1
|
Bishnoi IR, Kavaliers M, Ossenkopp KP. Lipopolysaccharide (LPS) attenuates the primary conditioning of lithium chloride (LiCl)-induced context aversion but not the secondary conditioning of context aversion or taste avoidance. Behav Brain Res 2024; 459:114800. [PMID: 38061669 DOI: 10.1016/j.bbr.2023.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
A first-order association can be formed between toxin-induced nausea and a context, as well as nausea and a taste cue. However, comparatively little is understood about second-order associations. The present study examined if the bacterial endotoxin, LPS, could impair the first- and second-order conditioning of context aversion (anticipatory nausea paradigm) and subsequent conditioned taste avoidance (two-bottle task). Adult male Long Evans rats were treated with LiCl (127 mg/kg, intraperitoneal [i.p.]) or vehicle control (NaCl) and then exposed to a distinct context for 4 first-order conditioning trials. LPS (200 μg/kg, i.p.) or NaCl were administered 24 h after each trial. Seventy-two h after the final first-order conditioning trial, rats underwent 2 second-order conditioning trials where they were treated with 2% saccharin (i.p.) and then exposed to the same context. Twenty-four h after the final second-order conditioning trial, rats were tested in a two-bottle task (2 trials), where they were given a choice between water and a palatable 0.2% saccharin solution. LiCl-treated rats demonstrated a context aversion by the 3rd conditioning trial in the anticipatory nausea paradigm. Rats previously exposed to LiCl also displayed a conditioned taste avoidance of saccharin within the two-bottle task. LPS attenuated first-order context aversion but did not alter either second-order context aversion or conditioned taste avoidance in the two-bottle task. This study demonstrated that a secondary association formed within an aversive context could result in a conditioned taste avoidance. Further, LPS may be able to attenuate primary conditioning, but not secondary conditioning.
Collapse
Affiliation(s)
- Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada.
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
2
|
Bishnoi IR, Kavaliers M, Ossenkopp KP. Immune activation attenuates memory acquisition and consolidation of conditioned disgust (anticipatory nausea) in rats. Behav Brain Res 2023; 439:114250. [PMID: 36503043 DOI: 10.1016/j.bbr.2022.114250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Anticipatory nausea is a classically conditioned response to cues (e.g. contexts) that have been previously paired with a nauseating stimulus, such as chemotherapy in humans. In rodents, anticipatory nausea can be modeled by pairing a novel context with lithium chloride (LiCl), which leads to conditioned disgust behaviours (such as gaping) when exposed to the context alone. Growing evidence suggests that selective immune activation attenuates various forms of learning and memory. The present study investigated the effects of the endotoxin lipopolysaccharide (LPS) on LiCl-induced anticipatory nausea across critical stages of associative memory including acquisition, consolidation, and extinction. Adult male Long Evans rats were subject to intraperitoneal (i.p.) LiCl (127 mg/kg) or vehicle control (NaCl) paired with a 30 min conditioning trial in a distinct context for a total of 4 trials. To study acquisition, rats were administered either LPS or NaCl (200 μg/kg, i.p.) 90 mins before the conditioning trials. To study consolidation, different rats were administered either LPS or NaCl (200 μg/kg, i.p.) immediately after the conditioning trials. These trials were followed by 4 drug-free extinction trials within the same context. LPS significantly reduced conditioned gaping behaviours by the 4th conditioning trial and on the 1st drug-free extinction trial when administered 90 mins before or immediately after the conditioning trials. LPS had no significant effect on extinction. The present study provides strong evidence for the attenuating effects of LPS exposure on the acquisition and consolidation of LiCl-induced anticipatory nausea.
Collapse
Affiliation(s)
- Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada.
| | - Martin Kavaliers
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| | - Klaus-Peter Ossenkopp
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada; Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Infection, Learning, and Memory: Focus on Immune Activation and Aversive Conditioning. Neurosci Biobehav Rev 2022; 142:104898. [PMID: 36183862 DOI: 10.1016/j.neubiorev.2022.104898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Here we review the effects of immune activation primarily via lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, on hippocampal and non-hippocampal-dependent learning and memory. Rodent studies have found that LPS alters both the acquisition and consolidation of aversive learning and memory, such as those evoking evolutionarily adaptive responses like fear and disgust. The inhibitory effects of LPS on the acquisition and consolidation of contextual fear memory are discussed. LPS-induced alterations in the acquisition of taste and place-related conditioned disgust memory within bottle preference tasks and taste reactivity tests (taste-related), in addition to conditioned context avoidance tasks and the anticipatory nausea paradigm (place-related), are highlighted. Further, conditioned disgust memory consolidation may also be influenced by LPS-induced effects. Growing evidence suggests a central role of immune activation, especially pro-inflammatory cytokine activity, in eliciting the effects described here. Understanding how infection-induced immune activation alters learning and memory is increasingly important as bacterial and viral infections are found to present a risk of learning and memory impairment.
Collapse
|
4
|
Stone BT, Lin JY, Mahmood A, Sanford AJ, Katz DB. LiCl-induced sickness modulates rat gustatory cortical responses. PLoS Biol 2022; 20:e3001537. [PMID: 35877759 PMCID: PMC9352195 DOI: 10.1371/journal.pbio.3001537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gustatory cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal's health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFPs) from healthy rats and rats made ill (via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in 7 to 12 Hz LFP power at approximately 12 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness-a result reflecting the collapse of responses toward a simple "good-bad" code visible in the entire sample, but focused on a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness' impact on consumption.
