1
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
2
|
Harvey BJ, Alvarez de la Rosa D. Sex Differences in Kidney Health and Disease. Nephron Clin Pract 2024; 149:77-103. [PMID: 39406203 DOI: 10.1159/000541352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Sex differences exist in kidney physiology and disease which are underpinned by the biological actions of the sex hormones estrogen, progesterone and testosterone. In this review, we present an up-to-date discussion of the hormonal and molecular signalling pathways implicated in sex differences in kidney health and disease. SUMMARY Estrogen and progesterone have protective effects on renal blood flow, glomerular filtration rate and nephron ion and water reabsorptive processes, whereas testosterone tends to compromise these functions. The biological effects of estrogen appear to be the most important in reinforcing kidney function and protecting against kidney diseases in females. The actions of estrogen are myriad but all tend to bolster kidney physiology to maintain a steady-state and adaptable extracellular fluid volume (ECFV) and blood pressure. Estrogen safeguards ECFV homeostasis by stimulating renal epithelial sodium channel (ENaC) and water channel (AQP2) expression and transport function. Renal maintenance of ECFV within narrow physiological limits is a first-line of defense against hypertension and lowers the risk of cardiovascular disease in women. The estrogenic and XX chromosome basis for a female advantage are evident in a wide range of kidney diseases including acute kidney injury, chronic kidney disease, end-stage kidney disease, diabetic kidney disease, and polycystic kidney disease. The molecular mechanisms involve estrogen regulation of nephron ion and water transport, genetic immunogenic responses, activation of the protective arm of the renin angiotensin-aldosterone system and XX chromosome reinforcement of immune responses. Kidney disease can also predispose patients to cancer and women are protected in renal cancer with lower incidence, morbidity, and mortality than age-matched men with the disease. KEY MESSAGES This review underscores the importance of incorporating sex-specific considerations into clinical practice and basic research to bridge the gap in understanding and addressing biological sex disparities in kidney disease and renal cancer.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centro de Estudios Científicos, Valdivia, Chile
| | - Diego Alvarez de la Rosa
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
3
|
Römer C, Zessin E, Czupajllo J, Fischer T, Wolfarth B, Lerchbaumer MH. Effect of Physical Parameters and Training Load on Patellar Tendon Stiffness in Professional Athletes. Diagnostics (Basel) 2023; 13:2541. [PMID: 37568903 PMCID: PMC10417388 DOI: 10.3390/diagnostics13152541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Injuries of the patellar tendon commonly occur as a result of mechanical loading of the tendon during physical activity. Shear wave elastography (SWE) is an established technique for assessing tendon stiffness, and has good interindividual reliability. The aim of this study was to investigate the impacts of physical parameters and different sports on patellar tendon stiffness in professional athletes using SWE. METHODS Standardized patellar tendon SWE was performed in a relaxed supine position with a small roll under the knee (20° flexion) in 60 healthy professional athletes (30 female, 30 male). Multiple linear regression was performed for patellar tendon stiffness including gender, age, body mass index (BMI), and type of sport. RESULTS Patellar tendon stiffness showed no significant difference between female (3.320 m/s) and male (3.416 m/s) professional athletes. Mean age (female: 20.53 years; male: 19.80 years) and BMI (female: 23.24 kg/m2; male: 23.52 kg/m2) were comparable. Female professional athletes with oral contraceptive (OC) intake showed higher patellar tendon stiffness than athletes without OC intake (3.723 versus 3.017; p = 0.053), but not significantly. CONCLUSION In professional athletes, there are no significant differences in patellar tendon stiffness according to gender, age, BMI and type of sport (handball, volleyball, soccer, sprint, hammer throw). Oral contraceptives may not have an impact on patellar tendon stiffness in female athletes. Further studies are necessary.
Collapse
Affiliation(s)
- Claudia Römer
- Department of Sports Medicine, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Enrico Zessin
- Department of Sports Medicine, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Julia Czupajllo
- Department of Sports Medicine, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Thomas Fischer
- Department of Radiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | | |
Collapse
|
4
|
Jiang K, He T, Ji Y, Zhu T, Jiang E. The perspective of hypertension and salt intake in Chinese population. Front Public Health 2023; 11:1125608. [PMID: 36875386 PMCID: PMC9981806 DOI: 10.3389/fpubh.2023.1125608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Salt intake is too high nowadays. It has been widely recognized that there is a close relationship between hypertension (HTN) and dietary salt intake. Investigations reveal that long-term high salt intake, mainly sodium intake, induces a relevant increase in blood pressure in hypertensive and normotensive individuals. According to most scientific evidence, a diet with high salt intake in public increases cardiovascular risk, salted-related HTN, and other HTN-associated outcomes. Given the clinical importance, this review aims to present the prevalence of HTN and trends in salt intake in the Chinese population and will comprehensively discuss the risk factors, causes, and mechanisms of the association between salt intake and HTN. The review also highlights the education of Chinese people regarding salt intake and the cost-effectiveness of salt reduction from a global perspective. Finally, the review will emphasize the need to customize the unique Chinese practices to reduce salt intake and how awareness changes people's eating lifestyle and helps adopt diet salt reduction strategies.
Collapse
Affiliation(s)
- Kexin Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Tingting He
- Department of Basic Nursing, Henan Technical Institute, Zhengzhou, China
| | - Yongzhi Ji
- Institute of Nursing and Health, Henan University, Kaifeng, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng, China
- Department of Scientific Research, Scope Research Institute of Electrophysiology, Kaifeng, China
| |
Collapse
|
5
|
Blackmore K, Young CN. Central Feminization of Obese Male Mice Reduces Metabolic Syndrome. Brain Sci 2022; 12:1324. [PMID: 36291259 PMCID: PMC9599293 DOI: 10.3390/brainsci12101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic syndrome encompasses a spectrum of conditions that increases the risk for cardiovascular and metabolic diseases. It is widely accepted that the sex hormone estrogen plays a protective metabolic role in premenopausal women, in part through central nervous system (CNS) mechanisms. However, most work to date has focused on the loss of estrogen in females (e.g., menopause). Interestingly, transgender individuals receiving feminizing gender affirming therapy (i.e., estrogen) are relatively protected from metabolic syndrome conditions, pointing to a role for CNS estrogen in the development of metabolic syndrome in men. Here, we show that estrogen signaling in the brain protects males from metabolic syndrome and obesity related complications. First, short-term CNS specific supplementation of low-dose 17-β-estradiol in diet-induced obese male mice resulted in a significant reduction in body weight in parallel with a decrease in food intake without alterations in energy expenditure. In conjunction, central supplementation of estrogen reduced visceral adiposity, including epididymal and abdominal regions, with slighter decreases in subcutaneous inguinal and thermogenic brown adipose tissue. Furthermore, central estrogen administration reduced the liver manifestation of metabolic syndrome including hepatomegaly and hepatic steatosis. Collectively, these findings indicate that a lack of estrogen action in the brain may predispose males to metabolic syndrome pathogenesis.
