1
|
Maxwell ND, Smiley CE, Sadek AT, Loyo-Rosado FZ, Giles DC, Macht VA, Woodruff JL, Taylor DL, Glass VM, Wilson SP, Reagan LP, Fadel JR, Grillo CA. Leptin Activation of Dorsal Raphe Neurons Inhibits Feeding Behavior. Diabetes 2024; 73:1821-1831. [PMID: 39167681 PMCID: PMC11493758 DOI: 10.2337/db24-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Leptin is a homeostatic regulatory element that signals the presence of adipocyte energy stores, reduces food intake, and increases energy expenditure. Similarly, serotonin (5-HT), a signaling molecule found in both the central and peripheral nervous systems, also controls food intake. Using neuronal tract tracing, pharmacologic and optogenetic approaches, and in vivo microdialysis, combined with behavioral end points, we tested the hypothesis that leptin controls food intake not only by activating hypothalamic leptin receptors (LepRs) but also through activation of LepRs expressed by serotonergic raphe neurons that send projections to the arcuate (ARC). We showed that microinjection of leptin directly into the dorsal raphe nucleus (DRN) reduced food intake in rats. This effect was mediated by LepR-expressing neurons in the DRN, because selective optogenetic activation of these neurons at either their DRN cell bodies or their ARC terminals reduced food intake. Anatomically, we identified a unique population of serotonergic raphe neurons expressing LepRs that send projections to the ARC. Finally, by using in vivo microdialysis, we showed that leptin administration to the DRN increased 5-HT efflux into the ARC, and specific antagonism of the 5-HT2C receptors in the ARC diminished the leptin anorectic effect. Overall, this study identified a novel circuit for leptin-mediated control of food intake through a DRN-ARC pathway, identifying a new level of interaction between leptin and serotonin to control food intake. Characterization of this new pathway creates opportunities for understanding how the brain controls eating behavior and opens alternative routes for the treatment of eating disorders. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas David Maxwell
- School of Medicine, University of South Carolina, Columbia, SC
- School of Medicine, Duke University, Durham, NC
| | - Cora Erin Smiley
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | | | | | | | | | | | | | | | - Lawrence Patrick Reagan
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | | | - Claudia Alejandra Grillo
- School of Medicine, University of South Carolina, Columbia, SC
- William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
2
|
Shiadeh SMJ, Goretta F, Svedin P, Jansson T, Mallard C, Ardalan M. Long-term impact of maternal obesity on the gliovascular unit and ephrin signaling in the hippocampus of adult offspring. J Neuroinflammation 2024; 21:39. [PMID: 38308309 PMCID: PMC10837922 DOI: 10.1186/s12974-024-03030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Children born to obese mothers are at increased risk of developing mood disorders and cognitive impairment. Experimental studies have reported structural changes in the brain such as the gliovascular unit as well as activation of neuroinflammatory cells as a part of neuroinflammation processing in aged offspring of obese mothers. However, the molecular mechanisms linking maternal obesity to poor neurodevelopmental outcomes are not well established. The ephrin system plays a major role in a variety of cellular processes including cell-cell interaction, synaptic plasticity, and long-term potentiation. Therefore, in this study we determined the impact of maternal obesity in pregnancy on cortical, hippocampal development, vasculature and ephrin-A3/EphA4-signaling, in the adult offspring in mice. METHODS Maternal obesity was induced in mice by a high fat/high sugar Western type of diet (HF/HS). We collected brain tissue (prefrontal cortex and hippocampus) from 6-month-old offspring of obese and lean (control) dams. Hippocampal volume, cortical thickness, myelination of white matter, density of astrocytes and microglia in relation to their activity were analyzed using 3-D stereological quantification. mRNA expression of ephrin-A3, EphA4 and synaptic markers were measured by qPCR in the brain tissue. Moreover, expression of gap junction protein connexin-43, lipocalin-2, and vascular CD31/Aquaporin 4 were determined in the hippocampus by immunohistochemistry. RESULTS Volume of hippocampus and cortical thickness were significantly smaller, and myelination impaired, while mRNA levels of hippocampal EphA4 and post-synaptic density (PSD) 95 were significantly lower in the hippocampus in the offspring of obese dams as compared to offspring of controls. Further analysis of the hippocampal gliovascular unit indicated higher coverage of capillaries by astrocytic end-feet, expression of connexin-43 and lipocalin-2 in endothelial cells in the offspring of obese dams. In addition, offspring of obese dams demonstrated activation of microglia together with higher density of cells, while astrocyte cell density was lower. CONCLUSION Maternal obesity affects brain size, impairs myelination, disrupts the hippocampal gliovascular unit and decreases the mRNA expression of EphA4 and PSD-95 in the hippocampus of adult offspring. These results indicate that the vasculature-glia cross-talk may be an important mediator of altered synaptic plasticity, which could be a link between maternal obesity and neurodevelopmental/neuropsychiatric disorders in the offspring.