Collapse
Affiliation(s)
- Bradly T. Stone
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jian-You Lin
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Abuzar Mahmood
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
| | - Alden J. Sanford
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Donald B. Katz
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Psychology, Neuroscience Program, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| |
Collapse
|
5
|
Galmiche M, Achamrah N, Déchelotte P, Ribet D, Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr Rev 2021; 80:381-391. [PMID: 34010427 DOI: 10.1093/nutrit/nuab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by low food intake, severe body weight loss, intense fear of gaining weight, and dysmorphophobia. This chronic disease is associated with both psychiatric and somatic comorbidities. Over the years, clinical studies have accumulated evidence that viral or bacterial infections may promote the onset of eating disorders such as AN. This review aims to describe how infections and the subsequent immune responses affect food intake regulation in the short term and also how these processes may lead to long-term intestinal disorders, including gut barrier disruption and gut microbiota dysbiosis, even after the clearance of the pathogens. We discuss in particular how infection-mediated intestinal dysbiosis may promote the onset of several AN symptoms and comorbidities, including appetite dysregulation, functional gastrointestinal disorders, and mood disorders.
Collapse
Affiliation(s)
- Marie Galmiche
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Najate Achamrah
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Pierre Déchelotte
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - David Ribet
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Jonathan Breton
- M. Galmiche, N. Achamrah, P. Déchelotte, and J. Breton are with Nutrition Department, CHU Rouen, F-76000 Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, INSERM UMR 1073, Nutrition, Gut and Brain Laboratory, Rouen, France. N. Achamrah, P. Déchelotte, D. Ribet, and J. Breton are with the UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| |
Collapse
|
6
|
Casaril AM, Vichaya EG, Rishi MR, Ford BG, Dantzer R. Lipopolysaccharide does not alter behavioral response to successive negative contrast in mice. Psychopharmacology (Berl) 2021; 238:691-697. [PMID: 33410982 PMCID: PMC8075575 DOI: 10.1007/s00213-020-05721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reduced motivation is one of the main symptomatic features of inflammation-induced depression. However, the exact nature of inflammation-induced alterations in motivation remains to be fully defined. As inflammation has been shown to increase sensitivity to negative stimuli, the present series of experiments was initiated to determine whether systemic inflammation induced by infra-septic doses of lipopolysaccharide (LPS) in mice influences consummatory and instrumental responding to successive negative contrast. METHODS Successive negative contrast was operationally defined by a shift to a lower value reward than the one mice were trained with. Mice were trained to drink a high sucrose concentration solution and exposed to an acute shift to a lower concentration of sucrose. In another series of experiments, mice were trained to nose poke for chocolate pellets according to a fixed reinforcement schedule 10 (10 nose pokes for the food reinforcement) and exposed to a shift to a lower reward value (decreased number of chocolate pellets or replacement of chocolate pellets by less preferred grain pellets). Lipopolysaccharide (LPS) was administered at the dose of 0.33 1 mg/kg 24 h before the shift. RESULTS Mice trained to drink a high sucrose concentration responded to the shift in reward value by a reduction in the volume of sucrose consumed and a decrease in lick numbers and bout durations. Mice trained to nose poke for chocolate pellets responded to the shift by alterations in their total number of nose pokes. In both conditions, LPS had no consistent effect on the response to the shift in reward value. CONCLUSIONS These findings indicate a high variability in the effects of LPS on successive negative contrast and fail to provide evidence in favor of the hypothesis that LPS increases sensitivity to decreases in expected rewards.
Collapse
Affiliation(s)
- Angela M Casaril
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, Rio Grande do Sul, 96160-000, Brazil
| | - Elisabeth G Vichaya
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Psychology & Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - M Raafay Rishi
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Bianca G Ford
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Lasselin J, Schedlowski M, Karshikoff B, Engler H, Lekander M, Konsman JP. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 2020; 115:15-24. [PMID: 32433924 DOI: 10.1016/j.neubiorev.2020.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Increasing evidence from animal and human studies suggests that inflammation may be involved in mood disorders. Sickness behavior and emotional changes induced by experimental inflammatory stimuli have been extensively studied in humans and rodents to better understand the mechanisms underlying inflammation-driven mood alterations. However, research in animals and humans have remained compartmentalized and a comprehensive comparison of inflammation-induced sickness and depressive-like behavior between rodents and humans is lacking. Thus, here, we highlight similarities and differences in the effects of bacterial lipopolysaccharide administration on the physiological (fever and cytokines), behavioral and emotional components of the sickness response in rodents and humans, and discuss the translational challenges involved. We also emphasize the differences between observable sickness behavior and subjective sickness reports, and advocate for the need to obtain both subjective reports and objective measurements of sickness behavior in humans. We aim to provide complementary insights for translational clinical and experimental research on inflammation-induced behavioral and emotional changes, and their relevance for mood disorders such as depression.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manfred Schedlowski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Pieter Konsman
- Institute for Cognitive and Integrative Neuroscience, CNRS UMR 5287, University of Bordeaux, France
| |
Collapse
|
8
|
László BR, Hormay E, Szabó I, Mintál K, Nagy B, László K, Péczely L, Ollmann T, Lénárd L, Karádi Z. Disturbance of taste reactivity and other behavioral alterations after bilateral interleukin-1β microinjection into the cingulate cortex of the rat. Behav Brain Res 2020; 383:112537. [PMID: 32032742 DOI: 10.1016/j.bbr.2020.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/26/2022]
Abstract
The anterior cingulate cortex (ACC), is known to be intimately involved in food-related motivational processes and their behavioral organization, primarily by evaluating hedonic properties of the relevant stimuli. In the present study, the involvement of cingulate cortical interleukin-1β (IL-1β) mediated mechanisms in a) gustation associated facial and somato-motor behavioral patterns of Wistar rats were examined in taste reactivity test (TR). In addition, b) conditioned taste aversion (CTA) paradigm was performed to investigate the role of these cytokine mechanisms in taste sensation associated learning processes, c) the general locomotor activity of the animals was observed in open field test (OPF), and d) the potentially negative reinforcing effect of IL-1β was examined in conditioned place preference test (CPP). During the TR test, species specific behavioral patterns in response to the five basic tastes were analyzed. Response rates of ingestive and aversive patterns of the cytokine treated and the control groups differed significantly in case of the weaker bitter (QHCl, 0.03 mM), and the stronger umami (MSG, 0.5 M) tastes. IL-1β itself did not elicit CTA, it did not interfere with the acquisition of LiCl induced CTA, and it also failed to cause place preference or aversion in the CPP test. In the OPF paradigm, however, significant differences were found between the cytokine treated and the control groups in the rearing and grooming, the number of crossings, and in the distance moved. Our results indicate the involvement of cingulate cortical IL-1β mechanisms in the control of taste perception and other relevant behavioral processes.
