1
|
Singhal G, Baune BT. A bibliometric analysis of studies on environmental enrichment spanning 1967-2024: patterns and trends over the years. Front Behav Neurosci 2024; 18:1501377. [PMID: 39697184 PMCID: PMC11652173 DOI: 10.3389/fnbeh.2024.1501377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Environmental Enrichment (EE) has received considerable attention for its potential to enhance cognitive and neurobiological outcomes in animal models. This bibliometric analysis offers a comprehensive evaluation of the EE research spanning from 1967 to 2024, utilizing data extracted from Scopus and analyzed through R and VOSviewer. The volume of publications, citation patterns, and collaborations were systematically reviewed, highlighting important contributions and emerging trends within the field of animal research. Core concepts of EE research are mapped, revealing key themes such as neuroplasticity, cognitive function, and behavioral outcomes. A significant increase in EE research is demonstrated, particularly after the year 2000, reflecting growing scientific and public interest in EE paradigms. This analysis provides insights into the global contributions and collaborative networks that have shaped EE studies over time. The role of EE in advancing the understanding of neurobiological, neurodevelopmental, and neurodegenerative processes is underscored. Influential contributors, leading countries, and high-impact journals in the field of EE are identified, offering a valuable resource for researchers seeking to understand or extend the current knowledge base. The strategic selection of keywords and rigorous data curation methods ensure that the findings accurately reflect the most impactful aspects of EE research in animals. This study serves as an essential reference for future explorations and applications of EE across disciplines. By providing a clear and structured overview of the field, this paper aims to serve as a foundation for ongoing and future research initiatives, encouraging more robust investigations and applications of EE to enhance cognitive and neurological health globally.
Collapse
Affiliation(s)
- Gaurav Singhal
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Bernhard T. Baune
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Demaestri C, Pan T, Critz M, Ofray D, Gallo M, Bath KG. Type of early life adversity confers differential, sex-dependent effects on early maturational milestones in mice. Horm Behav 2020; 124:104763. [PMID: 32407728 PMCID: PMC7487052 DOI: 10.1016/j.yhbeh.2020.104763] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Early life adversity (ELA) increases risk for negative health outcomes, with sex disparities in prevalence and form of ELA experienced and risk for neuropsychiatric pathology. ELA comes in many forms (e.g. parental neglect/loss, limited access to resources) but whether disparate forms of ELA have common effects on outcomes, and if males and females are equally affected, remains unknown. Epidemiological studies often fail to accurately account for differences in type, timing, and duration of adversity experienced. Rodent models allow precise control of many of these variables. However, differences in the form of ELA, species, strain, housing, and testing paradigms used may contribute to differences in outcomes leading to questions of whether differences are the result of the form of ELA or these other variables. Here, we directly compared two mouse models of ELA, maternal separation (MS) and limited bedding (LB) in males and females on development of the body, motor and visual milestones, stress physiology, and anxiety-like behavior. LB affected timing of early milestones, somatic growth, and stress physiology in both sexes, yet only females showed later anxiety-like behaviors. MS rearing affected males and females similarly in early milestone development, yet only males showed changes in stress physiology and anxiety-like outcomes. These studies provide a platform to directly compare MS and LB models within one lab. The current work advances our understanding of the unique features of ELA that shape early neurodevelopmental events and risk for later pathology, increasing the translational relevance of these ELA models.
Collapse
Affiliation(s)
- Camila Demaestri
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Tracy Pan
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Madalyn Critz
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Dayshalis Ofray
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
3
|
Effects of weaning age and housing conditions on phenotypic differences in mice. Sci Rep 2020; 10:11684. [PMID: 32669633 PMCID: PMC7363894 DOI: 10.1038/s41598-020-68549-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023] Open
Abstract
Poor reproducibility is considered a serious problem in laboratory animal research, with important scientific, economic, and ethical implications. One possible source of conflicting findings in laboratory animal research are environmental differences between animal facilities combined with rigorous environmental standardization within studies. Due to phenotypic plasticity, study-specific differences in environmental conditions during development can induce differences in the animals’ responsiveness to experimental treatments, thereby contributing to poor reproducibility of experimental results. Here, we studied how variation in weaning age (14–30 days) and housing conditions (single versus group housing) affects the phenotype of SWISS mice as measured by a range of behavioral and physiological outcome variables. Weaning age, housing conditions, and their interaction had little effect on the development of stereotypies, as well as on body weight, glucocorticoid metabolite concentrations, and behavior in the elevated plus-maze and open field test. These results are surprising and partly in conflict with previously published findings, especially with respect to the effects of early weaning. Our results thus question the external validity of previous findings and call for further research to identify the sources of variation between replicate studies and study designs that produce robust and reproducible experimental results.