Collapse
Affiliation(s)
- Katherine Blackmore
- School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | - Colin N. Young
- School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| |
Collapse
|
6
|
Wingard MC, Dalal S, Shook PL, Ramirez P, Raza MU, Johnson P, Connelly BA, Thewke D, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase attenuates Western-type diet-induced cardiac dysfunction in female mice. Physiol Rep 2022; 10:e15434. [PMID: 36117462 PMCID: PMC9483716 DOI: 10.14814/phy2.15434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic consumption of Western-type diet (WD) induces cardiac structural and functional abnormalities. Previously, we have shown that WD consumption in male ATM (ataxia-telangiectasia mutated kinase) deficient mice associates with accelerated body weight (BW) gain, cardiac systolic dysfunction with increased preload, and exacerbation of hypertrophy, apoptosis, and inflammation. This study investigated the role of ATM deficiency in WD-induced changes in functional and biochemical parameters of the heart in female mice. Six-week-old wild-type (WT) and ATM heterozygous knockout (hKO) female mice were placed on WD or NC (normal chow) for 14 weeks. BW gain, fat accumulation, and cardiac functional and biochemical parameters were measured 14 weeks post-WD. WD-induced subcutaneous and total fat contents normalized to body weight were higher in WT-WD versus hKO-WD. Heart function measured using echocardiography revealed decreased percent fractional shortening and ejection fraction, and increased LV end systolic diameter and volume in WT-WD versus WT-NC. These functional parameters remained unchanged in hKO-WD versus hKO-NC. Myocardial fibrosis, myocyte hypertrophy, and apoptosis were higher in WT-WD versus WT-NC. However, apoptosis was significantly lower and hypertrophy was significantly higher in hKO-WD versus WT-WD. MMP-9 and Bax expression, and Akt activation were higher in WT-WD versus WT-NC. PARP-1 (full-length) expression and mTOR activation were lower in WT-WD versus hKO-WD. Thus, ATM deficiency in female mice attenuates fat weight gain, preserves heart function, and associates with decreased cardiac cell apoptosis in response to WD.
Collapse
Affiliation(s)
- Mary C. Wingard
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Suman Dalal
- Department of Health SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
| | - Paige L. Shook
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Paulina Ramirez
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Muhammad U. Raza
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Patrick Johnson
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Barbara A. Connelly
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| | - Douglas P. Thewke
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Mahipal Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Krishna Singh
- Department of Biomedical SciencesJames H Quillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
- Center of Excellence in Inflammation, Infectious Disease and ImmunityJohnson CityTennesseeUSA
- Research and Development ServiceJames H Quillen Veterans Affairs Medical CenterMountain HomeTennesseeUSA
| |
Collapse
|
7
|
Pereira ED, Oliveira LM, Coletto-Nunes G, Souza PPC, Menani JV, De Luca LA, Andrade CAF. Central angiotensinergic mechanisms in female spontaneously hypertensive rats treated with estradiol. Appetite 2022; 174:106012. [PMID: 35367482 DOI: 10.1016/j.appet.2022.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Estrogens reduce 0.3 M NaCl intake and palatability in a widely used model of essential hypertension, the spontaneously hypertensive rats (SHRs). Here we investigated whether the inhibitory effects of β-estradiol (E2, 10 μg/kg b.w. subcutaneously for 8 days) on water deprived partially-rehydrated (WD-PR) ovariectomized (OVX) adult female SHRs (fSHRs, n = 4-10/group) are related to interferences on brain angiotensin II AT1 receptors (AT1r). After WD-PR, E2 reduced 0.3 M NaCl intake (1.3 ± 0.6, vs. vehicle: 3.5 ± 1.2 ml/30 min), the number of hedonic responses to intraoral NaCl infusion (57 ± 11, vs. vehicle: 176 ± 32/min), and the relative angiotensin AT1r (Agtr1a) mRNA expression in the hypothalamus. Losartan (AT1r antagonist, 100 μg) intracerebroventricularly in OVX fSHRs treated with vehicle subcutaneously abolished 0.3 M NaCl intake (0.1 ± 0.1 ml/30 min) and only transiently reduced hedonic responses to intraoral NaCl. Losartan combined with E2 decreased the number of hedonic and increased the number of aversive responses to intraoral NaCl and abolished 0.3 M NaCl intake. E2 also reduced the pressor and dipsogenic responses to intracerebroventricular angiotensin II. The results suggest that AT1r activation increases palatability and induces NaCl intake in WD-PR fSHRs. E2 reduced hypothalamic Agtr1a mRNA expression, which may account for the effects of E2 on NaCl intake and palatability and intracerebroventricular angiotensin II-induced pressor and dipsogenic responses in OVX fSHRs. Future studies considering natural fluctuations in estrogen secretion might help to determine the degree of such interference in brain neuronal activity.
Collapse
Affiliation(s)
- E D Pereira
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - L M Oliveira
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - G Coletto-Nunes
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - P P C Souza
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - J V Menani
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - L A De Luca
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil
| | - C A F Andrade
- Department of Physiology and Pathology, School of Dentistry, UNESP, Araraquara, SP, 14801-903, Brazil.