Collapse
Affiliation(s)
- Bettina Réka László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Edina Hormay
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - István Szabó
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kitti Mintál
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bernadett Nagy
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, University of Pécs, Medical School, Pécs, Hungary; Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
9
|
Pereira de Souza Goldim M, Della Giustina A, Mathias K, de Oliveira Junior A, Fileti ME, De Carli R, Zarbato G, Garbossa L, da Rosa N, Oliveira J, Vieira A, Generoso J, Oliveira BH, Ferreira N, Palandi J, Bobinski F, Martins DF, Fortunato J, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F. Sickness Behavior Score Is Associated with Neuroinflammation and Late Behavioral Changes in Polymicrobial Sepsis Animal Model. Inflammation 2020; 43:1019-1034. [PMID: 31981061 DOI: 10.1007/s10753-020-01187-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of reliable scores is a constant development in critical illness. According to Sepsis-3 consensus, the use of Sequential Organ Failure Assessment (SOFA) score of 2 or more is associated with a higher mortality of sepsis patients. In experimental research, due murine animal model limitations, the use of a score systems can be an alternative to assess sepsis severity. In this work, we suggest a sickness behavior score (SBS) that uses physiological variables to assess sepsis severity and mortality. Animals were evaluated daily by the presence of six indicators of sickness behavior: temperature alteration, preference of water/sucrose, liquid intake, food intake, body weight, and movimentation. Male adult Wistar rats were evaluated daily after sepsis induction by cecal ligation and puncture (CLP) or laparotomy only (sham) for determination of SBS. Oxidative stress, IL-6, and HPA axis markers (corticosterone and adrenal gland weight) were evaluated 24 h after CLP to determine the correlation with the acute SBS and neuroinflammation. Also, BDNF and four cognitive behavioral tests were correlated with the chronic SBS, i.e., sum of 8 days after surgery. In result, septic rats presented higher SBS than sham animals. Sepsis severity markers were associated with acute and chronic SBS. Also, SBS was negative correlated with the cognitive tests. In conclusion, SBS shows to be reliable score to predict sepsis severity and mortality. The use of score system provides the analysis of global sickness behavior, beyond evaluation of each parameter individually.
Collapse
Affiliation(s)
- Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Raquel De Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Graciela Zarbato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leandro Garbossa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Juliana Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Andriele Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Bruna Hoffmann Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nivaldo Ferreira
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Jucelia Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes (NEUROIMet), Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
10
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2667] [Impact Index Per Article: 444.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Dantzer R, Cohen S, Russo SJ, Dinan TG. Resilience and immunity. Brain Behav Immun 2018; 74:28-42. [PMID: 30102966 PMCID: PMC6545920 DOI: 10.1016/j.bbi.2018.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
Resilience is the process that allows individuals to adapt to adverse conditions and recover from them. This process is favored by individual qualities that have been amply studied in the field of stress such as personal control, positive affect, optimism, and social support. Biopsychosocial studies on the individual qualities that promote resilience show that these factors help protect against the deleterious influences of stressors on physiology in general and immunity in particular. The reverse is also true as there is evidence that immune processes influence resilience. Most of the data supporting this relationship comes from animal studies on individual differences in the ability to resist situations of chronic stress. These data build on the knowledge that has accumulated on the influence of immune factors on brain and behavior in both animal and human studies. In general, resilient individuals have a different immunophenotype from that of stress susceptible individuals. It is possible to render susceptible individuals resilient and vice versa by changing their inflammatory phenotype. The adaptive immune phenotype also influences the ability to recover from inflammation-induced symptoms. The modulation of these bidirectional relationships between resilience and immunity by the gut microbiota opens the possibility to influence them by probiotics and prebiotics. However, more focused studies on the reciprocal relationship between resilience and immunity will be necessary before this can be put into practice.
Collapse
Affiliation(s)
- Robert Dantzer
- The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA.
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Scott J Russo
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY 10029, USA
| | - Timothy G Dinan
- APC Microbiome Ireland and Dept. of Psychiatry, University College Cork, Ireland
| |
Collapse
|
12
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
13
|
Stevenson RJ, Case TI, Oaten MJ. Salt-Induced Thirst Results in Increased Finickiness in Humans. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Lasselin J, Treadway MT, Lacourt TE, Soop A, Olsson MJ, Karshikoff B, Paues-Göranson S, Axelsson J, Dantzer R, Lekander M. Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial. Neuropsychopharmacology 2017; 42:801-810. [PMID: 27620550 PMCID: PMC5312062 DOI: 10.1038/npp.2016.191] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile.