Collapse
Affiliation(s)
- Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Fanny Goretta
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
5
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
6
|
Reagan L, Cowan H, Woodruff J, Piroli G, Erichsen J, Evans A, Burzynski H, Maxwell N, Loyo-Rosado F, Macht V, Grillo C. Hippocampal-specific insulin resistance elicits behavioral despair and hippocampal dendritic atrophy. Neurobiol Stress 2021; 15:100354. [PMID: 34258333 PMCID: PMC8252121 DOI: 10.1016/j.ynstr.2021.100354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/02/2023] Open
Abstract
Insulin resistance is a major contributor to the neuroplasticity deficits observed in patients with metabolic disorders. However, the relative contribution of peripheral versus central insulin resistance in the development of neuroplasticity deficits remains equivocal. To distinguish between peripheral and central insulin resistance, we developed a lentiviral vector containing an antisense sequence selective for the insulin receptor (LV-IRAS). We previously demonstrated that intra-hippocampal injection of this vector impairs synaptic transmission and hippocampal-dependent learning and memory in the absence of peripheral insulin resistance. In view of the increased risk for the development of neuropsychiatric disorders in patients with insulin resistance, the current study examined depressive and anxiety-like behaviors, as well as hippocampal structural plasticity in rats with hippocampal-specific insulin resistance. Following hippocampal administration of either the LV-control virus or the LV-IRAS, anhedonia was evaluated by the sucrose preference test, despair behavior was assessed in the forced swim test, and anxiety-like behaviors were determined in the elevated plus maze. Hippocampal neuron morphology was studied by Golgi-Cox staining. Rats with hippocampal insulin resistance exhibited anxiety-like behaviors and behavioral despair without differences in anhedonia, suggesting that some but not all components of depressive-like behaviors were affected. Morphologically, hippocampal-specific insulin resistance elicited atrophy of the basal dendrites of CA3 pyramidal neurons and dentate gyrus granule neurons, and also reduced the expression of immature dentate gyrus granule neurons. In conclusion, hippocampal-specific insulin resistance elicits structural deficits that are accompanied by behavioral despair and anxiety-like behaviors, identifying hippocampal insulin resistance as a key factor in depressive illness.
Collapse
Affiliation(s)
- L.P. Reagan
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.B. Cowan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.L. Woodruff
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - G.G. Piroli
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - J.M. Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - A.N. Evans
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - H.E. Burzynski
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - N.D. Maxwell
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - F.Z. Loyo-Rosado
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - V.A. Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| | - C.A. Grillo
- Columbia VA Health Care System, Columbia, SC, 29209, USA
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29209, USA
| |
Collapse
|
7
|
Alkan I, Altunkaynak BZ, Gültekin Gİ, Bayçu C. Hippocampal neural cell loss in high-fat diet-induced obese rats-exploring the protein networks, ultrastructure, biochemical and bioinformatical markers. J Chem Neuroanat 2021; 114:101947. [PMID: 33766576 DOI: 10.1016/j.jchemneu.2021.101947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity, which has become one of the main health problems, results from irregular and unhealthy nutrition. In particular, an increase in the intake of high-fat foods leads to obesity and associated disorders. It is noteworthy to specify that obese individuals have memory problems. This study aims to examine the effects of high-fat diet on hippocampus, with stereological, histopathological methods and STRING bioinformatic tool. METHODS Female Adult Sprague Dawley rats (n = 20) were equally divided into control (CONT) and high-fat diet (HFD) groups. The control group was given standard rat pellet feed, while the high-fat diet group was fed with a 40 % fat content for 2 months. Following the feeding program, rats were sacrificed. The collected blood samples were analyzed biochemically to determine the level of oxidative stress while performing a stereological and histopathological examination of the brain tissues. Functional protein-protein networks for BDNF, C-Fos, CAT, LPO, SOD and MPO by gene ontology (GO) enrichment analysis were evaluated. FINDINGS The number of neurons decreased in the HFD group compared to the CONT group. Damage to the histological structure of the hippocampus region; such as degenerate neurons, damaged mitochondria and extended cisterns of the endoplasmic reticulum was observed. Although C-Fos level and oxidative stress parameters increased in HFD group, BDNF level decreased. While BDNF and C-Fos were observed in pathways related to neuron death, oxidative stress and memory, BDNF was pronounced in the mitochondria, and C-Fos in the endoplasmic reticulum. DISCUSSION This study shows that changes in both BDNF and C-Fos levels in obesity due to high-fat diet increase oxidative stress and cause neuron damage in the hippocampus.
