels of glucose (p = 0.003) were observed in male G allele carriers than those in male AA homozygotes and increased TG levels (p = 0.008) in female G allele carriers when compared with those in female AA homozygotes. When both APOA4 rs5104 and depression were taken into account, subjects with depression had higher levels of plasma APOA4 than adolescents without depression only in female G allele carriers (p = 0.043), but no significant changes of plasma lipids and glucose. Depression augments plasma APOA4 levels without changes of plasma lipids and glucose in female adolescents carrying G allele of APOA4 rs5104. These results may provide a novel explanation for the inconsistent relationship between depression, APOA4, and plasma levels of lipids and glucose in the literature.
Collapse
Affiliation(s)
- Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Jun Si
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mei Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Abstract
AbstractKnowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and β-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.
Collapse
|
5
|
Differential effects of gastric bypass and banding on the cardiovascular risk profile in morbidly obese subjects: The correlation with plasma apolipoprotein A-IV concentration. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Wang W, Zhang X, Qin J, Wei P, Jia Y, Wang J, Ru S. Long-term bisphenol S exposure induces fat accumulation in liver of adult male zebrafish (Danio rerio) and slows yolk lipid consumption in F1 offspring. CHEMOSPHERE 2019; 221:500-510. [PMID: 30660906 DOI: 10.1016/j.chemosphere.2019.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
Bisphenol S (BPS), as a substitute for bisphenol A, was frequently detected in human urine and blood. It has been reported that BPS could disrupt fat metabolism in vivo and vitro although mechanisms remain unclear. Additionally, there is no study that the disruptive effect of BPS on parental fat metabolism indirectly interferes with the lipid metabolism of offspring. Here, after 120-d exposure to 1, 10, 100, and 1000 μg/L BPS, the transcription level of genes involved in lipid metabolism in liver and feeding regulation of brain-gut axis, as well as the hepatic triacylglycerol (TAG) and plasma lipid levels were investigated in both male and female zebrafish. Results showed that in male liver, fatty acid synthesis and degradation were inhibited by reducing transcription levels of srebp1 and pparα, and the synthesis of TAG was significantly increased using fatty acid as a precursor by elevating agpat4 and dgat2 mRNA expression levels. As a consequence, fat accumulation and the increased TAG levels were observed in male liver, and lipid levels were also elevated in male plasma. In female liver, there was no excessive fat accumulation and BPS exposure had a non-monotonic effect on the gene expression of fasn, dagt2, and pparα. Notably, the unexposed offspring showed a large amount of yolk lipid remain at 5 days post fertilization. This study obviously demonstrated that long-term BPS exposure increases the risk of non-alcoholic fatty liver disease in male zebrafish and life-cycle exposure hazard on offspring is noteworthy.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Penghao Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yi Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
7
|
Gao Z, Luo G, Ni B. Progress in Mass Spectrometry-Based Proteomics in Hypoxia-Related Diseases and High-Altitude Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:305-313. [PMID: 28486083 DOI: 10.1089/omi.2016.0187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human migration, influenced by social conflict and natural disasters as well as global climate change, has become recognized as a major "planetary force." It has also brought to the forefront, new specialties of integrative biology-such as high-altitude medicine-and the impact of hitherto understudied environmental factors on human pathophysiology in these new geographical settings. For people migrating to or living in high-altitude regions, environmental hypoxia is a primary challenge. Decreased partial pressure of oxygen in environmental air, caused by lower barometric pressure, puts living organisms in a hypoxic state. When there is a serious inability to adapt, death may ensue. Research efforts over the past few years have applied mass spectrometry-based proteomics analyses to uncover the mechanisms of hypoxia-related high-altitude pathophysiology. The differential proteomic profiles in plasma and tissues under high-altitude hypoxia conditions, as compared with sea level controls, and the multitudinous hypoxia-specific proteins identified elucidate mechanisms underlying high-altitude hypoxia acclimatization and diseases, and provide a foundation for development of new therapeutic, prophylactic, and diagnostic approaches. In this expert review and innovation analysis, we highlight the current proteomics findings on high-altitude hypoxia, and suggest paths forward toward effective interventions to address this key challenge in high-altitude medicine.
Collapse
Affiliation(s)
- Zhiqi Gao
- Department of Pathophysiology and High-Altitude Pathology/Key Laboratory of High-Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High-Altitude Medicine, College of High-Altitude Military Medicine, Third Military Medical University , Chongqing, PR China
| | - Gang Luo
- Department of Pathophysiology and High-Altitude Pathology/Key Laboratory of High-Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High-Altitude Medicine, College of High-Altitude Military Medicine, Third Military Medical University , Chongqing, PR China
| | - Bing Ni
- Department of Pathophysiology and High-Altitude Pathology/Key Laboratory of High-Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High-Altitude Medicine, College of High-Altitude Military Medicine, Third Military Medical University , Chongqing, PR China
| |
Collapse
|
8
|
Bae YJ, Kim SE, Hong SY, Park T, Lee SG, Choi MS, Sung MK. Time-course microarray analysis for identifying candidate genes involved in obesity-associated pathological changes in the mouse colon. GENES AND NUTRITION 2016; 11:30. [PMID: 27895803 PMCID: PMC5120484 DOI: 10.1186/s12263-016-0547-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
Abstract
Background Obesity is known to increase the risk of colorectal cancer. However, mechanisms underlying the pathogenesis of obesity-induced colorectal cancer are not completely understood. The purposes of this study were to identify differentially expressed genes in the colon of mice with diet-induced obesity and to select candidate genes as early markers of obesity-associated abnormal cell growth in the colon. Methods C57BL/6N mice were fed normal diet (11% fat energy) or high-fat diet (40% fat energy) and were euthanized at different time points. Genome-wide expression profiles of the colon were determined at 2, 4, 8, and 12 weeks. Cluster analysis was performed using expression data of genes showing log2 fold change of ≥1 or ≤−1 (twofold change), based on time-dependent expression patterns, followed by virtual network analysis. Results High-fat diet-fed mice showed significant increase in body weight and total visceral fat weight over 12 weeks. Time-course microarray analysis showed that 50, 47, 36, and 411 genes were differentially expressed at 2, 4, 8, and 12 weeks, respectively. Ten cluster profiles representing distinguishable patterns of genes differentially expressed over time were determined. Cluster 4, which consisted of genes showing the most significant alterations in expression in response to high-fat diet over 12 weeks, included Apoa4 (apolipoprotein A-IV), Ppap2b (phosphatidic acid phosphatase type 2B), Cel (carboxyl ester lipase), and Clps (colipase, pancreatic), which interacted strongly with surrounding genes associated with colorectal cancer or obesity. Conclusions Our data indicate that Apoa4, Ppap2b, Cel, and Clps are candidate early marker genes associated with obesity-related pathological changes in the colon. Genome-wide analyses performed in the present study provide new insights on selecting novel genes that may be associated with the development of diseases of the colon. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0547-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Jung Bae
- Division of Food Science and Culinary Arts, Shinhan University, Gyeonggi-do, Republic of Korea
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul Republic of Korea
| | - Seong Yeon Hong
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, Republic of Korea.,Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Gyu Lee
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea.,Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul Republic of Korea.,Food and Nutritional Genomics Research Center, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Rao R, Roche A, Febres G, Bessler M, Tso P, Korner J. Circulating Apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2016; 13:468-473. [PMID: 27986588 DOI: 10.1016/j.soard.2016.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/08/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Apolipoprotein A-IV (ApoA-IV) has been shown to be involved in obesity and diabetes pathogenesis in animal studies, but its role in humans is uncertain. OBJECTIVES The objective of this study was to determine the relation of ApoA-IV with changes in glucose metabolism and weight after bariatric surgery. SETTING University Hospital. METHODS The patients (n = 49) included lean controls (n = 8) and patients before and after a mean of 7 months after laparoscopic adjustable gastric banding (LAGB, n = 12), laparoscopic Roux-en-Y gastric bypass (RYGB, n = 22), or laparoscopic sleeve gastrectomy (SG, n = 11). ApoA-IV and other hormone assays were performed in the fasting and the postprandial state. Pearson's correlation analyses controlled for baseline BMI and percent excess weight loss (EWL) were used to determine relationships between ApoA-IV levels and insulin resistance (HOMA-IR). RESULTS With all bariatric procedures combined, the change in ApoA-IV [533 versus 518 microg/L, P = .813] or ApoA-IV area under the curve (AUC - 1072 versus 1042, P = .939) was not significant. None of the surgeries individually affected levels of fasting or ApoA-IV AUC. Bariatric surgery resulted in a decrease in HOMA-IR (5.3 versus 2.0, P<.001). In the RYGB group, higher baseline ApoA-IV levels correlated with decrease in HOMA-IR [r = -.6, P = .008]. This relationship was independent of EWL and was not observed in the LAGB or SG group. There was no association of ApoA-IV levels with EWL, insulin secretion, Peptide-YY, or leptin levels. CONCLUSION Preoperative ApoA-IV levels, rather than changes in levels, positively correlate with improvements in insulin sensitivity independent of weight loss after RYGB.