Collapse
Affiliation(s)
- Julie Lasselin
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden,Institute of Medical Psychology and Behavioral Immunobiology, Universitätsklinikum Essen, Essen, Germany,Institute of Medical Psychology and Behavioral Immunobiology, Universitätsklinikum Essen, Hufelandstrasse 55, Essen 45 122, Germany, Tel: +49 201 723 4761, Fax: +49 201 723 5948, E-mail:
| | | | - Tamara E Lacourt
- Division of Internal Medicine, Department of Symptom Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Soop
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mats J Olsson
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bianka Karshikoff
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Sofie Paues-Göranson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mats Lekander
- Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden,Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Klaus F, Paterna JC, Marzorati E, Sigrist H, Götze L, Schwendener S, Bergamini G, Jehli E, Azzinnari D, Fuertig R, Fontana A, Seifritz E, Pryce CR. Differential effects of peripheral and brain tumor necrosis factor on inflammation, sickness, emotional behavior and memory in mice. Brain Behav Immun 2016; 58:310-326. [PMID: 27515532 DOI: 10.1016/j.bbi.2016.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) is increased in depression and clinical-trial evidence indicates that blocking peripheral TNF has some antidepressant efficacy. In rodents, peripheral or intracerebroventricular TNF results in sickness e.g. reduced body weight, altered emotional behavior and impaired memory. However, the underlying pathways and responsible brain regions are poorly understood. The aim of this mouse study was to increase understanding by comparing the effects of sustained increases in TNF in the circulation, in brain regions impacted by increased circulating TNF, or specific brain regions. Increased peripheral TNF achieved by repeated daily injection (IP-TNF) or osmotic pump resulted in decreased body weight, decreased saccharin (reward) consumption, and increased memory of an aversive conditioned stimulus. These effects co-occurred with increased plasma interleukin-6 and increased IP-derived TNF in brain peri-ventricular regions. An adenovirus-associated viral TNF vector (AAV-TNF) was constructed, brain injection of which resulted in dose-dependent, sustained and region-specific TNF expression, and was without effect on blood cytokine levels. Lateral ventricle AAV-TNF yielded increased TNF in the same brain regions as IP-TNF. In contrast to IP-TNF it was without effect on body weight, saccharin consumption and fear memory, although it did increase anxiety. Hippocampal AAV-TNF led to decreased body weight. It increased conditioning to but not subsequent memory of an aversive context, suggesting impaired consolidation; it also increased anxiety. Amygdala AAV-TNF was without effect on body weight and aversive stimulus learning-memory, but reduced saccharin consumption and increased anxiety. This study adds significantly to the evidence that both peripheral and brain region-specific increases in TNF lead to both sickness and depression- and anxiety disorder-relevant behavior and do so via different pathways. It thereby highlights the complexity in terms of indirect and direct pathways via which increased TNF can act and which need to be taken into account when considering it as a therapeutic target.
Collapse
Affiliation(s)
- Federica Klaus
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Jean-Charles Paterna
- Viral Vector Facility, Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Elisa Marzorati
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Lea Götze
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | | | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Elisabeth Jehli
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Damiano Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - René Fuertig
- CNS Diseases Research Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Adriano Fontana
- Institute of Experimental Immunology, Inflammation and Sickness Behaviour, University of Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland.
| |
Collapse
|
16
|
Sullivan K, Fairn E, Adamo SA. Sickness behaviour in the cricket Gryllus texensis: Comparison with animals across phyla. Behav Processes 2016; 128:134-43. [PMID: 27189926 DOI: 10.1016/j.beproc.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/08/2016] [Accepted: 05/13/2016] [Indexed: 01/23/2023]
Abstract
Immune activation alters behaviour (i.e. sickness behaviour) in animals across phyla and is thought to aid recovery from infection. Hypotheses regarding the adaptive function of different sickness behaviours (e.g. decreased movement and appetite) include the energy conservation and predator avoidance hypotheses. These hypotheses were originally developed for mammals (e.g. Hart, 1988), however similar sickness behaviours are also observed in insects (e.g., crickets). We predicted that immune-challenged crickets (Gryllus texensis) would reduce feeding, grooming, and locomotion as well as increase shelter use, consistent with the energy conservation and predator avoidance hypotheses. We found evidence of illness-induced anorexia in adult and juvenile crickets, consistent with previous research (Adamo et al., 2010), but contrary to expectations, we found an increase in grooming, and no evidence that crickets decreased locomotion or increased shelter use in response to immune challenge. Therefore, our results do not support the energy conservation or predator avoidance hypotheses. The difference in sickness behaviour between insects and mammals is probably due, in part, to the lack of physiological fever in insects. We hypothesize that the lack of physiological fever reduces the need for energy conservation, decreasing the benefits of some sickness behaviours such as increased shelter use. These results, taken together with others in the literature, suggest that ectotherms and endotherms may differ significantly in the selective forces leading to the evolution of most sickness behaviours.
Collapse
Affiliation(s)
- Ken Sullivan
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Evan Fairn
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Shelley A Adamo
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
17
|
CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway. Brain Behav Immun 2015; 50:125-140. [PMID: 26173174 DOI: 10.1016/j.bbi.2015.06.184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.
Collapse
|
18
|
Grigoleit JS, Schedlowski M. The unusual suspects: cytokines in taste perception and beyond. Brain Behav Immun 2015; 49:30-1. [PMID: 26003277 DOI: 10.1016/j.bbi.2015.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jan-Sebastian Grigoleit
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45122 Essen, Germany; Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92014, United States
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
19
|
De Luca LA, Almeida RL, David RB, de Paula PM, Andrade CAF, Menani JV. Participation of α2 -adrenoceptors in sodium appetite inhibition during sickness behaviour following administration of lipopolysaccharide. J Physiol 2015; 594:1607-16. [PMID: 26036817 DOI: 10.1113/jp270377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022] Open
Abstract
Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour.