| |
Collapse
|
8
|
Nuñez P, Arguelles J, Perillan C. Chronic exposure to low doses of bisphenol A alters hydromineral responses in rats. Appetite 2021; 167:105594. [PMID: 34273420 DOI: 10.1016/j.appet.2021.105594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol A (BPA) is a chemical commonly used in the industrial sectors, hence humans are exposed to the compound repetitively. BPA is an endocrine disruptor and has been anticipated to interfere on chemical estrogen receptor functions and other nuclear hormone receptors. Estrogens are steroid hormones that, in addition to their neuroendocrine roles, affect water and salt intakes in numerous species, including humans and rodents. Changes in the hydrosaline balance produce compensatory behavioral and physiological responses, which serve to preserve or restore osmolarity and blood volume to optimal levels, thus preventing cardiovascular disease. The aim of the present work was to determine for first time the effect of long-term and low-dose BPA treatment on thirst and sodium appetite. Wistar rats were exposed to BPA via drinking water to mimic the most likely route of human exposure, and different dipsogenic and natriorexigenic stimuli were assessed. The BPA-treated rats tend to drink less water that control rats following 24-h fluid restriction, but there was no statistically significant decrease. Perhaps the BPA dose does not have enough estrogenic potency to affect water intake. In the extracellular fluid depletion test, the control rats significantly increased 2.7% NaCl solution intake on repeated testing, showing sodium appetite sensitization, i.e. the capacity to enhance sodium intake produced by stimulus repetition; whereas BPA-treated rats did not. In this study, fluid and electrolyte balance in BPA-treated rats is generally adequate but impaired in osmotic challenges, for example by sodium depletion. Thus, neuroendocrine systems involved in maintaining body fluid and electrolyte homeostasis were altered in BPA-treated rats.
Collapse
Affiliation(s)
- Paula Nuñez
- Departamento de Biología Funcional, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Juan Arguelles
- Departamento de Biología Funcional, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Carmen Perillan
- Departamento de Biología Funcional, Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
9
|
Santollo J, Collett JA, Edwards AA. The anti-dipsogenic and anti-natriorexigenic effects of estradiol, but not the anti-pressor effect, are lost in aged female rats. Physiol Rep 2021; 9:e14948. [PMID: 34288542 PMCID: PMC8290476 DOI: 10.14814/phy2.14948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERβ, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.
Collapse
Affiliation(s)
| | - Jason A. Collett
- Department of BiologyUniversity of KentuckyLexingtonKYUSA
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | | |
Collapse
|
10
|
Santollo J, Edwards AA, Howell JA, Myers KE. Bidirectional effects of estradiol on the control of water intake in female rats. Horm Behav 2021; 133:104996. [PMID: 34020111 PMCID: PMC8277715 DOI: 10.1016/j.yhbeh.2021.104996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory effect of estradiol (E2) on water intake has been recognized for 50 years. Despite a rich literature describing this phenomenon, we report here a previously unidentified dipsogenic effect of E2 during states of low fluid intake. Our initial goal was to test the hypothesis that the anti-dipsogenic effect of E2 on unstimulated water intake is independent of its anorexigenic effect in female rats. In support of this hypothesis, water intake was reduced during estrus, compared to diestrus, when food was present or absent. Water intake was reduced by E2 in ovariectomized rats when food was available, demonstrating a causative role of E2. Surprisingly, however, when food was removed, resulting in a significant reduction in baseline water intake, E2 enhanced drinking. Accordingly, we next tested the effect of E2 on water intake after an acute suppression of intake induced by exendin-4. The initial rebound drinking was greater in E2-treated, compared to Oil-treated, rats. Finally, to reconcile conflicting reports regarding the effect of ovariectomy on water intake, we measured daily water and food intake, and body weight in ovariectomized and sham-operated rats. Predictably, ovariectomy significantly increased food intake and body weight, but only transiently increased water intake. Together these results provide further support for independent effects of E2 on the controls of water and food intake. More importantly, this report of bidirectional effects of E2 on water intake may lead to a paradigm shift, as it challenges the prevailing view that E2 effects on fluid intake are exclusively inhibitory.
Collapse
Affiliation(s)
- Jessica Santollo
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA.
| | - Andrea A Edwards
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Julia A Howell
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| | - Katherine E Myers
- University of Kentucky, Department of Biology, 675 Rose Street, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Santollo J, Edwards AA. How predictive is body weight on fluid intake in rats? It depends on sex. Physiol Behav 2020; 229:113262. [PMID: 33232737 DOI: 10.1016/j.physbeh.2020.113262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
The assumption that body weight is a predictor of fluid intake is often used as rationale for normalizing intake to body weight when examining sex differences in drinking behavior. Nonuniform application of this body weight correction likely contributes to discrepancies in the literature. We, however, previously demonstrated sex differences in the relationship between body weight and angiotensin II (AngII)-stimulated water intake. Only after a pharmacological dose of AngII did water intake correlate with body weight, and only in males. Here we investigated whether body weight correlated with fluid intake stimulated by additional dipsogenic agents in male and female rats. We found that intake stimulated by either water deprivation or furosemide correlated with body weight in male rats. We found no relationship between intake and body weight after water deprivation, furosemide treatment, or isoproterenol treatment in females, nor did we find a relationship between intake and body weight after hypertonic saline treatment in either males or females. Finally, we report that daily water intake correlated with body weight in females. This effect, however, is likely the result of a relationship between body weight and food intake because when food was absent or reduced, the correlation between body weight and intake disappeared. These results demonstrate that multiple factors need to be considered when determining the best way to compare fluid intake between males and females and provides insight to help explain the discrepancies in the literature regarding sex differences in fluid intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506.