Collapse
Affiliation(s)
- Raghavendra Rao
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Gerardo Febres
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Marc Bessler
- Department of Surgery , Columbia University Medical Center, New York, NY
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Judith Korner
- Department of Medicine, Columbia University Medical Center, New York, NY.
| |
Collapse
|
10
|
Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins. J Therm Biol 2016; 61:82-90. [DOI: 10.1016/j.jtherbio.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
|
11
|
Ulloa-Martínez M, Burguete-García AI, Murugesan S, Hoyo-Vadillo C, Cruz-Lopez M, García-Mena J. Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children. Arch Med Sci 2016; 12:968-976. [PMID: 27695486 PMCID: PMC5016575 DOI: 10.5114/aoms.2016.58126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Obesity is a chronic, complex, and multifactorial disease, characterized by excess body fat. Diverse studies of the human genome have led to the identification of susceptibility genes that contribute to obesity. However, relatively few studies have addressed specifically the association between the level of expression of these genes and obesity. MATERIAL AND METHODS We studied 160 healthy and obese unrelated Mexican children aged 6 to 14 years. We measured the transcriptional expression of 20 genes associated with obesity, in addition to the biochemical parameters, in peripheral white blood cells. The detection of mRNA levels was performed using the OpenArray Real-Time PCR System (Applied Biosystems). RESULTS Obese children exhibited higher values of fasting glucose (p = 0.034), fasting insulin (p = 0.004), low-density lipoprotein (p = 0.006), triglycerides (p < 0.001), systolic blood pressure and diastolic blood pressure (p < 0.001), and lower values of high-density lipoprotein (p < 0.001) compared to lean children. Analysis of transcriptional expression data showed a difference for ADRB1 (p = 0.0297), ADIPOR1 (p = 0.0317), GHRL (p = 0.0060) and FTO (p = 0.0348) genes. CONCLUSIONS Our results suggest that changes in the expression level of the studied genes are involved in biological processes implicated in the development of childhood obesity. Our study contributes new perspectives for a better understanding of biological processes involved in obesity. The protocol was approved by the National Committee and Ethical Committee Board from the Mexican Social Security Institute (IMSS) (IMSS FIS/IMSS/PRIO/10/011).
Collapse
Affiliation(s)
- Marcela Ulloa-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, México
| | - Ana I. Burguete-García
- Dirección de Infecciones Crónicas y Cáncer, CISEI, Instituto Nacional de Salud Pública, México, México
| | - Selvasankar Murugesan
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, México, México
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, México, México
| | - Miguel Cruz-Lopez
- Unidad Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, México
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, México
| |
Collapse
|
12
|
Deng X, Walker RG, Morris J, Davidson WS, Thompson TB. Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function. J Biol Chem 2015; 290:10689-702. [PMID: 25733664 PMCID: PMC4409236 DOI: 10.1074/jbc.m115.637058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Ryan G Walker
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| | - Jamie Morris
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - W Sean Davidson
- Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Thomas B Thompson
- From the Departments of Molecular Genetics, Biochemistry and Microbiology and
| |
Collapse
|
13
|
Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 2015; 8:295-309. [PMID: 25633982 PMCID: PMC4348566 DOI: 10.1242/dmm.018754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erin M Zeituni
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - James H Thierer
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Alexandria C Brown
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erica D Boehm
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Derek M Cerchione
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Alexis M Ceasrine
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Inbal Avraham-Davidi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Hanoch Tempelhof
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Karina Yaniv
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS One 2014; 9:e112835. [PMID: 25415563 PMCID: PMC4240577 DOI: 10.1371/journal.pone.0112835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/26/2014] [Indexed: 01/20/2023] Open
Abstract
Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Trial Registration Controlled-Trials.com ISRCTN76920690
Collapse
|
15
|
Williams LM, Campbell FM, Drew JE, Koch C, Hoggard N, Rees WD, Kamolrat T, Thi Ngo H, Steffensen IL, Gray SR, Tups A. The development of diet-induced obesity and glucose intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases. PLoS One 2014; 9:e106159. [PMID: 25170916 PMCID: PMC4149520 DOI: 10.1371/journal.pone.0106159] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023] Open
Abstract
High-fat (HF) diet-induced obesity and insulin insensitivity are associated with inflammation, particularly in white adipose tissue (WAT). However, insulin insensitivity is apparent within days of HF feeding when gains in adiposity and changes in markers of inflammation are relatively minor. To investigate further the effects of HF diet, C57Bl/6J mice were fed either a low (LF) or HF diet for 3 days to 16 weeks, or fed the HF-diet matched to the caloric intake of the LF diet (PF) for 3 days or 1 week, with the time course of glucose tolerance and inflammatory gene expression measured in liver, muscle and WAT. HF fed mice gained adiposity and liver lipid steadily over 16 weeks, but developed glucose intolerance, assessed by intraperitoneal glucose tolerance tests (IPGTT), in two phases. The first phase, after 3 days, resulted in a 50% increase in area under the curve (AUC) for HF and PF mice, which improved to 30% after 1 week and remained stable until 12 weeks. Between 12 and 16 weeks the difference in AUC increased to 60%, when gene markers of inflammation appeared in WAT and muscle but not in liver. Plasma proteomics were used to reveal an acute phase response at day 3. Data from PF mice reveals that glucose intolerance and the acute phase response are the result of the HF composition of the diet and increased caloric intake respectively. Thus, the initial increase in glucose intolerance due to a HF diet occurs concurrently with an acute phase response but these effects are caused by different properties of the diet. The second increase in glucose intolerance occurs between 12-16 weeks of HF diet and is correlated with WAT and muscle inflammation. Between these times glucose tolerance remains stable and markers of inflammation are undetectable.