Collapse
Affiliation(s)
- Işınsu Alkan
- Dept of Basic Medical Sciences, Dentistry Faculty, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Berrin Zuhal Altunkaynak
- Depts of Histology and Embryology and Physiology Departments, Medical Faculty, Istanbul Okan University, İstanbul, Turkey.
| | - Güldal İnal Gültekin
- Physiology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| | - Cengiz Bayçu
- Histology Department, Medical Faculty, Istanbul Okan University, İstanbul, Turkey
| |
Collapse
|
8
|
Barrios-Rivera A, Juárez-Tapia C, Carmona-Castro A, Bosques-Tistler T, Miranda-Anaya M. Obese mice Neotomodon alstoni show learning impairment in Morris Water Maze test, differences between midday and midnight. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2019.1566991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alejandra Barrios-Rivera
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Cinthia Juárez-Tapia
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Agustín Carmona-Castro
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Teresa Bosques-Tistler
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, México
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, México
| |
Collapse
|
9
|
Sui SX, Pasco JA. Obesity and Brain Function: The Brain-Body Crosstalk. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E499. [PMID: 32987813 PMCID: PMC7598577 DOI: 10.3390/medicina56100499] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Dementia comprises a wide range of progressive and acquired neurocognitive disorders. Obesity, defined as excessive body fat tissue, is a common health issue world-wide and a risk factor for dementia. The adverse effects of obesity on the brain and the central nervous system have been the subject of considerable research. The aim of this review is to explore the available evidence in the field of body-brain crosstalk focusing on obesity and brain function, to identify the major research measurements and methodologies used in the field, to discuss the potential risk factors and biological mechanisms, and to identify the research gap as a precursor to systematic reviews and empirical studies in more focused topics related to the obesity-brain relationship. To conclude, obesity appears to be associated with reduced brain function. However, obesity is a complex health condition, while the human brain is the most complicated organ, so research in this area is difficult. Inconsistency in definitions and measurement techniques detract from the literature on brain-body relationships. Advanced techniques developed in recent years are capable of improving investigations of this relationship.
Collapse
Affiliation(s)
- Sophia X. Sui
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia;
| | - Julie A. Pasco
- IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia;
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Barwon Health, Geelong, VIC 3220, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC 3181, Australia
| |
Collapse
|
10
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Obesity is Associated with Reduced Plasticity of the Human Motor Cortex. Brain Sci 2020; 10:brainsci10090579. [PMID: 32839377 PMCID: PMC7564681 DOI: 10.3390/brainsci10090579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is characterised by excessive body fat and is associated with several detrimental health conditions, including cardiovascular disease and diabetes. There is some evidence that people who are obese have structural and functional brain alterations and cognitive deficits. It may be that these neurophysiological and behavioural consequences are underpinned by altered plasticity. This study investigated the relationship between obesity and plasticity of the motor cortex in people who were considered obese (n = 14, nine males, aged 35.4 ± 14.3 years) or healthy weight (n = 16, seven males, aged 26.3 ± 8.5 years). A brain stimulation protocol known as continuous theta burst transcranial magnetic stimulation was applied to the motor cortex to induce a brief suppression of cortical excitability. The suppression of cortical excitability was quantified using single-pulse transcranial magnetic stimulation to record and measure the amplitude of the motor evoked potential in a peripheral hand muscle. Therefore, the magnitude of suppression of the motor evoked potential by continuous theta burst stimulation was used as a measure of the capacity for plasticity of the motor cortex. Our results demonstrate that the healthy-weight group had a significant suppression of cortical excitability following continuous theta burst stimulation (cTBS), but there was no change in excitability for the obese group. Comparing the response to cTBS between groups demonstrated that there was an impaired plasticity response for the obese group when compared to the healthy-weight group. This might suggest that the capacity for plasticity is reduced in people who are obese. Given the importance of plasticity for human behaviour, our results add further emphasis to the potentially detrimental health effects of obesity.