| | - Andrea A Edwards
- Department of Biology, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
12
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
13
|
Santollo J, Myers KE, Rainer IL, Edwards AA. Gonadal hormones in female rats protect against dehydration-induced memory impairments in the novel object recognition paradigm. Horm Behav 2019; 114:104547. [PMID: 31228420 PMCID: PMC6732238 DOI: 10.1016/j.yhbeh.2019.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Dehydration impairs cognitive performance in humans and rodents, although studies in animal models are limited. Estrogens have both protective effects on fluid regulation and improve performance in certain cognitive tasks. We, therefore, tested whether sex and gonadal hormones influence object recognition memory during dehydration. Because past studies used fluid deprivation to induce dehydration, which is a mixture of intracellular and extracellular fluid loss, we tested the effects of osmotic (loss of intracellular fluid) and hypovolemic (loss of extracellular fluid) dehydration on object recognition memory. After training trials consisting of exposure to two identical objects, rats were either treated with hypertonic saline to induce osmotic dehydration, furosemide to induce hypovolemic dehydration, or received a control injection and then object recognition memory was tested by presenting the original and a novel object. After osmotic dehydration, regardless of group or treatment, all rats spent significantly more time investigating the novel object. After hypovolemic dehydration, regardless of treatment, both the males and estrous females spent significantly more time investigating the novel object. While the control-treated diestrous females also spent significantly more time investigating the novel object, the furosemide-treated diestrous females spent a similar amount of time investigating the novel and original object. Follow up studies determined that loss of ovarian hormones after ovariectomy, but not loss of testicular hormones after castration, resulted in impaired memory performance in the object recognition test after hypovolemic dehydration. This series of experiments provides evidence for a protective role of ovarian hormones on dehydration-induced memory impairments.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| | - Katherine E Myers
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Ivanka L Rainer
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Andrea A Edwards
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| |
Collapse
|
14
|
Nuñez P, Arguelles J, Perillan C. Short-term exposure to bisphenol A affects water and salt intakes differently in male and ovariectomised female rats. Appetite 2018; 120:709-715. [DOI: 10.1016/j.appet.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
|
15
|
Grieb ZA, Tierney SM, Lonstein JS. Postpartum inhibition of ovarian steroid action increases aspects of maternal caregiving and reduces medial preoptic area progesterone receptor expression in female rats. Horm Behav 2017; 96:31-41. [PMID: 28882474 DOI: 10.1016/j.yhbeh.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
The rapid peripartum onset of maternal caregiving involves progesterone synergizing with estradiol, but prolonging progesterone exposure past this time can prevent the emergence of mothering. Interestingly, there is a 7-10day-long rise in progesterone during mid-lactation, but its effects on mothering are unknown. Given progesterone's potential to inhibit mothering onset, this mid-lactational rise may contribute to the normal attenuation of caregiving behaviors across lactation. To evaluate this, recently-parturient rats were ovariectomized and caregiving observed from postpartum days (PPD) 7-18. Ovariectomized dams were found to lick, hover over, and nurse in kyphosis more frequently than controls. Ovariectomy also decreased medial preoptic area (mPOA) progesterone receptor (PR) mRNA, which was negatively correlated with pup licking and kyphosis, but it did not affect mPOA levels of oxytocin receptor or vasopressin V1a receptor mRNAs. In a second study, gonadally intact dams were given the PR antagonist, RU 486, and were found to display more kyphosis and less supine nursing compared to controls. Finally, progesterone sensitivity across lactation was examined by measuring numbers of PR immunoreactive (PR-ir) cells in the mPOA, ventral bed nucleus of the stria terminalis (BSTv) and periaqueductal gray (PAG). PR-ir was higher in the mPOA at parturition compared to virgins, while PR-ir in the mPOA and BSTv dropped from parturition to PPD 7 and remained low through PPD 18. The number of PR-ir cells in the PAG was constant. Thus, in addition to their well-known prepartum effects, ovarian hormones limit the display of some maternal behaviors during mid-to-late lactation and contribute to their decline as weaning approaches.
Collapse
Affiliation(s)
- Z A Grieb
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | - S M Tierney
- Psychology Department, 4800 Calhoun Rd., University of Houston, Houston, TX 77204, USA
| | - J S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
16
|
Ried-Larsen M, Aarts HM, Joyner MJ. Effects of strict prolonged bed rest on cardiorespiratory fitness: systematic review and meta-analysis. J Appl Physiol (1985) 2017; 123:790-799. [DOI: 10.1152/japplphysiol.00415.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of this systematic review and meta-analysis [International Prospective Register of Systematic Reviews (PROSPERO) CRD42017055619] was to assess the effects of strict prolonged bed rest (without countermeasures) on maximal oxygen uptake (V̇o2max) and to explore sources of variation therein. Since 1949, 80 studies with a total of 949 participants (>90% men) have been published with data on strict bed rest and V̇o2max. The studies were conducted mainly in young participants [median age (interquartile range) 24.5 (22.4–34.0) yr]. The duration of bed rest ranged from 1 to 90 days. V̇o2max declined linearly across bed rest duration. No statistical difference in the decline among studies reporting V̇o2max as l/min (−0.3% per day) compared with studies reporting V̇o2max normalized to body weight (ml·kg−1·min−1; −0.43% per day) was observed. Although both total body weight and lean body mass declined in response to bed rest, we did not see any associations with the decline in V̇o2max. However, 15–26% of the variation in the decline in V̇o2max was explained by the pre-bed-rest V̇o2max levels, independent of the duration of bed rest (i.e., higher pre-bed-rest V̇o2max levels were associated with larger declines in V̇o2max). Furthermore, the systematic review revealed a gap in the knowledge about the cardiovascular response to extreme physical inactivity, particularly in older subjects and women of any age group. In addition to its relevance to spaceflight, this lack of data has significant translational implications because younger women sometimes undergo prolonged periods of bed rest associated with the complications of pregnancy and the incidence of hospitalization including prolonged periods of bed rest increases with age. NEW & NOTEWORTHY Large interindividual responses of maximal oxygen uptake (V̇o2max) to aerobic exercise training exist. However, less is known about the variability in the response of V̇o2max to prolonged bed rest. This systematic review and meta-analysis showed that pre-bed-rest V̇o2max values were inversely associated with the change in V̇o2max independent of the duration of bed rest. Moreover, we identified a large knowledge gap about the causes of decline in V̇o2max, particularly in postmenopausal women, which may have clinical implications.