Collapse
Affiliation(s)
- Lynda M. Williams
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| | - Fiona M. Campbell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Janice E. Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Christiane Koch
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Nigel Hoggard
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - William D. Rees
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Torkamol Kamolrat
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ha Thi Ngo
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Inger-Lise Steffensen
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Stuart R. Gray
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Tups
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
16
|
Xu X, Park JG, So JS, Hur KY, Lee AH. Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res 2014; 55:850-9. [PMID: 24598141 DOI: 10.1194/jlr.m045104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cAMP responsive element-binding protein H (CREBH) is an endoplasmic reticulum (ER) anchored transcription factor that is highly expressed in the liver and small intestine and implicated in nutrient metabolism and proinflammatory response. ApoA-IV is a glycoprotein secreted primarily by the intestine and to a lesser degree by the liver. ApoA-IV expression is suppressed in CREBH-deficient mice and strongly induced by enforced expression of the constitutively active form of CREBH, indicating that CREBH is the major transcription factor regulating Apoa4 gene expression. Here, we show that CREBH directly controls Apoa4 expression through two tandem CREBH binding sites (5'-CCACGTTG-3') located on the promoter, which are conserved between human and mouse. Chromatin immunoprecipitation and electrophoretic mobility-shift assays demonstrated specific association of CREBH with the CREBH binding sites. We also demonstrated that a substantial amount of CREBH protein was basally processed to the active nuclear form in normal mouse liver, which was further increased in steatosis induced by high-fat diet or fasting, increasing apoA-IV expression. However, we failed to find significant activation of CREBH in response to ER stress, arguing against the critical role of CREBH in ER stress response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | | | | | | | | |
Collapse
|
17
|
Yang Y, Ma L, Guan W, Wang Y, DU Y, Ga Q, Ge RL. Differential plasma proteome analysis in patients with high-altitude pulmonary edema at the acute and recovery phases. Exp Ther Med 2014; 7:1160-1166. [PMID: 24940404 PMCID: PMC3991535 DOI: 10.3892/etm.2014.1548] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/17/2014] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the differential expression of plasma proteins in patients suffering from high-altitude pulmonary edema (HAPE) at different phases. A complete proteomic analysis was performed using two-dimensional gel electrophoresis followed by mass spectrometry in three patients with HAPE at the acute stage and recovery phase. Comparisons between the expression patterns of the patients with HAPE at the two different phases led to the identification of eight protein spots with a >1.5-fold difference in expression between the acute and recovery phases. These differentially expressed proteins were apolipoproteins, serum amyloid P component, complement components and others. Apolipoprotein A-I (Apo A-I), serum amyloid P component and fibrinogen were overexpressed in the patients with HAPE in the acute stage compared with their expression levels in the recovery phase. However, Apo A-IV and antithrombin-III were overexpressed in the patients with HAPE in the recovery phase compared with their expression levels in the acute stage. The results indicate that the differential plasma proteome in patients with HAPE may be associated with the occurrence of HAPE, and the expression changes of Apo A-I and A-IV may offer further understanding of HAPE to aid its prognosis, diagnosis and treatment.
Collapse
Affiliation(s)
- Yingzhong Yang
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| | - Lan Ma
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| | - Wei Guan
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China ; Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China
| | - Yaping Wang
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| | - Yang DU
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| | - Qin Ga
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medical Sciences, Qinghai University School of Medicine, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
18
|
|
19
|
Souza FDCDA, Garcia NP, Sales RSDA, Aguiar JPL, Duncan WLP, Carvalho RP. Effect of fatty Amazon fish consumption on lipid metabolism. REV NUTR 2014. [DOI: 10.1590/1415-52732014000100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE: The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism. METHODS: Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues. RESULTS: The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups. CONCLUSION: This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui.
Collapse
|
20
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
21
|
Deng X, Morris J, Chaton C, Schröder GF, Davidson WS, Thompson TB. Small-angle X-ray scattering of apolipoprotein A-IV reveals the importance of its termini for structural stability. J Biol Chem 2013; 288:4854-66. [PMID: 23288849 PMCID: PMC3576090 DOI: 10.1074/jbc.m112.436709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/02/2013] [Indexed: 12/25/2022] Open
Abstract
ApoA-IV is an amphipathic protein that can emulsify lipids and has been linked to protective roles against cardiovascular disease and obesity. We previously reported an x-ray crystal structure of apoA-IV that was truncated at its N and C termini. Here, we have extended this work by demonstrating that self-associated states of apoA-IV are stable and can be structurally studied using small-angle x-ray scattering. Both the full-length monomeric and dimeric forms of apoA-IV were examined, with the dimer showing an elongated rod core with two nodes at opposing ends. The monomer is roughly half the length of the dimer with a single node. Small-angle x-ray scattering visualization of several deletion mutants revealed that removal of both termini can have substantial conformational effects throughout the molecule. Additionally, the F334A point mutation, which we previously showed increases apoA-IV lipid binding, also exhibited large conformational effects on the entire dimer. Merging this study's low-resolution structural information with the crystal structure provides insight on the conformation of apoA-IV as a monomer and as a dimer and further defines that a clasp mechanism may control lipid binding and, ultimately, protein function.
Collapse
Affiliation(s)
- Xiaodi Deng
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jamie Morris
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Catherine Chaton
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Gunnar F. Schröder
- the Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - W. Sean Davidson
- the Department of Pathology and Laboratory Medicine, College of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45215, and
| | - Thomas B. Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
22
|
Kollerits B, Krane V, Drechsler C, Lamina C, März W, Ritz E, Wanner C, Kronenberg F. Apolipoprotein A-IV concentrations and clinical outcomes in haemodialysis patients with type 2 diabetes mellitus--a post hoc analysis of the 4D Study. J Intern Med 2012; 272:592-600. [PMID: 22891946 DOI: 10.1111/j.1365-2796.2012.02585.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Apolipoprotein A-IV (apoA-IV) is an anti-atherogenic and anti-oxidative plasma glycoprotein involved in reverse cholesterol transport. The aim of this study was to examine the association between apoA-IV and all-cause mortality, cardiovascular endpoints and parameters of protein-energy wasting and nutrition in haemodialysis patients. METHODS This post hoc analysis was performed in the German Diabetes Dialysis Study (4D Study) evaluating atorvastatin in 1255 haemodialysis patients with type 2 diabetes mellitus, followed for a median of 4 years. The association between apoA-IV and relevant outcomes was analysed using Cox proportional hazards regression analyses. Body mass index (BMI) was used as a marker of protein-energy wasting. In addition, a definition of extended wasting was applied, combining median values of BMI, serum albumin, creatinine and sensitive C-reactive protein, to classify patients. RESULTS Mean (±SD) apoA-IV concentration was 49.8 ± 14.2 mg dL(-1). Age- and gender-adjusted apoA-IV concentrations were strongly associated with the presence of congestive heart failure at baseline [odds ratio = 0.81, 95% confidence interval (CI) 0.74-0.88 per 10 mg dL(-1) increase; P < 0.001). During the prospective follow-up, the strongest association was found for all-cause mortality [hazard ratio (HR) = 0.89, 95% CI 0.85-0.95, P = 0.001), which was mainly because of patients with BMI > 23 kg m(-2) (HR = 0.87, 95% CI 0.82-0.94, P < 0.001) and those in the nonwasting group according to the extended definition (HR = 0.89, 95% CI 0.84-0.96, P = 0.001). This association remained significant after additionally adjusting for parameters associated with apoA-IV at baseline. Further associations were observed for sudden cardiac death. ApoA-IV was less strongly associated with atherogenic events such as myocardial infarction. CONCLUSIONS Low apoA-IV levels seem to be a risk predictor of all-cause mortality and sudden cardiac death. This association might be modified by nutritional status.