Collapse
|
12
|
Glendining KA, Higgins MBA, Fisher LC, Jasoni CL. Maternal obesity modulates sexually dimorphic epigenetic regulation and expression of leptin receptor in offspring hippocampus. Brain Behav Immun 2020; 88:151-160. [PMID: 32173454 DOI: 10.1016/j.bbi.2020.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity during pregnancy is associated with a greater risk for obesity and neurodevelopmental deficits in offspring. This developmental programming of disease is proposed to involve neuroendocrine, inflammatory, and epigenetic factors during gestation that disrupt normal fetal brain development. The hormones leptin and insulin are each intrinsically linked to metabolism, inflammation, and neurodevelopment, which led us to hypothesise that maternal obesity may disrupt leptin or insulin receptor signalling in the developing brain of offspring. Using a C57BL/6 mouse model of high fat diet-induced maternal obesity (mHFD), we performed qPCR to examine leptin receptor (Lepr) and insulin receptor (Insr) gene expression in gestational day (GD) 17.5 fetal brain. We found a significant effect of maternal diet and offspring sex on Lepr regulation in the developing hippocampus, with increased Lepr expression in female mHFD offspring (p < 0.05) compared to controls. Maternal diet did not alter hippocampal Insr in the fetal brain, or Lepr or Insr in prefrontal cortex, amygdala, or hypothalamus of female or male offspring. Chromatin immunoprecipitation revealed decreased binding of histones possessing the repressive histone mark H3K9me3 at the Lepr promoter (p < 0.05) in hippocampus of female mHFD offspring compared to controls, but not in males. Sex-specific deregulation of Lepr could be reproduced in vitro by exposing female hippocampal neurons to the obesity related proinflammatory cytokine IL-6, but not IL-17a or IFNG. Our findings indicate that the obesity-related proinflammatory cytokine IL-6 during pregnancy leads to sexually dimorphic changes in the modifications of histones binding at the Lepr gene promoter, and concomitant changes to Lepr transcription in the developing hippocampus. This suggests that exposure of the fetus to metabolic inflammatory molecules can impact epigenetic regulation of gene expression in the developing hippocampus.
Collapse
Affiliation(s)
- K A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - M B A Higgins
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - L C Fisher
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - C L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Martinez-Pena Y Valenzuela I, Akaaboune M. The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice. Mol Metab 2020; 36:100979. [PMID: 32283080 PMCID: PMC7182767 DOI: 10.1016/j.molmet.2020.100979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Objective A sustained high fat diet in mice mimics many features of human obesity. We used male and female Non-Swiss albino mice to investigate the impact of short and long-term high-fat diet-(HFD)-induced obesity on the peripheral neuromuscular junction (NMJ) and whether obesity-related synaptic structural alterations were reversible after switching obese mice from HFD to a standard fat diet (SD). Methods HFD-induced obese and age-matched control mice fed SD were used. We carried out in vivo time lapse imaging to monitor changes of synapses over time, quantitative fluorescence imaging to study the regulation of acetylcholine receptor number and density at neuromuscular junctions, and high resolution confocal microscope to study structural alterations in both the pre- and postsynaptic apparatus. Results Time-lapse imaging in vivo over a 9 month period revealed that NMJs of HFD obese male mice display a variety of obesity-related structural alterations, including the disappearance of large synaptic areas, significant reduction in the density/number of nicotinic acetylcholine receptor (AChRs), abnormal distribution of AChRs, high turnover rate of AChRs, retraction of axons from lost postsynaptic sites, and partially denervated synapses. The severity of these synaptic alterations is associated with the duration of obesity. However, no substantial alterations were observed at NMJs of age-matched HFD obese female mice or male mice fed with a standard or low fat diet. Intriguingly, when obese male mice were switched from HFD to a standard diet, receptor density and the abnormal pattern of AChR distribution were completely reversed to normal, whereas lost synaptic structures were not restored. Conclusions These results show that the obese male mice are more vulnerable than female mice to the impacts of long-term HFD on the NMJ damage and provide evidence that diet restriction can partially reverse obesity-related synaptic changes. Neuromuscular junctions of High-fat induced obese male mice display a variety of obesity-related structural alterations. The severity of alterations in neuromuscular junction morphology is associated with the duration of obesity. Neuromuscular junctions of High-fat diet induced obese female mice display no substantial morphological changes. Not all obesity-related synaptic alterations were reversible after switching male mice from High-fat diet to standard diet. Obese male mice are more vulnerable than female mice to the impacts of long-term HFD on the neuromuscular junction damage.