Collapse
|
4
|
Rodrigues KDS, Klein CP, August PM, Dos Santos BG, Hözer RM, Maurmann RM, Scortegagna MC, Hoppe JB, Matté C. Early weaning alters redox status in the hippocampus and hypothalamus of rat pups. Int J Dev Neurosci 2020; 80:512-527. [PMID: 32619317 DOI: 10.1002/jdn.10047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Exposure to environmental factors can program the metabolism, conferring resistance or increasing the risk to chronic disease development in childhood and adulthood. In this sense, lactation is an important period in this window of development. Herein, we investigated the effect of early weaning on neurochemical and behavioral changes in offspring at weaning and adulthood. Female and male pups were divided into four groups: (1) Control weaning (weaning on the PND21, pups were kept with the biological mother); (2) Early Weaning Bromocriptine group (EWB) (pharmacological weaning on PND16); (3) Early Weaning Cross-Fostering group (EWCF) (pups housed with a foster mother on PND16 up to PND21); (4) Early Weaning Without Care group (EWWC) (weaning on PND16, maternal separation). Weight control of pups was recorded from postnatal Day 16 to 59. On the 21st day, part of the pups was euthanized and the hippocampus and hypothalamus were removed for biochemical evaluation. The remaining pups were submitted to behavioral tests on the 60th postnatal day. Early weaning reduced the pups' body weight, in a sex-dependent way. At 60 days of age, male pups of EWCF and EWWC groups have lower body weight compared to control male, and female body weight was lower than male pups. In relation to biochemical changes in the brain, weaning altered the levels of oxidants, increased the enzymatic activity of superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as induced lipid peroxidation. Weaning was also able to alter long-term memory and induce anxious behavior in pups. Our results demonstrate that the different types of early weaning changed the parameters of redox status in the hippocampus and hypothalamus of pups (21 days old), suggesting a prooxidative profile, in addition, to alter learning/memory and inducing an anxious behavior in male offspring (60 days old).
Collapse
Affiliation(s)
- Karoline Dos Santos Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Peres Klein
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pauline Maciel August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Régis Mateus Hözer
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Crestani Scortegagna
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliana Bender Hoppe
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências Biológicas: Fisiologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Sampedro-Piquero P, Álvarez-Suárez P, Begega A. Coping with Stress During Aging: The Importance of a Resilient Brain. Curr Neuropharmacol 2018; 16:284-296. [PMID: 28925881 PMCID: PMC5843980 DOI: 10.2174/1570159x15666170915141610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/12/2017] [Accepted: 01/01/1970] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Resilience is the ability to achieve a positive outcome when we are in the face of adversity. It supposes an active resistance to adversity by coping mechanisms in which genetic, molecular, neural and environmental factors are involved. Resilience has been usually studied in early ages and few is known about it during aging. METHODS In this review, we will address the age-related changes in the brain mechanisms involved in regulating the stress response. Furthermore, using the EE paradigm, we analyse the resilient potential of this intervention and its neurobiological basis. In this case, we will focus on identifying the characteristics of a resilient brain (modifications in HPA structure and function, neurogenesis, specific neuron types, glia, neurotrophic factors, nitric oxide synthase or microRNAs, among others). RESULTS The evidence suggests that a healthy lifestyle has a crucial role to promote a resilient brain during aging. Along with the behavioral changes described, a better regulation of HPA axis, enhanced levels of postmitotic type-3 cells or changes in GABAergic neurotransmission are some of the brain mechanisms involved in resilience. CONCLUSION Future research should identify different biomarkers that increase the resistance to develop mood disorders and based on this knowledge, develop new potential therapeutic targets.