Collapse
Affiliation(s)
- Laurival A De Luca
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Roberto L Almeida
- Department of Physiology, ABC Medical School, Santo André, São Paulo, Brazil
| | - Richard B David
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Patricia M de Paula
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Carina A F Andrade
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
20
|
Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission. J Neurosci 2015; 35:3022-33. [PMID: 25698740 DOI: 10.1523/jneurosci.3028-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebral innate immune system is able to modulate brain functioning and cognitive processes. During activation of the cerebral innate immune system, inflammatory factors produced by microglia, such as cytokines and adenosine triphosphate (ATP), have been directly linked to modulation of glutamatergic system on one hand and learning and memory functions on the other hand. However, the cellular mechanisms by which microglial activation modulates cognitive processes are still unclear. Here, we used taste memory tasks, highly dependent on glutamatergic transmission in the insular cortex, to investigate the behavioral and cellular impacts of an inflammation restricted to this cortical area in rats. We first show that intrainsular infusion of the endotoxin lipopolysaccharide induces a local inflammation and increases glutamatergic AMPA, but not NMDA, receptor expression at the synaptic level. This cortical inflammation also enhances associative, but not incidental, taste memory through increase of glutamatergic AMPA receptor trafficking. Moreover, we demonstrate that ATP, but not proinflammatory cytokines, is responsible for inflammation-induced enhancement of both associative taste memory and AMPA receptor expression in insular cortex. In conclusion, we propose that inflammation restricted to the insular cortex enhances associative taste memory through a purinergic-dependent increase of glutamatergic AMPA receptor expression at the synapse.
Collapse
|
21
|
Vichaya EG, Hunt SC, Dantzer R. Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice. Neuropsychopharmacology 2014; 39:2884-90. [PMID: 24917202 PMCID: PMC4200499 DOI: 10.1038/npp.2014.141] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/14/2013] [Accepted: 06/05/2014] [Indexed: 12/20/2022]
Abstract
Inflammation has been implicated in the development of various psychiatric disorders, including depression. However, the neurobehavioral mechanism involved in this relationship remains elusive. This gap in knowledge may best be filled by evaluating elementary neurobehavioral units affected by inflammation rather than behavioral changes in conventional animal tests of depression. To this end, the current study used a concurrent choice paradigm to evaluate inflammation-induced motivational changes. Male C57BL/6J mice (n=27) were food restricted to between 85 and 90% of their free-feeding weight and were trained to perform a concurrent choice task where they nose-poked for grain rewards on a fixed ratio (FR) 1 schedule (low effort/low reward) and chocolate-flavored rewards on a FR-10 schedule (high effort/high reward). A counterbalanced-within subjects design was used. A single intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) was used to induce peripheral inflammation. Twenty-four hours after LPS administration, mice showed a reduction in the total number of nose pokes. A proportionally greater reduction in nose pokes was observed for grain, resulting in an increase in percent chocolate pellets earned. These behavioral changes cannot be explained by reduced appetite as feeding before the test led to a similar increase in percent chocolate pellets earned but without any decrease in responding. These results indicate that inflammation modulates incentive motivation by affecting willingness to exert effort for reward and not by reducing sensitivity to reward.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah C Hunt
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 1400 Pressler Road Unit 1450, Houston, TX 77030, USA, Tel: +1 713 563 4793, Fax: +1 713 745 3475, E-mail:
| |
Collapse
|
22
|
Veissier I, Aubert A, Boissy A. Animal welfare: A result of animal background and perception of its environment. Anim Front 2012. [DOI: 10.2527/af.2012-0043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Isabelle Veissier
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| | - Arnaud Aubert
- Université de Tours, Laboratoire de Psychologie des Ages de la Vie, EA2114, 3 rue des Tanneurs, BP 4103, F-37041 Tours cedex 01, France
| | - Alain Boissy
- INRA, UMR1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
- Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France
| |
Collapse
|
23
|
Abstract
Cancer therapy makes patients sick. The therapies that are available to clinicians allow them to successfully control nausea, emesis and pain. However, this is not the case for a number of other symptoms that include fatigue, distractibility, poor memory, and diminished interest in previously pleasurable activities. These symptoms cluster during the course of cancer therapy and impair patient quality of life, limit therapy options and do not always resolve at the cessation of treatment. It is possible to describe the intensity and temporal features of symptoms and assess their relationship with the inflammatory response that is associated with cancer and cancer therapy. At the preclinical level, sophisticated animal models still need to be deployed to study the causal role of inflammation in specific components of cancer-related symptoms. Various approaches can be optimally combined in a translational symptom research pathway to provide a framework for assessing in a systematic manner the neurobehavioral toxicity of existing and newly developed cancer therapies. Ultimately, this knowledge will allow derivation of mechanism-based interventions to prevent or alleviate cancer-related symptoms.
Collapse
|
24
|
Symptom cluster analyses based on symptom occurrence and severity ratings among pediatric oncology patients during myelosuppressive chemotherapy. Cancer Nurs 2012; 35:19-28. [PMID: 21921793 DOI: 10.1097/ncc.0b013e31822909fd] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Symptom cluster research is an emerging field in symptom management. The ability to identify symptom clusters that are specific to pediatric oncology patients may lead to improved understanding of symptoms' underlying mechanisms among patients of all ages. OBJECTIVE The purpose of this study, in a sample of children and adolescents with cancer who underwent a cycle of myelosuppressive chemotherapy, was to compare the number and types of symptom clusters identified using patients' ratings of symptom occurrence and symptom severity. METHODS Children and adolescents with cancer (10-18 years of age; N = 131) completed the Memorial Symptom Assessment Scale 10-18 on the day they started a cycle of myelosuppressive chemotherapy, using a 1-week recall of experiences. Symptom data based on occurrence and severity ratings were examined using exploratory factor analysis. The defined measurement model suggested by the best exploratory factor analysis model was then examined with a latent variable analysis. RESULTS Three clusters were identified when symptom occurrence ratings were evaluated, which were classified as a chemotherapy sequela cluster, mood disturbance cluster, and a neuropsychological discomfort cluster. Analysis of symptom severity ratings yielded similar cluster configurations. CONCLUSIONS Cluster configurations remained relatively stable between symptom occurrence and severity ratings. The evaluation of patients at a common point in the chemotherapy cycle may have contributed to these findings. IMPLICATIONS FOR PRACTICE Additional uniformity in symptom clusters investigations is needed to allow appropriate comparisons among studies. The dissemination of symptom cluster research methodology through publication and presentation may promote uniformity in this field.