Collapse
Affiliation(s)
- Mathias Ried-Larsen
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark; and
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hugo M. Aarts
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Santollo J. Sex differences in angiotensin II-stimulated fluid intake. Exp Physiol 2017; 102:1380-1384. [PMID: 28714073 DOI: 10.1113/ep086518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This report describes sex differences in the responses to angiotensin II, with a focus on fluid intake. What advances does it highlight? There are conflicting reports on the direction of the sex difference in fluid intake in response to angiotensin II. This review highlights how accounting for differences in body weight contributes to the discrepancies in the literature. In certain conditions, body weight influences fluid intake in a sex-specific manner. This review also highlights the divergent effects of oestrogen receptor activation on fluid intake, which are likely to underlie the discussed sex differences. Sex has a clear effect on the renin-angiotensin-aldosterone system. Although sex differences in the pressor response to angiotensin II (Ang II) are well established, understanding of the sex differences in the fluid intake response to Ang II is clouded by conflicting reports. Here, I suggest that accounting for differences in body weight contributes to the discrepancies in the literature. Our recent findings demonstrate that body weight influences Ang II-stimulated water intake in certain conditions in male, but not in female rats. When differences in body weight are corrected for in the appropriate circumstances, we found that males consume more water in response to Ang II compared with females. Males and females also show differences in drinking microstructure, i.e. bottle spout lick patterns, which provide clues into the mechanism(s) underlying this sex difference. Oestrogens, which inhibit Ang II-stimulated fluid intake and circulate at higher concentrations in females, are likely to contribute to this sex difference. This review also discusses the diversity in oestrogen signalling via multiple oestrogen receptor subtypes, which selectively inhibit Ang II-stimulated fluid intake.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
18
|
Santollo J, Torregrossa AM, Daniels D. Sex differences in the drinking response to angiotensin II (AngII): Effect of body weight. Horm Behav 2017; 93:128-136. [PMID: 28571936 PMCID: PMC5544541 DOI: 10.1016/j.yhbeh.2017.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
Sex differences in fluid intake stimulated by angiotensin II (AngII) have been reported, but the direction of the differences is inconsistent. To resolve these discrepancies, we measured water intake by male and female rats given AngII. Males drank more than females, but when intake was normalized to body weight, the sex difference was reversed. Weight-matched males and females, however, had no difference in intake. Using a linear mixed model analysis, we found that intake was influenced by weight, sex, and AngII dose. We used linear regression to disentangle these effects further. Comparison of regression coefficients revealed sex and weight differences at high doses of AngII. Specifically, after 100ng AngII, weight was a predictor of intake in males, but not in females. Next, we tested for differences in AngII-induced intake in male and females allowed to drink both water and saline. Again, males drank more water than females, but females showed a stronger preference for saline. Drinking microstructure analysis suggested that these differences were mediated by postingestive signals and more bottle switches by the females. Finally, we probed for differences in the expression of components of the renin-angiotensin system in the brains of males and females and found sex differences in several genes in discrete brain regions. These results provide new information to help understand key sex differences in ingestive behaviors, and highlight the need for additional research to understand baseline sex differences, particularly in light of the new NIH initiative to balance sex in biomedical research.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Ann-Marie Torregrossa
- Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Derek Daniels
- Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
19
|
Early oxytocin inhibition of salt intake after furosemide treatment in rats? Physiol Behav 2017; 173:34-41. [PMID: 28131863 DOI: 10.1016/j.physbeh.2017.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022]
Abstract
Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen.
Collapse
|
20
|
Loh SY, Giribabu N, Salleh N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp Biol Med (Maywood) 2017; 242:1376-1386. [PMID: 28399644 DOI: 10.1177/1535370217703360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.
Collapse
Affiliation(s)
- Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
21
|
Nimrouzi M, Tafazoli V, Daneshfard B, Zare M. Optimal fluid intake in daily diet: Avicenna's view. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2016; 14:241-4. [DOI: 10.1016/s2095-4964(16)60262-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Santollo J, Marshall A, Curtis KS, Speth RC, Clark SD, Daniels D. Divergent effects of ERα and ERβ on fluid intake by female rats are not dependent on concomitant changes in AT1R expression or body weight. Am J Physiol Regul Integr Comp Physiol 2016; 311:R14-23. [PMID: 27122368 DOI: 10.1152/ajpregu.00102.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
Abstract
Estradiol (E2) decreases both water and saline intakes by female rats. The ERα and ERβ subtypes are expressed in areas of the brain that control fluid intake; however, the role that these receptors play in E2's antidipsogenic and antinatriorexigenic effects have not been examined. Accordingly, we tested the hypothesis that activation of ERα and ERβ decreases water and saline intakes by female rats. We found a divergence in E2's inhibitory effect on intake: activation of ERα decreased water intake, whereas activation of ERβ decreased saline intake. E2 decreases expression of the angiotensin II type 1 receptor (AT1R), a receptor with known relevance to water and salt intakes, in multiple areas of the brain where ERα and ERβ are differentially expressed. Therefore, we tested for agonist-induced changes in AT1R mRNA expression by RT-PCR and protein expression by analyzing receptor binding to test the hypothesis that the divergent effects of these ER subtypes are mediated by region-specific changes in AT1R expression. Although we found no changes in AT1R mRNA or binding in areas of the brain known to control fluid intake associated with agonist treatment, the experimental results replicate and extend previous findings that body weight changes mediate alterations in AT1R expression in distinct brain regions. Together, the results reveal selective effects of ER subtypes on ingestive behaviors, advancing our understanding of E2's inhibitory role in the controls of fluid intake by female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Anikó Marshall
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York
| | - Kathleen S Curtis
- Department of Pharmacology and Physiology, Oklahoma State University, Tulsa, Oklahoma
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida; Department of Pharmacology and Physiology, College of Medicine, Georgetown University, Washington, DC; and
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York
| | - Derek Daniels
- Department of Psychology, University at Buffalo, State University of New York, Buffalo, New York;
| |
Collapse
|
23
|
Santollo J, Daniels D. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents. Physiol Behav 2015; 152:431-7. [PMID: 26037634 DOI: 10.1016/j.physbeh.2015.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, United States
| | - Derek Daniels
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
24
|
Viljoen JE, Christie CJA. The change in motivating factors influencing commencement, adherence and retention to a supervised resistance training programme in previously sedentary post-menopausal women: a prospective cohort study. BMC Public Health 2015; 15:236. [PMID: 25884764 PMCID: PMC4362642 DOI: 10.1186/s12889-015-1543-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023] Open
Abstract
Background Understanding motivators for exercise participation in post-menopausal women may impact retention to exercise programmes and inform intervention trial designs. The purpose of this investigation was to assess self-reported motivational factors influencing adherence and retention to a 24-week progressive resistance training programme. Methods Post-menopausal females (n = 34) were passively recruited to undertake a 24-week progressive resistance training protocol, in small-group sessions, on three non-consecutive days of the week. Attendance was recorded by the researcher. Qualitative reports were sourced from the sample for four phases of the study: pre-study (prior to week 1), recruitment (week 1), during study (weeks 2 – 24), and post-intervention (beyond week 24). Responses were categorised according to ten descriptors: specific health index improvement, education, flexibility of time, social contact, conscience (loyalty to the researcher), wellness, weight management, organisation parameters (pertaining to the study programme) and enjoyment of the exercises. Results Of the initial sample, 76.5% (n = 26) met the specified ≥80% attendance criterion. The primary findings were that motivation to volunteer for the study was driven by a perceived need for a structured exercise programme (50% of respondents). A commitment to the researcher was the primary motivator for continued adherence to the study for 50% of participants. Social contact with other participants was cited by 60% of the sample as the primary reason for adherence for the full duration of 24 weeks. A desire to maintain the “wellness” derived from the programme was cited by 60% as a reason for continuing an exercise routine post-study. Conclusion This study identified that routine and supervision initially attract women to exercise programmes, while social cohesion of the group setting contributes to retention over time. Understanding the changing nature of motivating factors may contribute to better overall adherence and retention to exercise programmes and interventions.