Collapse
Affiliation(s)
- P. Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las CC, Facultad de Psicología, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Spain
| | - P. Álvarez-Suárez
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| | - A. Begega
- Institute of Neuroscience of the Principality of Asturias (INEUROPA), Department of Psychology, University of Oviedo, Spain
| |
Collapse
|
6
|
Aujnarain AB, Luo OD, Taylor N, Lai JKY, Foster JA. Effects of exercise and enrichment on behaviour in CD-1 mice. Behav Brain Res 2018; 342:43-50. [PMID: 29339005 DOI: 10.1016/j.bbr.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/26/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
A host of scholarly work has characterized the positive effects of exercise and environmental enrichment on behaviour and cognition in animal studies. The purpose of this study was to investigate the uptake and longitudinal impact of exercise and enrichment on the behavioural phenotype of male and female CD-1 mice. CD-1 mice housed in standard (STD) or exercise and enrichment (EE) conditions post-weaning were tested in the 3-chamber sociability test, open field, and elevated plus maze and exercise activity was monitored throughout the enrichment protocol. Male and female EE mice both showed reduced anxiety and activity in the open field and elevated plus maze relative to sex-matched STD mice. EE altered social behaviours in a sex-specific fashion, with only female EE mice showing increased social preference relative to female STD mice and a preference for social novelty only present in male EE mice. This sexual dimorphism was not observed to be a product of exercise uptake, as CD-1 mice of both sexes demonstrated a consistent trend of wheel rotation frequencies. These findings suggest the importance of considering variables such as sex and strain on experimental design variables in future work on environmental enrichment.
Collapse
Affiliation(s)
- Amiirah B Aujnarain
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Owen D Luo
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Natalie Taylor
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Y Lai
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada
| | - Jane A Foster
- Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Sampedro-Piquero P, Begega A. Environmental Enrichment as a Positive Behavioral Intervention Across the Lifespan. Curr Neuropharmacol 2018; 15:459-470. [PMID: 27012955 PMCID: PMC5543669 DOI: 10.2174/1570159x14666160325115909] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/30/2015] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In recent decades, the interest in behavioral interventions has been growing due to the higher prevalence of age-related cognitive impairments. Hence, behavioral interventions, such as cognitive stimulation and physical activity, and along with these, our lifestyle (education level, work position, frequency of cognitive and social activities) have shown important benefits during the cognitive impairment, dementia and even recovery after brain injury. This is due to the fact that this type of intervention and activities promote the formation of a cognitive and brain reserve that allows tolerating brain damage during a long period of time without the appearance of cognitive symptoms. With regard to this, animal models have proved very useful in providing information about the brain mechanisms involved in the development of these cognitive and brain reserves and how they interact with each other. METHODS We summarize several studies showing the positive effects of Environmental Enrichment (EE), understood as a housing condition in which animals benefit from the sensory, physical, cognitive and social stimulation provided, on brain and cognitive functions usually impaired during aging. RESULTS Most of studies have shown that EE is a successful protocol to improve cognitive functions and reduce anxiety-related behaviors across the lifespan, as well as in animal models of neurodegenerative diseases. CONCLUSION Therefore, EE is a laboratory condition in which some aspects of an active lifestyle are reproduced.
Collapse
Affiliation(s)
- P Sampedro-Piquero
- Department of Biological and Health Psychology, Autonomous University of Madrid, Cantoblanco 28049, Madrid, Spain
| | - A Begega
- Neuroscience Laboratory, Psychology Department, University of Oviedo, Plaza Feijoo s/n 33003 Oviedo, INEUROPA, Spain
| |
Collapse
|
8
|
Early weaning increases aggression and stereotypic behaviour in cats. Sci Rep 2017; 7:10412. [PMID: 28871130 PMCID: PMC5583233 DOI: 10.1038/s41598-017-11173-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/15/2017] [Indexed: 11/17/2022] Open
Abstract
Behaviour problems are common in companion felines, and problematic behaviour may be a sign of chronic stress. In laboratory animals, early weaning increases the risk for aggression, anxiety, and stereotypic behaviour. However, very few studies have focused on early weaning in one of the world’s most popular pets, the domestic cat, although weaning soon after the critical period of socialisation is common practice. To study the effects of early weaning (<12 weeks) on behaviour, a large data set (N = 5726, 40 breeds) was collected from home-living domestic cats through a questionnaire survey. The results show that weaning before 8 weeks of age increases the risk for aggression, but not fearful behaviour. Moreover, cats weaned after 14 weeks of age have a lower probability for aggression towards strangers than early weaned cats and a lower probability for stereotypic behaviour (excessive grooming) than cats weaned at 12 weeks. The effect of weaning age on stereotypic behaviour is partially explained by the effects on aggression. These findings indicate that early weaning has a detrimental effect on behaviour, and suggest delayed weaning as a simple and inexpensive approach to significantly improve the welfare of millions of domestic cats.