Collapse
|
25
|
Blednov Y, Benavidez J, Geil C, Perra S, Morikawa H, Harris R. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 2011; 25 Suppl 1:S92-S105. [PMID: 21266194 PMCID: PMC3098320 DOI: 10.1016/j.bbi.2011.01.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 02/03/2023] Open
Abstract
Previous studies showed that mice with genetic predisposition for high alcohol consumption as well as human alcoholics show changes in brain expression of genes related to immune signaling. In addition, mutant mice lacking genes related to immune function show decreased alcohol consumption (Blednov et al., 2011), suggesting that immune signaling promotes alcohol consumption. To test the possibility that activation of immune signaling will increase alcohol consumption, we treated mice with lipopolysaccaride (LPS; 1mg/kg, i.p.) and tested alcohol consumption in the continuous two-bottle choice test. To take advantage of the long-lasting activation of brain immune signaling by LPS, we measured drinking beginning one week or one month after LPS treatment and continued the studies for several months. LPS produced persistent increases in alcohol consumption in C57BL/6J (B6) inbred mice, FVBxB6F1 and B6xNZBF1 hybrid mice, but not in FVB inbred mice. To determine if this effect of LPS is mediated through binding to TLR4, we tested mice lacking CD14, a key component of TLR4 signaling. These null mutants showed no increase of alcohol intake after treatment with LPS. LPS treatment decreased ethanol-conditioned taste aversion but did not alter ethanol-conditioned place preference (B6xNZBF1 mice). Electrophysiological studies of dopamine neurons in the ventral tegmental area showed that pretreatment of mice with LPS decreased the neuronal firing rate. These results suggest that activation of immune signaling promotes alcohol consumption and alters certain aspects of alcohol reward/aversion.
Collapse
Affiliation(s)
- Y.A. Blednov
- Corresponding author. Address: Waggoner Center for Alcohol and Addiction Research, 1 University Station A4800, Austin, TX 78712-0159, USA. Fax: +1 512 232 2525., (Y.A. Blednov)
| | | | | | | | | | | |
Collapse
|
26
|
Cohn ZJ, Kim A, Huang L, Brand J, Wang H. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci 2010; 11:72. [PMID: 20537148 PMCID: PMC2898829 DOI: 10.1186/1471-2202-11-72] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 06/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Results Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor cells. PCR array experiments showed that the expression of cyclin B2 and E2F1, two key cell cycle regulators, was markedly downregulated by LPS in the circumvallate and foliate epithelia. Conclusions Our results show that LPS-induced inflammation inhibits taste progenitor cell proliferation and interferes with taste cell renewal. LPS accelerates cell turnover and modestly shortens the average life span of taste cells. These effects of inflammation may contribute to the development of taste disorders associated with infections.
Collapse
Affiliation(s)
- Zachary J Cohn
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA
| | | | | | | | | |
Collapse
|
27
|
Gautron L, Layé S. Neurobiology of inflammation-associated anorexia. Front Neurosci 2010; 3:59. [PMID: 20582290 PMCID: PMC2858622 DOI: 10.3389/neuro.23.003.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/16/2009] [Indexed: 12/23/2022] Open
Abstract
Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients.
Collapse
Affiliation(s)
- Laurent Gautron
- The University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
28
|
Lipopolysaccharide (LPS) blocks the acquisition of LiCl-induced gaping in a rodent model of anticipatory nausea. Neurosci Lett 2009; 450:301-5. [DOI: 10.1016/j.neulet.2008.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/13/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022]
|
29
|
Cross-Mellor SK, Foley KA, Parker LA, Ossenkopp KP. Lipopolysaccharide dose dependently impairs rapid toxin (LiCl)-induced gustatory conditioning: a taste reactivity examination of the conditioned taste aversion. Brain Behav Immun 2009; 23:204-16. [PMID: 18835436 DOI: 10.1016/j.bbi.2008.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 12/01/2022] Open
Abstract
There is much debate on how immune activation affects cognitive processing. Research has shown that stimulation of the immune system can significantly impair, have no adverse effects, or enhance learning and memory processes in animals. The present experiment evaluated the effects of the bacterial endotoxin, lipopolysaccharide (LPS) on the acquisition of a rapidly acquired conditioned taste aversion using a toxin-containing food. Male Long Evans rats were fitted with intraoral cannulae and habituated to the taste reactivity procedure. Rats received two conditioning days, 72 h apart, in which they were injected systemically with LPS (200, 100, or 50 microg/kg) or NaCl (0.9% vehicle) and 90 min later placed in the taste reactivity test chamber. Rats were given 5 brief (1 min) intraoral infusions of either a LiCl-adulterated sucrose solution (0.15M LiCl+0.3M sucrose) or NaCl-sucrose solution (0.15M NaCl+0.3M sucrose) across a 1h period. On the test day (72 h after the last conditioning trial), rats were given a 2 min intraoral infusion of the respective taste in a drug-free state. Individual taste reactivity responses were recorded and analyzed. Results demonstrate that rats treated with LPS dose-dependently increased ingestive responding to the LiCl-sucrose flavor while at the same time showing reduced rejection response frequency on the two conditioning days. LPS treatment did not alter taste reactivity responding to the NaCl-sucrose solution. On the test day, the LPS groups again displayed a dose dependent increase in ingestive responses and a decrease in rejection responses to the LiCl-sucrose taste. The present results suggest that LPS-induced immune system activation, significantly impairs the rapid acquisition of a conditioned taste aversion.