Collapse
Affiliation(s)
- Janet Erica Viljoen
- Department of Human Kinetics and Ergonomics, Rhodes University, African Street, PO Box 94, Grahamstown, 6140, South Africa.
| | - Candice Jo-Anne Christie
- Department of Human Kinetics and Ergonomics, Rhodes University, African Street, PO Box 94, Grahamstown, 6140, South Africa.
| |
Collapse
|
25
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
26
|
Mao S, Xu H, Zou L, Xu G, Wu Z, Ding Q, Jiang H. Estrogen preserves split renal function in a chronic complete unilateral ureteral obstruction animal model. Exp Ther Med 2014; 7:1555-1562. [PMID: 24926343 PMCID: PMC4043623 DOI: 10.3892/etm.2014.1663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/25/2014] [Indexed: 01/14/2023] Open
Abstract
Estrogen may help to preserve renal function in chronic kidney disease. This study examined whether estrogen administration or deprivation affected the split renal function in rats subjected to chronic unilateral ureteral obstruction (UUO). Fifteen adult female Sprague-Dawley rats were randomly divided into three groups. Low- and high-estrogen groups were modeled by female castration or estrogen intraperitoneal injection, respectively, and the rats in the normal-estrogen group were untreated. Intermittent split renal function [glomerular filtration rate (GFR)] examination was performed on rats on days 2, 6 and 16 after UUO surgery via single-photon emission computed tomography (SPECT/CT). Routine hematoxylin and eosin (H&E) staining, immunohistochemistry, pathology examination and electron microscopy were performed to compare the histological differences. Low-, normal- and high-estrogen groups were successfully established (P<0.001). In the acute stage, the GFR of the contralateral healthy kidney showed a greater compensatory rise in the normal- and high-estrogen groups than in the low-estrogen group (P<0.05). In the chronic stage, the GFR of the obstructed kidney continued to decrease with the GFR of the high-estrogen group being significantly better preserved than that of the low-estrogen group (P<0.05). The GFR of the contralateral kidney compensated to the greatest extent in the high-estrogen group (P=0.01), and the total GFR was significantly superior (P<0.05). Routine H&E examination showed significant histological changes following surgery. The low-estrogen group had significant renal interstitial fibrosis compared with the normal- and high-estrogen groups (P<0.05), as observed by immunohistochemical (IHC) examination of transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-SMA). Electron-microscopic (EM) examination also differentiated between groups. In conclusion, estrogen administration and deprivation significantly affected renal function. Estrogen may preserve the split renal function (GFR) in rats with chronic UUO.
Collapse
Affiliation(s)
- Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hua Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Gang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
27
|
Tompuri TT, Lakka TA, Hakulinen M, Lindi V, Laaksonen DE, Kilpeläinen TO, Jääskeläinen J, Lakka H, Laitinen T. Assessment of body composition by dual‐energy
X
‐ray absorptiometry, bioimpedance analysis and anthropometrics in children: the
P
hysical
A
ctivity and
N
utrition in
C
hildren study. Clin Physiol Funct Imaging 2013; 35:21-33. [DOI: 10.1111/cpf.12118] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/15/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Tuomo T. Tompuri
- Department of Clinical Physiology and Nuclear Medicine Kuopio University Hospital University of Eastern Finland Kuopio Finland
- Department of Physiology Institute of Biomedicine University of Eastern Finland Kuopio Finland
| | - Timo A. Lakka
- Department of Clinical Physiology and Nuclear Medicine Kuopio University Hospital University of Eastern Finland Kuopio Finland
- Department of Physiology Institute of Biomedicine University of Eastern Finland Kuopio Finland
- Kuopio Research Institute of Exercise Medicine Kuopio Finland
| | - Mikko Hakulinen
- Department of Clinical Physiology and Nuclear Medicine Kuopio University Hospital University of Eastern Finland Kuopio Finland
| | - Virpi Lindi
- Department of Physiology Institute of Biomedicine University of Eastern Finland Kuopio Finland
| | - David E. Laaksonen
- Department of Internal Medicine Kuopio University Hospital Kuopio Finland
| | - Tuomas O. Kilpeläinen
- Department of Physiology Institute of Biomedicine University of Eastern Finland Kuopio Finland
- The Novo Nordisk Foundation Center for Basic Metabolic Research Section of Metabolic Genetics Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jarmo Jääskeläinen
- Department of Pediatrics Kuopio University Hospital University of Eastern Finland Kuopio Finland
| | - Hanna‐Maaria Lakka
- Department of Physiology Institute of Biomedicine University of Eastern Finland Kuopio Finland
- Finnish Medicines Agency Helsinki Finland
| | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine Kuopio University Hospital University of Eastern Finland Kuopio Finland
| |
Collapse
|
28
|
Effects of acute and subchronic AT1 receptor blockade on cardiovascular, hydromineral and neuroendocrine responses in female rats. Physiol Behav 2013; 122:104-12. [PMID: 23978402 DOI: 10.1016/j.physbeh.2013.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/28/2013] [Accepted: 08/15/2013] [Indexed: 11/23/2022]
Abstract
Female Wistar rats were ovariectomized (OVX) and separated into two groups that received either estradiol cypionate (EC, 40 μg/kg, sc; OVX-EC) or vehicle (corn oil, sc; OVX-oil) for 14 consecutive days. On the 7th day of treatment, a subset of animals from both the OVX-oil and OVX-EC groups was subjected to subchronic losartan (AT1 receptor antagonist) treatment (0.1g/L in drinking water; ~15 mg/kg/day) for 7 days. Other group of OVX-oil and OVX-EC rats was submitted to an acute losartan injection (100mg/kg, ip) on the 14th day of hormone replacement. In both protocols, the following parameters were measured: I) mean arterial pressure (MAP) and heart rate (HR); II) water and 0.3M saline intake; III) angiotensin II (ANG II), atrial natriuretic peptide (ANP), vasopressin (AVP) and oxytocin (OT) plasma concentrations; and IV) urinary and plasma sodium concentrations. Acute AT1 blockade induced a significant reduction in the MAP in the OVX rats, resulting in increased HR and water intake, which were attenuated by estradiol therapy. Acute AT1 blockade also increased ANG II and OT and reduced ANP plasma concentrations, with no changes in AVP secretion. In addition, acute hypotension was accompanied by a decrease in natriuresis, which was unaltered by estradiol. Subchronic AT1 blockade induced a significant decrease in MAP without changing HR in both groups. Additionally, subchronic losartan treatment induced sodium appetite in OVX rats. Prolonged AT1 blockade increased ANG II and AVP and reduced ANP plasma concentrations. Moreover, it increased natriuresis but did not alter plasma OT concentrations. Finally, estradiol treatment attenuated the increase in salt intake and plasma ANG II concentrations induced by subchronic AT1 blockade. In conclusion, our results suggest differential adaptive responses to the acute or subchronic losartan treatment in OVX and OVX-EC rats.