Collapse
|
9
|
Bahi A. Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:65-74. [PMID: 28390969 DOI: 10.1016/j.pnpbp.2017.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/07/2017] [Accepted: 04/02/2017] [Indexed: 12/21/2022]
Abstract
Previous research from our laboratory has shown that exposure to chronic psychosocial stress increased voluntary ethanol consumption and preference as well as acquisition of ethanol-induced conditioned place preference (CPP) in mice. This study was done to determine whether an enriched environment could have "curative" effects on chronic psychosocial stress-induced ethanol intake and CPP. For this purpose, experimental mice "intruders" were exposed to the chronic subordinate colony (CSC) housing for 19 consecutive days in the presence of an aggressive "resident" mouse. At the end of that period, mice were tested for their anxiety-like behavior using the elevated plus maze (EPM) test then housed in a standard or enriched environment (SE or EE respectively). Anxiety and ethanol-related behaviors were investigated using the open field (OF) test, a standard two-bottle choice drinking paradigm, and the CPP procedure. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to single housed colony (SHC) controls. In addition, CSC exposure increased voluntary ethanol intake and ethanol-CPP. Interestingly, we found that EE significantly and consistently reduced anxiety and ethanol consumption and preference. However, neither tastants' (saccharin and quinine) intake nor blood ethanol metabolism were affected by EE. Finally, and most importantly, EE reduced the acquisition of CPP induced by 1.5g/kg ethanol. Taken together, these results support the hypothesis that EE can reduce voluntary ethanol intake and ethanol-induced conditioned reward and seems to be one of the strategies to reduce the behavioral deficits and the risk of anxiety-induced alcohol abuse.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Richter SH, Kästner N, Loddenkemper DH, Kaiser S, Sachser N. A Time to Wean? Impact of Weaning Age on Anxiety-Like Behaviour and Stability of Behavioural Traits in Full Adulthood. PLoS One 2016; 11:e0167652. [PMID: 27930688 PMCID: PMC5145172 DOI: 10.1371/journal.pone.0167652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
In mammals, weaning constitutes an important phase in the progression to adulthood. It comprises the termination of suckling and is characterized by several changes in the behaviour of both mother and offspring. Furthermore, numerous studies in rodents have shown that the time point of weaning shapes the behavioural profile of the young. Most of these studies, however, have focused on ‘early weaning’, while relatively little work has been done to study ‘late weaning’ effects. The aim of the present study was therefore to explore behavioural effects of ‘late weaning’, and furthermore to gain insights into modulating effects of weaning age on the consistency of behavioural expressions over time. In total, 25 male and 20 female C57BL/6J mice, weaned after three (W3) or four (W4) weeks of age, were subjected to a series of behavioural paradigms widely used to assess anxiety-like behaviour, exploratory locomotion, and nest building performance. Behavioural testing took place with the mice reaching an age of 20 weeks and was repeated eight weeks later to investigate the stability of behavioural expressions over time. At the group level, W4 mice behaved less anxious and more explorative than W3 animals in the Open Field and Novel Cage, while anxiety-like behaviour on the Elevated Plus Maze was modulated by a weaning-age-by-sex interaction. Furthermore, weaning age shaped the degree of behavioural stability over time in a sex-specific way. While W3 females and W4 males displayed a remarkable degree of behavioural stability over time, no such patterns were observed in W3 males and W4 females. Adding to the existing literature, we could thus confirm that effects of weaning age do indeed exist when prolonging this phase, and were furthermore able to provide first evidence for the impact of weaning age and sex on the consistency of behavioural expressions over time.
Collapse
Affiliation(s)
- S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- * E-mail:
| | - Niklas Kästner
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | | | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Environmental enrichment does not reverse the effects of maternal deprivation on NMDAR and Balb/c mice behaviors. Brain Res 2015; 1624:479-488. [PMID: 26300221 DOI: 10.1016/j.brainres.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
Early adverse life experiences have been associated with anxiety-like behavior and memory impairment. N-methyl-d-aspartate receptors (NMDARs) play an important role in brain development. Enriched environments are known to positively influence emotional and cognitive functions in the brain. We examined the effects of maternal deprivation (MD) on NMDAR subunits in the hippocampus, locomotor activity, anxiety behaviors, and learning-memory performance of Balb/c mice. We also examined whether these effects could be reversed by raising the offspring in an enriched environment. The mice were separated from their mothers for a single 24h episode on postnatal day (PND) 9. The mice were weaned on day 21 and were housed under either standard (SE) or enriched (EE) environmental conditions. Emotional behaviors and cognitive processes of mice were evaluated using an open field (OF) test, an elevated plus maze (EPM) test, and a Morris water-maze (MWM). NMDAR subunits (GluN1, GluN2A, and GluN2B) mRNA expression levels in the hippocampus were examined by real-time PCR. In OF, MD had no effect on horizontal locomotor activity. MD increased anxiety-like behaviors in the EPM and decreased spatial learning performance in MWM; however, these effects were not reversed by EE. MD (in SE and EE conditions) increased GluN1, GluN2A, and GluN2B mRNA expressions in the hippocampus. In conclusion, MD led to the deterioration of the emotional and cognitive processes during adulthood. Moreover, environmental enrichment did not reverse the deleterious effects of the MD on emotional and cognitive functions and increased the NMDAR levels.