Collapse
Affiliation(s)
- B Kollerits
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guclu-Geyik F, Onat A, Coban N, Komurcu-Bayrak E, Sansoy V, Can G, Erginel-Unaltuna N. Minor allele of the APOA4 gene T347S polymorphism predisposes to obesity in postmenopausal Turkish women. Mol Biol Rep 2012; 39:10907-14. [DOI: 10.1007/s11033-012-1990-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
|
24
|
Guardiola M, Alvaro A, Vallvé JC, Rosales R, Solà R, Girona J, Serra N, Duran P, Esteve E, Masana L, Ribalta J. APOA5 gene expression in the human intestinal tissue and its response to in vitro exposure to fatty acid and fibrate. Nutr Metab Cardiovasc Dis 2012; 22:756-762. [PMID: 21489765 DOI: 10.1016/j.numecd.2010.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/05/2010] [Accepted: 12/11/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS APOA5, a key gene regulating triglyceride (TG) levels, is reported to be expressed exclusively in the liver where it may regulate TG-rich particle synthesis and secretion. Since the same lipoprotein processing occurs in the intestine, we have postulated that this organ would also express APOA5. METHODS AND RESULTS We have detected the APOA5 gene expression in C57BL/6J mouse and in human small intestine samples. In humans, it is expressed mainly in the duodenum and colon, with messenger RNA (mRNA) levels four orders of magnitude lower than in the liver, and the protein product being one-sixth of the liver equivalent. Subsequently, we carried out in vitro experiments in TC-7/CaCo(2) human intestinal cells to analyse the expression of APOA5, APOC3, APOB and MTP genes after the incubation with long- and short-chain fatty acids, and a peroxisome proliferator-activated receptor alpha (PPARα) agonist (Wy 14643, a fibrate therapeutic agent). In the TC-7 cell line, APOA5 expression was significantly upregulated by saturated fatty acids. The short-chain fatty acid butyrate increased APOA5 expression almost fourfold while APOB was downregulated by increasing butyrate concentrations. When TC-7 cells were incubated with PPARα agonist, the APOA5 expression was increased by 60%, while the expression of APOB, MTP and APOC3 was decreased by 50%, 30% and 45%, respectively. CONCLUSION Our results demonstrate that APOA5 is expressed in the intestine, albeit at a much lower concentration than in the liver. While it remains to be determined whether intestinal apo A-V is functional, our in vitro experiments show that its expression is modifiable by dietary and pharmacological stimuli.
Collapse
Affiliation(s)
- M Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Institut d'Investigacions Sanitàries Pere, Virgili, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 2012; 109:9641-6. [PMID: 22619326 DOI: 10.1073/pnas.1201433109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine in response to fat absorption. Here we demonstrate a potential role for apoA-IV in regulating glucose homeostasis. ApoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. This enhancement involves cAMP at a level distal to Ca(2+) influx into the β cells. Knockout of apoA-IV results in compromised insulin secretion and impaired glucose tolerance compared with WT mice. Challenging apoA-IV(-/-) mice with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in WT mice. Administration of exogenous apoA-IV to apoA-IV(-/-) mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet. Finally, we demonstrate that exogenous apoA-IV injection decreases blood glucose levels and stimulates a transient increase in insulin secretion in KKAy diabetic mice. These results suggest that apoA-IV may provide a therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.
Collapse
|
26
|
Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann Surg 2012; 255:294-301. [PMID: 22202582 DOI: 10.1097/sla.0b013e31823e71b7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the role of the common hepatic branch of the abdominal vagus on the beneficial effects of Roux-en-Y gastric bypass (RYGB) on weight loss, food intake, food choice, and energy expenditure in a rat model. BACKGROUND Although changes in gut hormone patterns are the leading candidates in RYGB's effects on appetite, weight loss, and reversal of diabetes, a potential role for afferent signaling through the vagal hepatic branch potentially sensing glucose levels in the hepatic portal vein has recently been suggested in a mouse model of RYGB. METHODS Male Sprague-Dawley rats underwent either RYGB alone (RYGB; n = 7), RYGB + common hepatic branch vagotomy (RYGB + HV; n = 6), or sham procedure (sham; n = 9). Body weight, body composition, meal patterns, food choice, energy expenditure, and fecal energy loss were monitored up to 3 months after intervention. RESULTS Both RYGB and RYGB + HV significantly reduced body weight, adiposity, meal size, and fat preference, and increased satiety, energy expenditure, and respiratory exchange rate compared with sham procedure, and there were no significant differences in these effects between RYGB and RYGB + HV rats. CONCLUSIONS Integrity of vagal nerve supply to the liver, hepatic portal vein, and the proximal duodenum provided by the common hepatic branch is not necessary for RYGB to reduce food intake and body weight or increase energy expenditure. Specifically, it is unlikely that a hepatic portal vein glucose sensor signaling RYGB-induced increased intestinal gluconeogenesis to the brain depends on vagal afferent fibers.
Collapse
|
27
|
Liu H, Choi JW, Yun JW. Gender differences in rat plasma proteome in response to high-fat diet. Proteomics 2011; 12:269-83. [DOI: 10.1002/pmic.201100127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/19/2011] [Accepted: 10/17/2011] [Indexed: 11/09/2022]
|
28
|
Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:727-35. [PMID: 21989069 DOI: 10.1016/j.bbalip.2011.09.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Our knowledge of how the body absorbs triacylglycerols (TAG) from the diet and how this process is regulated has increased at a rapid rate in recent years. Dietary TAG are hydrolyzed in the intestinal lumen to free fatty acids (FFA) and monoacylglycerols (MAG), which are taken up by enterocytes from their apical side, transported to the endoplasmic reticulum (ER) and resynthesized into TAG. TAG are assembled into chylomicrons (CM) in the ER, transported to the Golgi via pre-chylomicron transport vesicles and secreted towards the basolateral side. In this review, we mainly focus on the roles of key proteins involved in uptake and intracellular transport of fatty acids, their conversion to TAG and packaging into CM. We will also discuss intracellular transport and secretion of CM. Moreover, we will bring to light few factors that regulate gut triglyceride production. Furthermore, we briefly summarize pathways involved in cholesterol absorption. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
29
|
Abstract
Obesity has increased alarmingly in the United States and is increasing in many countries of the world. Because obesity is an important risk factor for type 2 diabetes and other chronic diseases, it is important to develop approaches to counter the rapid increase in adiposity. One approach is bariatric surgery, the most successful clinical intervention known for treating obesity. Surgery can result in impressive weight loss and improvement of obesity-related comorbidities. Yet the mechanisms responsible for this remarkable effect of surgery remain controversial. It is now clear that caloric restriction, per se, does not explain all the reduction in stored fat mass after surgery. A number of gastrointestinal hormones, including glucagon-like peptide (GLP)-1, peptide YY, oxyntomodulin, GLP-2, glucose-dependent insulinotropic polypeptide, ghrelin, and others, can play roles in energy homeostasis and could be involved in bariatric-surgery-related weight loss and weight loss maintenance. Vagal innervation may play a role. In addition, there may be other yet-uncharacterized factors that could participate. This review discusses the possible roles of these hormonal mechanisms in various types of bariatric surgery to help elucidate some of the potential mechanisms at play in short-term and long-term post-bariatric surgery weight loss. Understanding such mechanisms could lead to new and efficacious means to control or even reduce the epidemic of obesity.