Collapse
|
29
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
30
|
Frazier CJ, Pati D, Hiller H, Nguyen D, Wang L, Smith JA, MacFadyen K, de Kloet AD, Krause EG. Acute hypernatremia exerts an inhibitory oxytocinergic tone that is associated with anxiolytic mood in male rats. Endocrinology 2013; 154:2457-67. [PMID: 23653461 PMCID: PMC3689277 DOI: 10.1210/en.2013-1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anxiety disorders are the most common psychiatric illnesses and are associated with heightened stress responsiveness. The neuropeptide oxytocin (OT) has garnered significant attention for its potential as a treatment for anxiety disorders; however, the mechanism mediating its effects on stress responses and anxiety is not well understood. Here we used acute hypernatremia, a stimulus that elevates brain levels of OT, to discern the central oxytocinergic pathways mediating stress responsiveness and anxiety-like behavior. Rats were rendered hypernatremic by acute administration of 2.0 M NaCl and had increased plasma sodium concentration, plasma osmolality, and Fos induction in OT-containing neurons relative to 0.15 M NaCl-treated controls. Acute hypernatremia decreased restraint-induced elevations in corticosterone and created an inhibitory oxytocinergic tone on parvocellular neurosecretory neurons within the paraventricular nucleus of the hypothalamus. In contrast, evaluation of Fos immunohistochemistry determined that acute hypernatremia followed by restraint increased neuronal activation in brain regions receiving OT afferents that are also implicated in the expression of anxiety-like behavior. To determine whether these effects were predictive of altered anxiety-like behavior, rats were subjected to acute hypernatremia and then tested in the elevated plus maze. Relative to controls given 0.15 M NaCl, rats given 2.0 M NaCl spent more time in the open arms of the elevated plus maze, suggesting that acute hypernatremia is anxiolytic. Collectively the results suggest that acute elevations in plasma sodium concentration increase central levels of OT, which decreases anxiety by altering neuronal activity in hypothalamic and limbic nuclei.
Collapse
Affiliation(s)
- Charles J Frazier
- Department of Pharmacodynamics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Estrogen-dependent regulation of sodium/hydrogen exchanger-3 (NHE3) expression via estrogen receptor β in proximal colon of pregnant mice. Histochem Cell Biol 2012; 137:575-87. [PMID: 22358497 DOI: 10.1007/s00418-012-0935-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 02/06/2023]
Abstract
Although constipation is very common during pregnancy, the exact mechanism is unknown. We hypothesized that the involvement of estrogen receptor (ER) in the regulation of electrolyte transporter in the colon leads to constipation. In this study, the intestines of normal female ICR mouse and pregnant mice were examined for the expression of ERα and ERβ by immunohistochemistry and in situ hybridization. ERβ, but not ERα, was expressed in surface epithelial cells of the proximal, but not distal, colon on pregnancy days 10, 15, and 18, but not day 5, and the number of ERβ-positive cells increased significantly during pregnancy. Expression of NHE3, the gene that harbors estrogen response element, examined by immunohistochemistry and western blotting, was localized in the surface epithelial cells of the proximal colon and increased in parallel with ERβ expression. In ovariectomized mice, NHE3 expression was only marginal and was up-regulated after treatment with 17β-estradiol (E(2)), but not E(2) + ICI 182,780 (estrogen receptor antagonist). Moreover, knock-down of ERβ expression by electroporetically transfected siRNA resulted in a significant reduction of NHE3 expression. These results indicate that ERβ regulates the expression of NHE3 in the proximal colon of pregnant mice through estrogen action, suggesting the involvement of increased sodium absorption by up-regulated NHE3 in constipation during pregnancy.
Collapse
|
32
|
Lucio-Oliveira F, Franci CR. Effect of the interaction between food state and the action of estrogen on oxytocinergic system activity. J Endocrinol 2012; 212:129-38. [PMID: 22083216 DOI: 10.1530/joe-11-0272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased plasma osmolality by food intake evokes augmentation of plasma oxytocin (OT). Ovarian steroids may also influence the balance of body fluids by acting on OT neurones. Our aim was to determine if estrogen influences the activity of OT neurones in paraventricular nucleus (PVN) and supraoptic nucleus (SON) under different osmotic situations. Ovariectomized rats (OVX) were treated with either estradiol (E(2)) or vehicle and were divided into three groups: group I was fed ad libitum, group II underwent 48 h of fasting, and group III was refed after 48 h of fasting. On the day of the experiment, blood samples were collected to determine the plasma osmolality and OT. The animals were subsequently perfused, and OT/FOS immunofluorescence analysis was conducted on neurones in the PVN and the SON. When compared to animals which were fasted or fed ad libitum, the plasma osmolality of refed animals was higher, regardless of whether they were treated with vehicle or E(2). We observed neural activation of OT cells in vehicle- or E(2)-treated OVX rats refed after 48 h of fasting, but not in animals fed ad libitum or in animals that only underwent 48 h of fasting. Finally, the percentage of neurones that co-expressed OT and FOS was lower in both the PVN and the SON of animals treated with E(2) and refed, when compared to vehicle-treated animals. These results suggest that E(2) may have an inhibitory effect on OT neurones and may modulate the secretion of OT in response to the increase of osmolality induced by refeeding.
Collapse
Affiliation(s)
- F Lucio-Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto - SP, Brazil
| | | |
Collapse
|
33
|
Mecawi AS, Vilhena-Franco T, Araujo IG, Reis LC, Elias LLK, Antunes-Rodrigues J. Estradiol potentiates hypothalamic vasopressin and oxytocin neuron activation and hormonal secretion induced by hypovolemic shock. Am J Physiol Regul Integr Comp Physiol 2011; 301:R905-15. [PMID: 21632848 DOI: 10.1152/ajpregu.00800.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.