Collapse
|
12
|
Tamminga CA, Zukin RS. Schizophrenia: Evidence implicating hippocampal GluN2B protein and REST epigenetics in psychosis pathophysiology. Neuroscience 2015. [PMID: 26211447 DOI: 10.1016/j.neuroscience.2015.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hippocampus is strongly implicated in the psychotic symptoms of schizophrenia. Functionally, basal hippocampal activity (perfusion) is elevated in schizophrenic psychosis, as measured with positron emission tomography (PET) and with magnetic resonance (MR) perfusion techniques, while hippocampal activation to memory tasks is reduced. Subfield-specific hippocampal molecular pathology exists in human psychosis tissue which could underlie this neuronal hyperactivity, including increased GluN2B-containing NMDA receptors in hippocampal CA3, along with increased postsynaptic density protein-95 (PSD-95) along with augmented dendritic spines on the pyramidal neuron apical dendrites. We interpret these observations to implicate a reduction in the influence of a ubiquitous gene repressor, repressor element-1 silencing transcription factor (REST) in psychosis; REST is involved in the age-related maturation of the NMDA receptor from GluN2B- to GluN2A-containing NMDA receptors through epigenetic remodeling. These CA3 changes in psychosis leave the hippocampus liable to pathological increases in neuronal activity, feedforward excitation and false memory formation, sometimes with psychotic content.
Collapse
Affiliation(s)
- C A Tamminga
- UT Southwestern Medical School, Dallas, TX, United States.
| | - R S Zukin
- Albert Einstein School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Brett ZH, Humphreys KL, Fleming AS, Kraemer GW, Drury SS. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development. Dev Psychopathol 2015; 27:347-67. [PMID: 25997759 PMCID: PMC5299387 DOI: 10.1017/s0954579415000036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.
Collapse
|
14
|
Bred to breed?! Implications of continuous mating on the emotional status of mouse offspring. Behav Brain Res 2015; 279:155-65. [DOI: 10.1016/j.bbr.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
|
15
|
What makes a good mother? Implication of inter-, and intrastrain strain "cross fostering" for emotional changes in mouse offspring. Behav Brain Res 2014; 274:270-81. [PMID: 25151929 DOI: 10.1016/j.bbr.2014.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 12/15/2022]
Abstract
Currently, the mouse represents the preferred model organism among mammals used for animal studies. Due to a great availability of mutant strains it represents a standard method to analyze in vivo the effects of targeted gene manipulations. While this - at least in theory - represents a valuable tool to elucidate the pathophysiology of certain human diseases, there are several caveats which need to be considered working with animals. In our study we aimed at elucidating, how a widely established breeding strategy, i.e. the use of "foster mothers" to save the survival of compromised mouse pups for ongoing experiments, per se, affects the emotional phenotype of the fostered offspring. Since it is a popular method to use outbred strains like NMRI to do this job, we sought to evaluate the potential effects of such an artificial postnatal condition and compare either offspring nurtured by their biological mothers or two different strains of foster mothers. Hence we analysed changes in maternal care and later on the emotional behaviour of male and female C57BL/6 mice reared by (i) their biological C57BL/6 mothers, (ii) C57BL/6 foster mothers and (iii) NMRI foster mothers in a behavioural test battery. In addition we assessed corticosterone levels as indicator for stress-physiological changes. Besides clear differences in maternal behaviour, our study indicates an altered emotional state (i.e. differences in anxiety and depressive-like features) in mice reared by different "categories" of mothers, which emphasizes the importance to embed such perinatal conditions in the evaluation of animal-deriving data.