Collapse
Affiliation(s)
- Viorica Ionut
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.
| | | |
Collapse
|
30
|
Makino Y, Noguchi E, Takahashi N, Matsumoto Y, Kubo S, Yamada T, Imoto Y, Ito Y, Osawa Y, Shibasaki M, Uchida K, Meno K, Suzuki H, Okubo K, Arinami T, Fujieda S. Apolipoprotein A-IV is a candidate target molecule for the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol 2010; 126:1163-9.e5. [PMID: 20810159 DOI: 10.1016/j.jaci.2010.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Allergic rhinitis is a global health problem that causes major illnesses and disability worldwide. Allergen-specific immunotherapy (SIT) is the only available treatment that can alter the natural course of allergic disease. However, the precise mechanism underlying allergen-SIT is not well understood. OBJECTIVE The aim of the current study was to identify protein expression signatures reflective of allergen-SIT-more specifically, sublingual immunotherapy (SLIT). METHODS Serum was taken twice from patients with seasonal allergic rhinitis caused by Japanese cedar: once before the pollen season and once during the season. A total of 25 patients was randomly categorized into a placebo-treated group and an active-treatment group. Their serum protein profiles were analyzed by 2-dimensional electrophoresis. RESULTS Sixteen proteins were found to be differentially expressed during the pollen season. Among the differentially expressed proteins, the serum levels of complement C4A, apolipoprotein A-IV (apoA-IV), and transthyretin were significantly increased in SLIT-treated patients but not in placebo-treated patients. Among these proteins, the serum levels of apoA-IV correlated with the clinical symptom-medication scores (r = -0.635; P < .05) and with quality of life scores (r = -0.516; P < .05) in the case of SLIT-treated patients. The amount of histamine released from the basophils in vitro was greatly reduced after the addition of recombinant apoA-IV in the medium (P < .01). CONCLUSION Our data will increase the understanding of the mechanism of SLIT and may provide novel insights into the treatment of allergic rhinitis.
Collapse
MESH Headings
- Administration, Sublingual
- Adult
- Allergens/immunology
- Apolipoproteins A/blood
- Complement C4a/metabolism
- Cryptomeria/immunology
- Desensitization, Immunologic
- Disease Progression
- Female
- Gene Expression Profiling
- Humans
- Male
- Middle Aged
- Pollen/adverse effects
- Pollen/immunology
- Prealbumin/metabolism
- Quality of Life
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/physiopathology
- Seasons
Collapse
Affiliation(s)
- Yuka Makino
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Epidemiological studies have shown a positive relationship between dietary fat intake and obesity. Since rats and mice show a similar relationship, they are considered an appropriate model for studying dietary obesity. The present paper describes the history of using high-fat diets to induce obesity in animals, aims to clarify the consequences of changing the amount and type of dietary fats on weight gain, body composition and adipose tissue cellularity, and explores the contribution of genetics and sex, as well as the biochemical basis and the roles of hormones such as leptin, insulin and ghrelin in animal models of dietary obesity. The major factors that contribute to dietary obesity - hyperphagia, energy density and post-ingestive effects of the dietary fat - are discussed. Other factors that affect dietary obesity including feeding rhythmicity, social factors and stress are highlighted. Finally, we comment on the reversibility of high-fat diet-induced obesity.
Collapse
|
32
|
Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, Lai CQ, Parnell LD, Coltell O, Lee YC, Ordovas JM. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. ACTA ACUST UNITED AC 2009; 169:1897-906. [PMID: 19901143 DOI: 10.1001/archinternmed.2009.343] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Nutrigenetics studies the role of genetic variation on interactions between diet and health, aiming to provide more personalized dietary advice. However, replication has been low. Our aim was to study interaction among a functional APOA2 polymorphism, food intake, and body mass index (BMI) in independent populations to replicate findings and to increase their evidence level. METHODS Cross-sectional, follow-up (20 years), and case-control analyses were undertaken in 3 independent populations. We analyzed gene-diet interactions between the APOA2 -265T>C polymorphism and saturated fat intake on BMI and obesity in 3462 individuals from 3 populations in the United States: the Framingham Offspring Study (1454 whites), the Genetics of Lipid Lowering Drugs and Diet Network Study (1078 whites), and Boston-Puerto Rican Centers on Population Health and Health Disparities Study (930 Hispanics of Caribbean origin). RESULTS Prevalence of the CC genotype in study participants ranged from 10.5% to 16.2%. We identified statistically significant interactions between the APOA2 -265T>C and saturated fat regarding BMI in all 3 populations. Thus, the magnitude of the difference in BMI between the individuals with the CC and TT+TC genotypes differed by saturated fat. A mean increase in BMI of 6.2% (range, 4.3%-7.9%; P = .01) was observed between genotypes with high- (> or =22 g/d) but not with low- saturated fat intake in all studies. Likewise, the CC genotype was significantly associated with higher obesity prevalence in all populations only in the high-saturated fat stratum. Meta-analysis estimations of obesity for individuals with the CC genotype compared with the TT+TC genotype were an odds ratio of 1.84 (95% confidence interval, 1.38-2.47; P < .001) in the high-saturated fat stratum, but no association was detected in the low-saturated fat stratum (odds ratio, 0.81; 95% confidence interval, 0.59-1.11; P = .18). CONCLUSION For the first time to our knowledge, a gene-diet interaction influencing BMI and obesity has been strongly and consistently replicated in 3 independent populations.
Collapse
Affiliation(s)
- Dolores Corella
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111-1524, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Karlsson H, Mörtstedt H, Lindqvist H, Tagesson C, Lindahl M. Protein profiling of low-density lipoprotein from obese subjects. Proteomics Clin Appl 2009; 3:663-71. [DOI: 10.1002/prca.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Luo XH, Cheng ML, Yang Q, Zhang Q. Screening of differential serum proteins in patients with hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2009; 17:1672-1675. [DOI: 10.11569/wcjd.v17.i16.1672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare and analyze the expression difference of proteins between hepatic fibrosis serum and normal human serum and to identify potential serum markers for human hepatic fibrosis.
METHODS: Serum samples were collected from 6 healthy subjects and 6 patients with hepatic fibrosis following normal protocols. The serum samples of these two groups were mixed into one respectively of equal volume. Albumin and IgG removal were carried out and serum total proteins were extracted. 2-DE was used to isolate the total proteins using pH 4-7 L, 18 cm IPG strip, and SDS-PAGE. Silver nitrate stain was applied afterwards. ImageMaster 2D Platinum Softwared (Version 5) was employed to analyze the 2-DE results. ELISA was adopted to verify the expression changes of some differential proteins.
RESULTS: The 2-DE matching rate was 89.58% between the two groups. From the two groups, 517 differential protein spots were identified, among which 24 with differential expression above three times were singgled out and MALDI-TOF-MS analysis was carried out on them. Eight proteins were identified, including transferring, apolipoprotein A-IV, T-cell receptor b, haptoglobin, serum albumin and serum albumin precursor. Up-regulated expression was observed in 3 proteins and down-regulated expression in 5 proteins in the hepatic fibrosis serum group. As compared with that in normal serum, haptoglobin and apolipoprotein A-IV expression were down-regulated in hepatic fibrosis serum, which was consistent with the results of 2-DE.
CONCLUSION: Compared with the normal subject group, the serum in the hepatic fibrosis group showed differential expression in protein profile. The proteins of differential expression are expected to be the serum markers for hepatic fibrosis.