Collapse
Affiliation(s)
- Shelley K Cross-Mellor
- Department of Psychology and Graduate Neuroscience Program, Social Science Centre, University of Western Ontario, London, Ont., Canada N6A 5C2.
| | | | | | | |
Collapse
|
30
|
Park SM, Gaykema RPA, Goehler LE. How does immune challenge inhibit ingestion of palatable food? Evidence that systemic lipopolysaccharide treatment modulates key nodal points of feeding neurocircuitry. Brain Behav Immun 2008; 22:1160-72. [PMID: 18562160 PMCID: PMC2784149 DOI: 10.1016/j.bbi.2008.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 12/27/2022] Open
Abstract
Immune challenge induces behavioral changes including reduced ingestion of palatable food. Multiple pathways likely contribute to this effect, including viscerosensory pathways controlling hypothalamic feeding circuits or by influence on "reward" circuitry previously established to control ingestive behavior. To investigate whether the effects of immune challenge may influence this network, we compared brain activation patterns in animals trained to drink a palatable sweetened milk solution and treated systemically with either the immune stimulant lipopolysaccharide (LPS) or saline. Brain sections were processed for localization of the activation marker c-Fos in neurons of regions implicated in regulation of feeding behavior. Sweetened milk ingestion was associated with increased numbers of c-Fos positive neurons in the caudal core and shell of the nucleus accumbens (NAc), the paraventricular thalamus (PVT), central nucleus of the amygdala (CEA), the basal lateral amygdala (BLA), in orexin-A containing neurons of the lateral hypothalamus (LH), and in cocaine and amphetamine regulated transcript (CART) neurons of the arcuate hypothalamus. In LPS-treated animals sweetened milk consumption was significantly reduced, as was c-Fos induction in the hypothalamic orexin-A and CART neurons, and in the BLA. In addition, induction of c-Fos in the rostral regions of the NAc, the PVT, and CEA was increased following LPS treatment, compared to controls. The findings from this study point to a network of brain regions (LH, PVT, NAc, and BLA) previously implicated in the modulation of feeding behavior, reward, and arousal that may also contribute to neural substrates involved in the reorganization of behavioral priorities that occurs during sickness.
Collapse
|
31
|
Borderas TF, de Passillé AM, Rushen J. Behavior of dairy calves after a low dose of bacterial endotoxin1. J Anim Sci 2008; 86:2920-7. [DOI: 10.2527/jas.2008-0926] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Takács G, Lukáts B, Papp S, Szalay C, Karádi Z. Taste reactivity alterations after IL-1β microinjection into the ventromedial hypothalamic nucleus of the rat. Neurosci Res 2008; 62:118-22. [DOI: 10.1016/j.neures.2008.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
33
|
Durazzo A, Proud K, Demas GE. Experimentally induced sickness decreases food intake, but not hoarding, in Siberian hamsters (Phodopus sungorus). Behav Processes 2008; 79:195-8. [PMID: 18760337 DOI: 10.1016/j.beproc.2008.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/11/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
A wide range of physiological and behavioral alterations occur in response to sickness. Sickness behaviors, rather than incidental by-products or side-effects of acute illness, serve as adaptive functional responses that allow animals to cope with a pathogenic challenge. Among the more salient sickness behaviors is a reduction in food intake; virtually all sick animals display marked decreases in this behavior. Food intake, however, is only one component of the food-related behavioral repertoire. For many mammalian species, food hoarding represents a substantial portion of the total energetic budget. Here we tested the effects of experimental sickness on food hoarding and food intake in a naturally food hoarding species, Siberian hamsters (Phodopus sungorus). Adult male and female hamsters received injections of lipopolysaccharide (LPS) to induce sickness or control injections. LPS-induced sickness resulted in a marked decrease in food intake in both males and females, but did not decrease hoarding in either sex. These results support previous findings suggesting that food hoarding and food intake appear to be differentially regulated at the physiological level.
Collapse
Affiliation(s)
- Alfredo Durazzo
- Department of Biology, Center for the Integrative Study of Animal Behavior and Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
34
|
Cytokines and Immune-Related Behaviors. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1567-7443(07)10025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
35
|
Wang H, Zhou M, Brand J, Huang L. Inflammation activates the interferon signaling pathways in taste bud cells. J Neurosci 2007; 27:10703-13. [PMID: 17913904 PMCID: PMC2096741 DOI: 10.1523/jneurosci.3102-07.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022] Open
Abstract
Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.
Collapse
Affiliation(s)
- Hong Wang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, and
| | - Minliang Zhou
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, and
| | - Joseph Brand
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, and
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, and
| |
Collapse
|
36
|
Pacheco-Lopez G, Niemi MB, Engler H, Engler A, Riether C, Doenlen R, Espinosa E, Oberbeck R, Schedlowski M. Weakened [corrected] taste-LPS association during endotoxin tolerance. Physiol Behav 2007; 93:261-6. [PMID: 17920645 DOI: 10.1016/j.physbeh.2007.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/25/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
In naive individuals, the administration of bacterial lipopolysaccharide (LPS) provokes a rapid systemic increase in pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, inducing an acute phase response including sickness behavior. Strong associative learning occurs when relevant gustatory/olfactory stimuli precede the activation of the immune system, affecting long-term individual food selection and nutritional strategies. Repeated LPS administration results in the development of an endotoxin tolerance status, characterized by a drastic reduction in the LPS-induced cytokine response. Here we investigated how the postprandial categorization of a relevant taste (0.2% saccharin) changed after administration of a high dose of LPS (0.5 mg/kg i.p.) in LPS-tolerant animals. Determination of the consummatory fluid intake revealed that, in contrast to LPS-naive rats, taste-LPS association did not occur during endotoxin tolerance. Ninety minutes after the single association trial, the plasma responses of TNF-alpha, IL-1beta and IL-6 were completely blunted in LPS-tolerant animals, which also resulted in low LPS-adipsogenic and LPS-anorexic effects. These findings indicate that an identical immune challenge can result in completely different neuro-behavioral consequences depending on the immune history of the individual, thus revealing part of the complex interconnection between the immune and neuro-endocrine systems in regulating food selection and consumption during the infectious process.