Collapse
|
16
|
Abstract
AbstractEnvironmental enrichment aims to improve the well-being of laboratory animals and provides an opportunity to improve experimental reliability and validity. Animals raised in more stimulating environments have improved learning and memory as well as more complex brain architecture. However, the effects of environmental enrichment on motor performance, anxiety and emotional development have been poorly studied. Moreover, most investigators studying the effects of enrichment provide extremely large and complex housing conditions to maximize the likelihood of finding effects. These situations are difficult to replicate across animal facilities and are not operationally practical. In this experiment, we investigated how simple, inexpensive disposable shelterstyle enrichment items alter behavior in C57Bl/6 and 129S6 mice. Breeding pairs were established in the presence of a Ketchum “Refuge”, Shepherd Shack “Dome”, or no enrichment. Offspring were assessed neurobehaviorally, either just after weaning (pre-adolescent, P22–P25), or as young adults (P60–P90). Major strain differences were observed in open field activity, elevated maze exploration, and Y-maze activity levels. The presence of the Refuge and/or Dome enrichment shelters significantly altered motor activity, coordination and some measures of anxiety. Mice housed in the presence of shelters were also less dominant than control mice in a tube test assay. Our experiments provide a detailed analysis of the effects of inexpensive and practical methods of housing enrichment on biobehavioral phenotypes in these two commonly used strains of laboratory mice, and suggest that the effects of these shelters on mouse neurobiology and behavior need to be rigorously analyzed before being adopted within vivariums.
Collapse
|
17
|
The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice. Pharmacol Biochem Behav 2012; 102:407-14. [DOI: 10.1016/j.pbb.2012.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/23/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022]
|
18
|
Mitra R, Sapolsky RM. Short-term enrichment makes male rats more attractive, more defensive and alters hypothalamic neurons. PLoS One 2012; 7:e36092. [PMID: 22567125 PMCID: PMC3342313 DOI: 10.1371/journal.pone.0036092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/30/2012] [Indexed: 01/10/2023] Open
Abstract
Innate behaviors are shaped by contingencies built during evolutionary history. On the other hand, environmental stimuli play a significant role in shaping behavior. In particular, a short period of environmental enrichment can enhance cognitive behavior, modify effects of stress on learned behaviors and induce brain plasticity. It is unclear if modulation by environment can extend to innate behaviors which are preserved by intense selection pressure. In the present report we investigate this issue by studying effects of relatively short (14-days) environmental enrichment on two prominent innate behaviors in rats, avoidance of predator odors and ability of males to attract mates. We show that enrichment has strong effects on both the innate behaviors: a) enriched males were more avoidant of a predator odor than non-enriched controls, and had a greater rise in corticosterone levels in response to the odor; and b) had higher testosterone levels and were more attractive to females. Additionally, we demonstrate decrease in dendritic length of neurons of ventrolateral nucleus of hypothalamus, important for reproductive mate-choice and increase in the same in dorsomedial nucleus, important for defensive behavior. Thus, behavioral and hormonal observations provide evidence that a short period of environmental manipulation can alter innate behaviors, providing a good example of gene-environment interaction.
Collapse
Affiliation(s)
- Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | |
Collapse
|
19
|
Freret T, Billard JM, Schumann-Bard P, Dutar P, Dauphin F, Boulouard M, Bouet V. Rescue of cognitive aging by long-lasting environmental enrichment exposure initiated before median lifespan. Neurobiol Aging 2012; 33:1005.e1-10. [DOI: 10.1016/j.neurobiolaging.2011.09.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 11/25/2022]
|
20
|
Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 2011; 100:25-32. [DOI: 10.1016/j.pbb.2011.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022]
|
21
|
Feng X, Wang L, Yang S, Qin D, Wang J, Li C, Lv L, Ma Y, Hu X. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci U S A 2011; 108:14312-14317. [PMID: 21844333 PMCID: PMC3161556 DOI: 10.1073/pnas.1010943108] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Maternal separation (MS), which can lead to hypothalamic pituitary adrenal axis dysfunction and behavioral abnormalities in rhesus monkeys, is frequently used to model early adversity. Whether this deleterious effect on monkeys is reversible by later experience is unknown. In this study, we assessed the basal hair cortisol in rhesus monkeys after 1.5 and 3 y of normal social life following an early separation. These results showed that peer-reared monkeys had significantly lower basal hair cortisol levels than the mother-reared monkeys at both years examined. The plasma cortisol was assessed in the monkeys after 1.5 y of normal social life, and the results indicated that the peak in the peer-reared cortisol response to acute stressors was substantially delayed. In addition, after 3 y of normal social life, abnormal behavioral patterns were identified in the peer-reared monkeys. They showed decreases in locomotion and initiated sitting together, as well as increases in stereotypical behaviors compared with the mother-reared monkeys. These results demonstrate that the deleterious effects of MS on rhesus monkeys cannot be compensated by a later normal social life, suggesting that the effects of MS are long-lasting and that the maternal-separated rhesus monkeys are a good animal model to study early adversity and to investigate the development of psychiatric disorders induced by exposure to early adversity.