Collapse
|
35
|
Chan KN, Lau CC, Chow KL, Ko KM, Tsim KWK, Ng KM. Effect of Extraction Solvent on the Bioactivity of an Herbal Formulation. Ind Eng Chem Res 2009. [DOI: 10.1021/ie8012538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kin N. Chan
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Choi C. Lau
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - King L. Chow
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Kam M. Ko
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Karl W. K. Tsim
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ka M. Ng
- Departments of Chemical and Biomolecular Engineering, Biology, and Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
36
|
Maljaars J, Romeyn EA, Haddeman E, Peters HPF, Masclee AAM. Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr 2009; 89:1019-24. [PMID: 19225118 DOI: 10.3945/ajcn.2008.27335] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ileal delivery of fat reduces hunger and food intake through activation of the ileal brake. Physicochemical properties of fat have been shown to affect satiety and food intake. OBJECTIVE The objective of this study was to assess the effect of ileal fat emulsions with differing degrees of fatty acid saturation on satiety, food intake, and gut peptides (cholecystokinin and peptide YY). We hypothesized that long-chain triacylglycerols with diunsaturated fatty acids would increase satiety and reduce energy intake compared with long-chain triacylglycerols with monounsaturated or saturated fatty acids. DESIGN We performed a double-blind, randomized, crossover study in which 15 healthy subjects [mean age: 24 y; mean body mass index (in kg/m(2)): 22] were intubated with a naso-ileal catheter and participated in 4 experiments performed in random order on 4 consecutive days. After consumption of a liquid meal, subjects received a fat or control infusion in the ileum. Fat emulsions consisted of 6 g of 18:0 (shea oil; mainly 18:0), 18:1 (canola oil; mainly 18:1), or 18:2 (safflower oil; mainly 18:2) oils. Food intake was measured during an ad libitum lunch. Satiety questionnaires (visual analog scale) and blood samples were collected at regular intervals. RESULTS Compared with the control, only 18:2 and 18:1 significantly increased fullness and reduced hunger. No effect on food intake was observed. 18:1 and 18:2 increased cholecystokinin secretion significantly compared with the control. Fatty acid saturation did not affect peptide YY secretion. CONCLUSIONS When infused into the ileum, triacylglycerols with unsaturated fatty acids increase satiety, whereas triacylglycerols with saturated fatty acids does not. This trial was registered with the Dutch Trial Register as: ISRCTN51742545.
Collapse
Affiliation(s)
- Jeroen Maljaars
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, University Hospital Maastricht, Maastricht, Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Ghrelin and apolipoprotein AIV levels show opposite trends to leptin levels during weight loss in morbidly obese patients. Obes Surg 2009; 19:1414-23. [PMID: 19172368 DOI: 10.1007/s11695-008-9793-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/02/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although bariatric surgery is the most common procedure used to induce weight loss in morbidly obese patients, its effect on plasma satiety factors (leptin, ghrelin, and apolipoprotein (apo)-AIV) is controversial. The aim of this work was to analyze these parameters before and at different times after surgery. METHODS Plasma was obtained from 34 patients before undergoing Roux-en-Y gastric bypass and during weight loss in the 12 months following surgery. RESULTS Morbidly obese patients had significantly higher values (147%) of leptin than normal-weight (NW) persons, while their ghrelin levels were 46% less than NW. Apo-AIV levels had approximately the same value in both groups (obese and NW). During weight loss, leptin decreased by 75% and ghrelin increased by 78%. Both parameters reached values less than or near NW, respectively, at 1 year after surgery. During the first month after surgery, apo-AIV plasma levels decreased (47%) but later increased and finally returned to preoperative values. Apo-AIV levels were correlated negatively with leptin and positively with ghrelin. High-density lipoprotein (HDL) levels were positively correlated with those of ghrelin and apo-AIV. CONCLUSIONS During weight loss, plasma leptin and ghrelin could be good markers of total fat decrease. Ghrelin could also indicate gastric mucous improvement, whereas apo-AIV could indicate the recovery of intestinal function. Changes produced in the HDL levels of morbidly obese patients during weight loss suggest a decreased risk of coronary disease.
Collapse
|
38
|
Bertile F, Schaeffer C, Le Maho Y, Raclot T, Van Dorsselaer A. A proteomic approach to identify differentially expressed plasma proteins between the fed and prolonged fasted states. Proteomics 2009; 9:148-58. [DOI: 10.1002/pmic.200701001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Woods SC, D'Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008; 93:S37-50. [PMID: 18987269 PMCID: PMC2585760 DOI: 10.1210/jc.2008-1630] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/08/2008] [Indexed: 12/14/2022]
Abstract
CONTEXT Energy balance is critical for survival and health, and control of food intake is an integral part of this process. This report reviews hormonal signals that influence food intake and their clinical applications. EVIDENCE ACQUISITION A relatively novel insight is that satiation signals that control meal size and adiposity signals that signify the amount of body fat are distinct and interact in the hypothalamus and elsewhere to control energy homeostasis. This review focuses upon recent literature addressing the integration of satiation and adiposity signals and therapeutic implications for treatment of obesity. EVIDENCE SYNTHESIS During meals, signals such as cholecystokinin arise primarily from the GI tract to cause satiation and meal termination; signals secreted in proportion to body fat such as insulin and leptin interact with satiation signals and provide effective regulation by dictating meal size to amounts that are appropriate for body fatness, or stored energy. Although satiation and adiposity signals are myriad and redundant and reduce food intake, there are few known orexigenic signals; thus, initiation of meals is not subject to the degree of homeostatic regulation that cessation of eating is. There are now drugs available that act through receptors for satiation factors and which cause weight loss, demonstrating that this system is amenable to manipulation for therapeutic goals. CONCLUSIONS Although progress on effective medical therapies for obesity has been relatively slow in coming, advances in understanding the central regulation of food intake may ultimately be turned into useful treatment options.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
40
|
Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, Cuomo V, Piomelli D. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 2008; 8:281-288. [PMID: 18840358 PMCID: PMC2572640 DOI: 10.1016/j.cmet.2008.08.005] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/27/2008] [Accepted: 08/01/2008] [Indexed: 11/27/2022]
Abstract
The association between fat consumption and obesity underscores the need to identify physiological signals that control fat intake. Previous studies have shown that feeding stimulates small-intestinal mucosal cells to produce the lipid messenger oleoylethanolamide (OEA) which, when administered as a drug, decreases meal frequency by engaging peroxisome proliferator-activated receptors-alpha (PPAR-alpha). Here, we report that duodenal infusion of fat stimulates OEA mobilization in the proximal small intestine, whereas infusion of protein or carbohydrate does not. OEA production utilizes dietary oleic acid as a substrate and is disrupted in mutant mice lacking the membrane fatty-acid transporter CD36. Targeted disruption of CD36 or PPAR-alpha abrogates the satiety response induced by fat. The results suggest that activation of small-intestinal OEA mobilization, enabled by CD36-mediated uptake of dietary oleic acid, serves as a molecular sensor linking fat ingestion to satiety.