Collapse
Affiliation(s)
- G Pacheco-Lopez
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Boissy A, Manteuffel G, Jensen MB, Moe RO, Spruijt B, Keeling LJ, Winckler C, Forkman B, Dimitrov I, Langbein J, Bakken M, Veissier I, Aubert A. Assessment of positive emotions in animals to improve their welfare. Physiol Behav 2007; 92:375-97. [PMID: 17428510 DOI: 10.1016/j.physbeh.2007.02.003] [Citation(s) in RCA: 833] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 02/05/2007] [Indexed: 01/22/2023]
Abstract
It is now widely accepted that good welfare is not simply the absence of negative experiences, but rather is primarily the presence of positive experiences such as pleasure. However scientific investigation of positive emotions has long been neglected. This paper addresses two main issues: first, it reviews the current state of scientific knowledge that supports the existence of positive affective states in animals and, second, it suggests possible applications of this knowledge that may enhance quality of life under animal management conditions. In the first part of the paper, recent advances in psychology and neuroscience are reviewed to provide pragmatic frameworks based on cognitive processes (such as positive anticipation, contrast and controllability) for further investigations of positive emotions in animals. Thereafter, the neurobiological bases of positive emotions are highlighted in order to identify behavioral and physiological expressions of positive experiences in animals. Monitoring both the autonomic nervous system (via heart rate and its variability) and the immune system could offer relevant tools to better assess emotional states in animals, complementary to classical adrenocortical measures. In the second part of the paper, useful strategies for enhancing positive experiences (such as physical, social and cognitive enrichment or putative genetic selection) are outlined. Then this paper emphasizes practical applications for assessing and promoting positive emotions that may help in providing animals with a better quality of life. Play, affiliative behaviors and some vocalizations appear to be the most promising convenient indicators for assessing positive experiences in laboratory and farm animals under commercial conditions.
Collapse
Affiliation(s)
- Alain Boissy
- INRA, UR1213 Herbivores, Site de Theix, F-63122 Saint-Genès-Champanelle, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Renault J, Aubert A. Immunity and emotions: lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 2006; 20:517-26. [PMID: 16647244 DOI: 10.1016/j.bbi.2006.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/24/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022] Open
Abstract
Many studies have pointed out the relationships between immunity and depression, supporting a neuroimmune hypothesis of depressive disorders. However, despite the growing interest for such a hypothesis and the amount of clinical and experimental data available, the precise nature of this relationship between immunity and depression remains unclear. The present study aimed to investigate further the link between depression and immunity in mice using the modified version of the forced-swimming test. Based on a two-session test, results from our first experiment showed that endotoxin enhanced active defensive behaviours in mice during the first exposure to water, but was associated with increased immobility (i.e., 'behavioural despair') in the subsequent session. In our second experiment, we showed that these effects were blocked by a chronic antidepressant treatment with imipramine. Finally, we suggest a link between immunity and depression, based on the behavioural context in which immune activation takes place. We hypothesize that immune activation, by enhancing reactivity to the negative features of a given situation, increases defensive motivation of subjects, but therefore makes them more vulnerable to the deleterious emotional consequences of failure in defensive strategies.
Collapse
Affiliation(s)
- Julien Renault
- EA3248, Psychobiologie des Emotions, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
| | | |
Collapse
|
39
|
Larson SJ. Lipopolysaccharide and interleukin-1beta decrease sucrose intake but do not affect expression of place preference in rats. Pharmacol Biochem Behav 2006; 84:429-35. [PMID: 16844207 DOI: 10.1016/j.pbb.2006.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 06/04/2006] [Accepted: 06/06/2006] [Indexed: 11/29/2022]
Abstract
Immune system activation has been shown to induce decreased interest in pleasurable stimuli. Studies of this phenomenon have assessed the effect of cytokines or lipopolysaccharide (LPS) on behavior maintained by primary reinforcers, stimuli, such as palatable solutions, that effectively reinforce behavior without prior training. The studies reported in this paper replicated findings of immune system activation decreasing intake of a palatable solution and assessed the effects of immune activation on behavior maintained by a conditioned reinforcer, a stimulus paired with a the palatable solution. Using a conditioned place preference procedure, the effects of LPS and interleukin-1beta (IL-1beta) on sucrose intake (primary reinforcer) and preference for a sucrose-paired environment (conditioned reinforcer) were tested. LPS and IL-1beta decreased sucrose intake but had no effect on the expression of a sucrose-induced place preference, indicating a differential effect of immune system activation on appetitive behaviors maintained by primary and conditioned reinforcers. Finally, it was shown that a sucrose-induced place preference is sensitive to the motivational state of the subjects at the time of testing; a sucrose-induced place preference was demonstrated if rats were tested when water deprived but not if tested after free access to water.
Collapse
Affiliation(s)
- Susan J Larson
- Department of Psychology, Concordia College, 56562, Moorhead, MN 56562, USA.
| |
Collapse
|