Collapse
Affiliation(s)
- Xiaoli Feng
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Lina Wang
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Shangchuan Yang
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Dongdong Qin
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jianhong Wang
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Chunlu Li
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Longbao Lv
- Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People’s Republic of China; and
| | - Yuanye Ma
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- State Key Laboratory of Brain and Cognitive Science, Beijing 100101, People’s Republic of China
- Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanism, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
- State Key Laboratory of Brain and Cognitive Science, Beijing 100101, People’s Republic of China
- Institute of Biophysics, the Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
22
|
Chourbaji S, Hoyer C, Richter SH, Brandwein C, Pfeiffer N, Vogt MA, Vollmayr B, Gass P. Differences in mouse maternal care behavior - is there a genetic impact of the glucocorticoid receptor? PLoS One 2011; 6:e19218. [PMID: 21552522 PMCID: PMC3084270 DOI: 10.1371/journal.pone.0019218] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/22/2011] [Indexed: 02/02/2023] Open
Abstract
Depressive episodes are frequently preceded by stressful life events. Evidence from genetic association studies suggests a role for the glucocorticoid receptor (GR), an essential element in the regulation of stress responses, in the pathophysiology of the disorder. Since the stress response system is affected by pregnancy and postpartum-associated changes, it has also been implicated in the pathophysiology of postpartum depression. Using a 2×2 factorial design, we investigated whether a heterozygous deletion of GR would influence maternal care behavior in C57BL/6 and Balb/c mice, two inbred strains known to display qualitative differences in this behavior. Behavioral observation was carried out between postnatal days 1 and 7, followed by a pup retrieval test on postnatal days 7 or 8. While previously noted inter-strain differences were confirmed for different manifestations of caring behavior, self-maintenance and neglecting behaviors as well as the pup retrieval test, no strain-independent effect of the GR mutation was noted. However, an interaction between GR genotype and licking/grooming behavior was observed: it was down-regulated in heterozygous C57BL/6 mice to the level recorded for Balb/c mice. Home cage observation poses minimal disturbance of the dam and her litter as compared to more invasive assessments of dams' emotional behavior. This might be a reason for the absence of any overall effects of the GR mutation, particularly since GR heterozygous animals display a depressive-like phenotype under stressful conditions only. Still, the subtle effect we observed may point towards a role of GR in postpartum affective disorders.
Collapse
Affiliation(s)
| | - Carolin Hoyer
- Central Institute of Mental Health, Mannheim, Germany
- * E-mail:
| | | | | | | | | | | | - Peter Gass
- Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
23
|
Shimmura T, Kamimura E, Azuma T, Kansaku N, Uetake K, Tanaka T. Effect of broody hens on behaviour of chicks. Appl Anim Behav Sci 2010. [DOI: 10.1016/j.applanim.2010.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
OZAWA M, KIKUSUI T, TAKEUCHI Y, MORI Y. Comparison of Parental Behavior and Offspring's Anxiety Behavior Using a Reciprocal F1 Hybrid Model. J Vet Med Sci 2010; 72:1589-96. [DOI: 10.1292/jvms.10-0173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Makiko OZAWA
- Laboratory of Veterinary Ethology, The University of Tokyo
| | - Takefumi KIKUSUI
- Laboratory of Veterinary Ethology, The University of Tokyo
- Companion Animal Research, Azabu University
| | | | - Yuji MORI
- Laboratory of Veterinary Ethology, The University of Tokyo
| |
Collapse
|
25
|
Simonetti T, Lee H, Bourke M, Leamey CA, Sawatari A. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse. PLoS One 2009; 4:e6780. [PMID: 19756157 PMCID: PMC2742178 DOI: 10.1371/journal.pone.0006780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022] Open
Abstract
Background There is strong evidence that sensory experience in early life has a profound influence on the development of sensory circuits. Very little is known, however, about the role of experience in the early development of striatal networks which regulate both motor and cognitive function. To address this, we have investigated the influence of early environmental enrichment on motor development. Methodology/Principal Findings Mice were raised in standard or enriched housing from birth. For animals assessed as adults, half of the mice had their rearing condition reversed at weaning to enable the examination of the effects of pre- versus post-weaning enrichment. We found that exclusively pre-weaning enrichment significantly improved performance on the Morris water maze compared to non-enriched mice. The effects of early enrichment on the emergence of motor programs were assessed by performing behavioural tests at postnatal day 10. Enriched mice traversed a significantly larger region of the test arena in an open-field test and had improved swimming ability compared to non-enriched cohorts. A potential cellular correlate of these changes was investigated using Wisteria-floribunda agglutinin (WFA) staining to mark chondroitin-sulfate proteoglycans (CSPGs). We found that the previously reported transition of CSPG staining from striosome-associated clouds to matrix-associated perineuronal nets (PNNs) is accelerated in enriched mice. Conclusions/Significance This is the first demonstration that the early emergence of exploratory as well as coordinated movement is sensitive to experience. These behavioural changes are correlated with an acceleration of the emergence of striatal PNNs suggesting that they may consolidate the neural circuits underlying these behaviours. Finally, we confirm that pre-weaning experience can lead to life long changes in the learning ability of mice.