Collapse
Affiliation(s)
- Andre S Mecawi
- Faculty of Medicine of Ribeirao Preto, Department of Physiology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Graves NS, Hayes H, Fan L, Curtis KS. Time course of behavioral, physiological, and morphological changes after estradiol treatment of ovariectomized rats. Physiol Behav 2011; 103:261-7. [PMID: 21324332 DOI: 10.1016/j.physbeh.2011.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 01/25/2023]
Abstract
Previous studies showed that treatment with 17-β-estradiol-3-benzoate (EB) reduces isoproterenol (ISOP) stimulated water intake by ovariectomized rats. This effect was observed 48h after the second of two EB injections, suggesting that the attenuation is attributable to classic EB actions to alter gene expression. However, in addition to classic, slowly-occurring, genomic effects, estrogens have more rapidly-occurring effects that may be nongenomic or 'nonclassical' genomic effects. Thus, it is possible that the EB attenuation of water intake stimulated by ISOP is genomic, nongenomic, or both. Accordingly, we measured ISOP-induced water intake by OVX rats at different times after EB injections, using time points likely to indicate classic genomic effects (48h or 24h) or nonclassical genomic or nongenomic effects (90min). We also examined EB effects on body weight, uterine weight, and plasma volume and Na(+) concentration in the same animals using the same time points and EB dose. EB treatment decreased water intake stimulated by ISOP in both the 24-h and 48-h groups; however, water intake in the 90-min group was not affected by EB. Uterine weight was unchanged 90min after EB, but was increased 24h after the first injection of EB. In contrast, body weight decreased after EB, but not until 48h after the second EB injection. Finally, EB did not alter plasma Na(+) concentration or hematocrit, though plasma protein concentration increased transiently 24h after EB treatment. Taken together, these findings suggest that the behavioral, morphological, and physiological effects of EB likely are attributable to slowly-occurring, classic genomic actions of estrogens. Moreover, the time course of the observed effects varied, suggesting tissue-specific differences in estrogen receptor density or subtype, or in co-activators or co-repressors that, ultimately, determine the timing and direction of EB effects.
Collapse
Affiliation(s)
- Nora S Graves
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA
| | | | | | | |
Collapse
|
35
|
Fan L, Smith CE, Curtis KS. Regional differences in estradiol effects on numbers of HSD2-containing neurons in the nucleus of the solitary tract of rats. Brain Res 2010; 1358:89-101. [PMID: 20728435 DOI: 10.1016/j.brainres.2010.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 12/15/2022]
Abstract
Estrogens affect body fluid balance, including sodium ingestion. Recent findings of a population of neurons in the hindbrain nucleus of the solitary tract (NTS) of rats that are activated during sodium need suggest a possible central substrate for this effect of estrogens. We used immunohistochemistry to label neurons in the NTS that express 11-β-hydroxysteroid dehydrogenase type 2 (HSD2), an enzyme that promotes aldosterone binding, in male rats, and in ovariectomized (OVX) rats given estradiol benzoate (EB) or oil vehicle (OIL). During baseline conditions, the number of HSD2 immunoreactive neurons in the NTS immediately rostral to the area postrema was greater in EB-treated OVX rats compared to those in OIL-treated OVX and male rats. A small number of HSD2 immunoreactive neurons was also labeled for dopamine-β-hydroxylase (DBH), an enzyme involved in norepinephrine biosynthesis. Double-labeled neurons in the NTS were located primarily in the more lateral portion of the HSD2 population, at the level of the area postrema in all three groups, with no sex or estrogen-mediated differences in the number of double-labeled neurons. These results suggest that two subpopulations of HSD2 neurons are present in the NTS. One subpopulation, which does not colocalize with DBH and is increased during conditions of elevated estradiol, may contribute to the effects of estrogens on sodium ingestion. The role of the other, smaller subpopulation, which colocalizes with DBH and is not affected by estradiol, remains to be determined, but one possibility is that these latter neurons are part of a larger network of catecholaminergic input to neuroendocrine neurons in the hypothalamus.
Collapse
Affiliation(s)
- Liming Fan
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107-1898, USA
| | | | | |
Collapse
|
36
|
Parkash J, d'Anglemont de Tassigny X, Bellefontaine N, Campagne C, Mazure D, Buée-Scherrer V, Prevot V. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle. Endocrinology 2010; 151:2723-35. [PMID: 20371700 PMCID: PMC3112171 DOI: 10.1210/en.2010-0007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Within the preoptic region, nitric oxide (NO) production varies during the ovarian cycle and has the ability to impact hypothalamic reproductive function. One mechanism for the regulation of NO release mediated by estrogens during the estrous cycle includes physical association of the calcium-activated neuronal NO synthase (nNOS) enzyme with the glutamate N-methyl-d-aspartate (NMDA) receptor channels via the postsynaptic density 95 scaffolding protein. Here we demonstrate that endogenous variations in estrogens levels during the estrous cycle also coincide with corresponding changes in the state of nNOS Ser1412 phosphorylation, the level of association of this isoform with the NMDA receptor/postsynaptic density 95 complex at the plasma membrane, and the activity of NO synthase (NOS). Neuronal NOS Ser1412 phosphorylation is maximal on the afternoon of proestrus when both the levels of estrogens and the physical association of nNOS with NMDA receptors are highest. Estradiol mimicked these effects in ovariectomized (OVX) rats. In addition, the catalytic activity of NOS in membrane protein extracts from the preoptic region, i.e. independent of any functional protein-protein interactions or cell-cell signaling, was significantly increased in estradiol-treated OVX rats compared with OVX rats. Finally, lambda phosphatase-mediated nNOS dephosphorylation dramatically impaired NOS activity in preoptic region protein extracts, thus demonstrating the important role of phosphorylation in the regulation of NO production in the preoptic region. Taken together, these results yield new insights into the regulation of neuron-derived NO production by gonadal steroids within the preoptic region and raise the possibility that changes in nNOS phosphorylation during fluctuating physiological conditions may be involved in the hypothalamic control of key neuroendocrine functions, such as reproduction.
Collapse
Affiliation(s)
- Jyoti Parkash
- Institut National de la Santé et de la Recherche Médicale, Unité, Bâtiment Biserte, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | | | |
Collapse
|