Collapse
Affiliation(s)
- Gary J Schwartz
- Diabetes Research Center, Departments of Medicine and Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Jin Fu
- Department of Pharmacology, University of California, Irvine, California
| | - Giuseppe Astarita
- Department of Pharmacology, University of California, Irvine, California
| | - Xiaosong Li
- Diabetes Research Center, Departments of Medicine and Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | - Silvana Gaetani
- Department of Human Physiology and Pharmacology, University of Rome 'La Sapienza', Rome, Italy
| | - Patrizia Campolongo
- Department of Human Physiology and Pharmacology, University of Rome 'La Sapienza', Rome, Italy
| | - Vincenzo Cuomo
- Department of Human Physiology and Pharmacology, University of Rome 'La Sapienza', Rome, Italy
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, California.,Unit of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
41
|
Abstract
OBJECTIVE The ileal brake is a feedback mechanism activated by nutrients, especially fat, with marked effects on satiety. The effects of low doses of ileal fat on satiety are largely unknown. We therefore studied the effect of ileal vs oral delivery of low doses of fat on satiety and gut peptide secretion. DESIGN Randomized, single-blind crossover design. SUBJECTS Sixteen healthy, normal-weight volunteers (6 male; mean age 26 years, mean body mass index 22.4). INTERVENTION Participants were intubated with a 290-cm-long nasoileal tube and consumed, on 3 consecutive days, either a liquid breakfast with 3 g fat followed by an ileal placebo infusion at t=105-150 min (treatment C) or a fat-free liquid breakfast followed by an ileal infusion of either an emulsion of 3 g (treatment 13 g) or 9 g (treatment 19 g) fat (safflower oil). MEASUREMENTS Satiety parameters by visual analog scales and plasma concentrations of CCK and PYY. RESULTS C significantly increased satiety and CCK secretion compared with the fat-free breakfast. Ileal fat perfusion of both 3 and 9 g 13 g and 19 g) significantly increased satiety during and after fat perfusion, without differences in satiety between 13 g and 19 g. During ileal fat infusion, CCK increased dose dependently, whereas PYY concentrations increased significantly only after 9 g of fat. Secretion of CCK but not of PYY correlated to satiety levels. CONCLUSION Postprandial satiety following a liquid breakfast can be effectively and significantly increased by small amounts (as little as 3 g) of fat perfused into the ileum. Ileal fat dose-dependently increased CCK but not PYY secretion. The satiating effect of ileal fat may be partly mediated by CCK.
Collapse
|
42
|
Seip RL, Volek JS, Windemuth A, Kocherla M, Fernandez ML, Kraemer WJ, Ruaño G. Physiogenomic comparison of human fat loss in response to diets restrictive of carbohydrate or fat. Nutr Metab (Lond) 2008; 5:4. [PMID: 18254975 PMCID: PMC2270845 DOI: 10.1186/1743-7075-5-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 02/06/2008] [Indexed: 01/26/2023] Open
Abstract
Background Genetic factors that predict responses to diet may ultimately be used to individualize dietary recommendations. We used physiogenomics to explore associations among polymorphisms in candidate genes and changes in relative body fat (Δ%BF) to low fat and low carbohydrate diets. Methods We assessed Δ%BF using dual energy X-ray absorptiometry (DXA) in 93 healthy adults who consumed a low carbohydrate diet (carbohydrate ~12% total energy) (LC diet) and in 70, a low fat diet (fat ~25% total energy) (LF diet). Fifty-three single nucleotide polymorphisms (SNPs) selected from 28 candidate genes involved in food intake, energy homeostasis, and adipocyte regulation were ranked according to probability of association with the change in %BF using multiple linear regression. Results Dieting reduced %BF by 3.0 ± 2.6% (absolute units) for LC and 1.9 ± 1.6% for LF (p < 0.01). SNPs in nine genes were significantly associated with Δ%BF, with four significant after correction for multiple statistical testing: rs322695 near the retinoic acid receptor beta (RARB) (p < 0.005), rs2838549 in the hepatic phosphofructokinase (PFKL), and rs3100722 in the histamine N-methyl transferase (HNMT) genes (both p < 0.041) due to LF; and the rs5950584 SNP in the angiotensin receptor Type II (AGTR2) gene due to LC (p < 0.021). Conclusion Fat loss under LC and LF diet regimes appears to have distinct mechanisms, with PFKL and HNMT and RARB involved in fat restriction; and AGTR2 involved in carbohydrate restriction. These discoveries could provide clues to important physiologic mechanisms underlying the Δ%BF to low carbohydrate and low fat diets.
Collapse
Affiliation(s)
- Richard L Seip
- Genomas, Inc,, 67 Jefferson St, Hartford, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Levy E, Trudel K, Bendayan M, Seidman E, Delvin E, Elchebly M, Lavoie JC, Precourt LP, Amre D, Sinnett D. Biological role, protein expression, subcellular localization, and oxidative stress response of paraoxonase 2 in the intestine of humans and rats. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1252-61. [PMID: 17916643 DOI: 10.1152/ajpgi.00369.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oxidative stress is a cardinal manifestation of various intestinal disorders. However, very little knowledge is available on the intestine's inherent defense mechanisms against free radicals. This study was designed to determine the protein expression, subcellular localization and oxidative stress response of paraoxonase 2 (PON2), a member of a powerful antioxidant family in human and rat intestine. Biochemical and ultrastructural experiments all showed a substantial expression of PON2 in human and rat intestine. Western blot analysis disclosed higher levels of PON2 in the jejunum than in the duodenum, ileum, and colon. Cell fractionation revealed a predominant PON2 association with microsomes and lysosomes in the human jejunum, which differed from that in rats. PON2 was detected in the intestine as early as week 15 of gestation and was significantly increased by week 20. Iron ascorbate-mediated lipid peroxidation induced a marked decrease in PON2 expression in intestinal specimens coincidental to an abundant rise in malondialdehyde (MDA). On the other hand, preincubation with potent antioxidants, such as butylated hydroxytoluene, Trolox, and N-acetylcysteine, prevented iron-ascorbate-generating PON2 reduction in parallel with MDA suppression. Finally, the preincubation of permeabilized Caco-2 cells with purified PON2 led to a protection against iron-ascorbate-induced lipid peroxidation. These observations demonstrate that the human intestine is preferentially endowed with a marked PON2 expression compared with the rat intestine and this expression shows a developmental and intracellular pattern of distribution. Furthermore, our observations suggest PON2 protective effects against prooxidant stimuli in the small intestine.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, Université de Montréal, Research Centre, CHU Sainte Justine, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol 2007; 293:G519-24. [PMID: 17495031 DOI: 10.1152/ajpgi.00189.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The newborn mammal must efficiently absorb dietary fat, predominantly as triacylglycerol, and produce chylomicrons to deliver this lipid to peripheral tissues. The cellular mechanisms involved in enterocyte chylomicron assembly have recently been elucidated, and data on their regulation in the immature gut are beginning to emerge. This review focuses on key proteins involved in chylomicron assembly: apolipoprotein B-48, microsomal triglyceride transfer protein, and apolipoprotein A-IV. Recent studies support a role for apolipoprotein A-IV in enhancing chylomicron secretion by promoting production of larger particles. These proteins are regulated in a manner to maximize the lipid absorptive capacity of the newborn intestine.