Collapse
Affiliation(s)
- Teresa Simonetti
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Hyunchul Lee
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Michael Bourke
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Catherine A. Leamey
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
26
|
Curley JP, Jordan ER, Swaney WT, Izraelit A, Kammel S, Champagne FA. The meaning of weaning: influence of the weaning period on behavioral development in mice. Dev Neurosci 2009; 31:318-31. [PMID: 19546569 DOI: 10.1159/000216543] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/29/2009] [Indexed: 01/03/2023] Open
Abstract
Maternal care during the first week postpartum has long-term consequences for offspring development in rodents. However, mother-infant interactions continue well beyond this period, with several physiological and behavioral changes occurring between days 18 and 28 PN. In the present study, we investigate the long-term effects on offspring behavior of being weaned at day 21 PN versus day 28 PN. We found that male and female offspring engage in higher initial levels of social interaction if weaned at day 28 PN, as well as sexually dimorphic changes in exploratory behavior. Females who were themselves weaned earlier also appeared to wean their own pups earlier. Sex-specific effects of weaning age were found on levels of oxytocin and vasopressin V1a receptor density in the hypothalamus, central nucleus of the amygdala and nucleus accumbens. These results indicate that altering weaning age in mice may be a useful model for investigating the development of sexual dimorphism in neurobiology and behavior.
Collapse
Affiliation(s)
- James P Curley
- Department of Psychology, Columbia University, New York, N.Y. 10027, USA
| | | | | | | | | | | |
Collapse
|
27
|
Violle N, Balandras F, Le Roux Y, Desor D, Schroeder H. Variations in illumination, closed wall transparency and/or extramaze space influence both baseline anxiety and response to diazepam in the rat elevated plus-maze. Behav Brain Res 2009; 203:35-42. [PMID: 19389429 DOI: 10.1016/j.bbr.2009.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/10/2009] [Accepted: 04/13/2009] [Indexed: 11/25/2022]
Abstract
Numerous methodological-related variables have been demonstrated to influence the baseline anxiety level of rodents exposed to the elevated plus-maze (EPM), raising questions about the sensitivity of this test for the detection of the effects of anxiolytic drugs. Thus, the present study was designed (1) to assess the combined effects of illumination (40-lx red or white light), closed wall type (walls made of translucent or opaque material) and extramaze space size (small or spacious experimental room) on rat behaviour, and (2) to investigate the effects of such parameters on the relevance of the maze for detecting the effects of diazepam orally administrated at the anxiolytic dose of 3 mg/kg. Results indicate that illumination and closed wall type are two main independent parameters that are able to modify the open arm avoidance. Moreover, the closed wall type interacts with the extramaze space size since the reduction of the open arm exploration induced by opaque closed walls is two-fold stronger in the spacious experimental room than in the small one. Finally, the diazepam anxiolytic activity is significantly detected in our laboratory in specific EPM conditions (maze with opaque walls, use of a red light, maze located in a spacious experimental room). In conclusion, the present study demonstrates that an inappropriate baseline anxiety level due to the methodological use of the EPM can dramatically reduce the sensitivity of the maze for the detection of benzodiazepine-related compounds. This study also provides new insights into the perception of the EPM open space in rats.
Collapse
Affiliation(s)
- Nicolas Violle
- URAFPA, INRA UC340, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|