Collapse
Affiliation(s)
- Dennis D Black
- Children's Foundation Research Center of Memphis, Le Bonheur Children's Medical Center, 50 N. Dunlap Street, Memphis, TN 38103, USA.
| |
Collapse
|
45
|
Kossena GA, Charman WN, Wilson CG, O'Mahony B, Lindsay B, Hempenstall JM, Davison CL, Crowley PJ, Porter CJH. Low dose lipid formulations: effects on gastric emptying and biliary secretion. Pharm Res 2007; 24:2084-96. [PMID: 17657595 DOI: 10.1007/s11095-007-9363-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Food stimulates changes to gastrointestinal secretion and motility patterns, however, the effect of smaller quantities of lipid, such as that contained in a lipid-based drug formulation, has not been detailed. This study aimed to examine the effects of small quantities of lipid on gastric emptying and biliary secretion. METHODS The influence of oral administration of three lipid-based formulations and a negative control formulation on gastric emptying and biliary secretion was evaluated in 16 healthy male subjects using gamma scintigraphy, ultrasonography and duodenal aspiration. RESULTS Low quantities (2 g) of long chain lipid stimulated gall bladder contraction and elevated intestinal bile salt, phospholipid and cholesterol levels. Changes in gastric emptying were also evident, although these did not reach statistical significance. Administration of a similar quantity of medium chain lipid, however, had little effect on gastric emptying and gallbladder contraction and did not stimulate appreciable increases in intestinal concentrations of biliary-derived lipids. CONCLUSIONS The quantities of long chain lipid that might be administered in a pharmaceutical formulation stimulate gallbladder contraction and elevate intestinal levels of bile salt and phospholipid. This effect is a likely contributor to the ability of lipid based formulations to enhance the absorption of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Greg A Kossena
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Melbourne, Victoria, 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Corella D, Arnett DK, Tsai MY, Kabagambe EK, Peacock JM, Hixson JE, Straka RJ, Province M, Lai CQ, Parnell LD, Borecki I, Ordovas JM. The -256T>C polymorphism in the apolipoprotein A-II gene promoter is associated with body mass index and food intake in the genetics of lipid lowering drugs and diet network study. Clin Chem 2007; 53:1144-52. [PMID: 17446329 DOI: 10.1373/clinchem.2006.084863] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Apolipoprotein A-II (APOA2) plays an ambiguous role in lipid metabolism, obesity, and atherosclerosis. METHODS We studied the association between a functional APOA2 promoter polymorphism (-265T>C) and plasma lipids (fasting and postprandial), anthropometric variables, and food intake in 514 men and 564 women who participated in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. We obtained fasting and postprandial (after consuming a high-fat meal) measures. We measured lipoprotein particle concentrations by proton nuclear magnetic resonance spectroscopy and estimated dietary intake by use of a validated questionnaire. RESULTS We observed recessive effects for this polymorphism that were homogeneous by sex. Individuals homozygous for the -265C allele had statistically higher body mass index (BMI) than did carriers of the T allele. Consistently, after multivariate adjustment, the odds ratio for obesity in CC individuals compared with T allele carriers was 1.70 (95% CI 1.02-2.80, P = 0.039). Interestingly, total energy intake in CC individuals was statistically higher [mean (SE) 9371 (497) vs 8456 (413) kJ/d, P = 0.005] than in T allele carriers. Likewise, total fat and protein intakes (expressed in grams per day) were statistically higher in CC individuals (P = 0.002 and P = 0.005, respectively). After adjustment for energy, percentage of carbohydrate intake was statistically lower in CC individuals. These associations remained statistically significant even after adjustment for BMI. We found no associations with fasting lipids and only some associations with HDL subfraction distribution in the postprandial state. CONCLUSIONS The -265T>C polymorphism is consistently associated with food consumption and obesity, suggesting a new role for APOA2 in regulating dietary intake.
Collapse
Affiliation(s)
- Dolores Corella
- Nutrition and Genomics Laboratory, Jean Mayer-US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111-1524, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6:231-48. [PMID: 17330072 DOI: 10.1038/nrd2197] [Citation(s) in RCA: 1276] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly potent, but poorly water-soluble, drug candidates are common outcomes of contemporary drug discovery programmes and present a number of challenges to drug development - most notably, the issue of reduced systemic exposure after oral administration. However, it is increasingly apparent that formulations containing natural and/or synthetic lipids present a viable means for enhancing the oral bioavailability of some poorly water-soluble, highly lipophilic drugs. This Review details the mechanisms by which lipids and lipidic excipients affect the oral absorption of lipophilic drugs and provides a perspective on the possible future applications of lipid-based delivery systems. Particular emphasis has been placed on the capacity of lipids to enhance drug solubilization in the intestinal milieu, recruit intestinal lymphatic drug transport (and thereby reduce first-pass drug metabolism) and alter enterocyte-based drug transport and disposition.
Collapse
Affiliation(s)
- Christopher J H Porter
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville campus, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA.
| |
Collapse
|
49
|
Lingenhel A, Lhotta K, Neyer U, Heid IM, Rantner B, Kronenberg MF, König P, von Eckardstein A, Schober M, Dieplinger H, Kronenberg F. Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J Lipid Res 2006; 47:2071-9. [PMID: 16788210 DOI: 10.1194/jlr.m600178-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased plasma concentrations of apolipoprotein A-IV (apoA-IV) in chronic renal disease suggest a metabolic role of the kidney for this antiatherogenic protein. Therefore, we investigated patients with various forms of proteinuria and found increased serum concentrations of apoA-IV in 124 nephrotic patients compared with 274 controls (mean 21.9 +/- 9.6 vs. 14.4 +/- 4.0 mg/dl; P < 0.001). Decreasing creatinine clearance showed a strong association with increasing apoA-IV levels. However, serum albumin levels significantly modulated apoA-IV levels in patients with low creatinine clearance, resulting in lower levels of apoA-IV in patients with low compared with high albumin levels (21.4 +/- 8.6 vs. 29.2 +/- 8.4 mg/dl; P = 0.0007). Furthermore, we investigated urinary apoA-IV levels in an additional 66 patients with a wide variety of proteinuria and 30 controls. Especially patients with a tubular type of proteinuria had significantly higher amounts of apoA-IV in urine than those with a pure glomerular type of proteinuria and controls (median 45, 14, and 0.6 ng/mg creatinine, respectively). We confirmed these results in affected members of a family with Dent's disease, who are characterized by an inherited protein reabsorption defect of the proximal tubular system. In summary, our data demonstrate that the increase of apoA-IV caused by renal impairment is significantly modulated by low levels of serum albumin as a measure for the severity of the nephrotic syndrome. From this investigation of apoA-IV in urine as well as earlier immunohistochemical studies, we conclude that apoA-IV is filtered through the normal glomerulus and is subsequently reabsorbed mainly by proximal tubular cells.
Collapse
Affiliation(s)
- Arno Lingenhel
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gotoh K, Liu M, Benoit SC, Clegg DJ, Davidson WS, D'Alessio D, Seeley RJ, Tso P, Woods SC. Apolipoprotein A-IV interacts synergistically with melanocortins to reduce food intake. Am J Physiol Regul Integr Comp Physiol 2005; 290:R202-7. [PMID: 16166201 DOI: 10.1152/ajpregu.00502.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apolipoprotein (apo) A-IV is an anorexigenic gastrointestinal peptide that is also synthesized in the hypothalamus. The goal of these experiments was to determine whether apo A-IV interacts with the central melanocortin (MC) system in the control of feeding. The third ventricular (i3vt) administration of a subthreshold dose of apo A-IV (0.5 microg) potentiated i3vt MC-induced (metallothionein-II, 0.03 nmol) suppression of 30-min feeding in Long-Evans rats. A subthreshold dose of the MC antagonist (SHU9119, 0.1 nmol, i3vt) completely attenuated the anorectic effect of i3vt apo A-IV (1.5 microg). The i3vt apo A-IV significantly elevated the expression of c-Fos in neurons of the paraventricular nucleus of the hypothalamus, but not in the arcuate nucleus or median eminence. In addition, c-Fos expression was not colocalized with proopiomelanocortin-positive neurons. These data support a synergistic interaction between apo A-IV and melanocortins that reduces food intake by acting downstream of the arcuate.
Collapse
Affiliation(s)
- Koro Gotoh
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | |
Collapse
|