Collapse
Affiliation(s)
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, USA; Program in Neuroscience, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des 2020; 26:2416-2425. [PMID: 32156228 DOI: 10.2174/1381612826666200310145006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective. In this context, research carried out during the last two decades has evidenced the link between feeding behaviour/nutritional habits and cognitive processes, and has highlighted the impact of circadian disorders on cognitive decline. All that has allowed hypothesizing a tight relationship between nutritional factors, chronobiology, and cognition. In this connection, experimental diets containing elevated amounts of fat and sugar (high-fat diets; HFDs) have been shown to alter in rodents the circadian distribution of meals, and to have a negative impact on cognition and motivational aspects of behaviour that disappear when animals are forced to adhere to a standard temporal eating pattern. In this review, we will present relevant studies focussing on the effect of HFDs on cognitive aspects of behaviour, paying particular attention to the influence that chronobiological alterations caused by these diets may have on hippocampaldependent cognition.
Collapse
Affiliation(s)
- Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nuria D Olmo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
15
|
Macht VA, Woodruff JL, Maissy ES, Grillo CA, Wilson MA, Fadel JR, Reagan LP. Pyridostigmine bromide and stress interact to impact immune function, cholinergic neurochemistry and behavior in a rat model of Gulf War Illness. Brain Behav Immun 2019; 80:384-393. [PMID: 30953774 PMCID: PMC6790976 DOI: 10.1016/j.bbi.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is characterized by a constellation of symptoms that includes cognitive dysfunction. While the causes for GWI remain unknown, prophylactic use of the acetylcholinesterase inhibitor pyridostigmine bromide (PB) in combination with the stress of deployment has been proposed to be among the causes of the cognitive dysfunction in GWI. Mechanistically, clinical studies suggest that altered immune function may be an underlying factor in the neurochemical and neurobehavioral complications of GWI. Accordingly, the goal of this study was to determine how responses to an immune challenge (lipopolysaccharide; LPS) or stress impacts inflammation, acetylcholine (ACh) neurochemistry and behavior in an experimental model of GWI. Rats with a history of PB treatment exhibited potentiated increases in C-reactive protein levels in response to a submaximal LPS challenge compared to control rats, indicating that prior treatment with this cholinesterase inhibitor leads to exacerbated inflammatory responses to a subsequent immune challenge. ACh responses to LPS administration were decreased in the hippocampus, but not prefrontal cortex (PFC), in rats with a prior history of PB treatment or stress exposure. Additionally, ACh release in response to acute immobilization stress was attenuated in the PFC and hippocampus in these groups. These attenuated cholinergic responses were accompanied by impairments in contextual and cue-based fear learning. The results of this study suggest that stress and LPS challenges adversely affect central ACh neurochemistry in a rodent model of GWI and support the hypothesis that dysregulated immune responses are mechanistically linked to the neurological complications of GWI.
Collapse
Affiliation(s)
- V A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States.
| | - J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - E S Maissy
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; University of South Carolina, Department of Psychology, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States
| | - J R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, United States; Wm. Jennings Bryant Dorn VA Medical Center, Columbia, SC, United States.
| |
Collapse
|
16
|
Cordner ZA, Khambadkone SG, Boersma GJ, Song L, Summers TN, Moran TH, Tamashiro KLK. Maternal high-fat diet results in cognitive impairment and hippocampal gene expression changes in rat offspring. Exp Neurol 2019; 318:92-100. [PMID: 31051155 DOI: 10.1016/j.expneurol.2019.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Consumption of a high-fat diet has long been known to increase risk for obesity, diabetes, and the metabolic syndrome. Further evidence strongly suggests that these same metabolic disorders are associated with an increased risk of cognitive impairment later in life. Now faced with an expanding global burden of obesity and increasing prevalence of dementia due to an aging population, understanding the effects of high-fat diet consumption on cognition is of increasingly critical importance. Further, the developmental origins of many adult onset neuropsychiatric disorders have become increasingly clear, indicating a need to investigate effects of various risk factors, including diet, across the lifespan. Here, we use a rat model to assess the effects of maternal diet during pregnancy and lactation on cognition and hippocampal gene expression of offspring. Behaviorally, adult male offspring of high-fat fed dams had impaired object recognition memory and impaired spatial memory compared to offspring of chow-fed dams. In hippocampus, we found decreased expression of Insr, Lepr, and Slc2a1 (GLUT1) among offspring of high-fat fed dams at postnatal day 21. The decreased expression of Insr and Lepr persisted at postnatal day 150. Together, these data provide additional evidence to suggest that maternal exposure to high-fat diet during pregnancy and lactation can have lasting effects on the brain, behavior, and cognition on adult offspring.
Collapse
Affiliation(s)
- Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Gretha J Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Lin Song
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Tyler N Summers
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Grillo CA, Woodruff JL, Macht VA, Reagan LP. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 2019; 318:71-77. [PMID: 31028829 DOI: 10.1016/j.expneurol.2019.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
In the periphery insulin plays a critical role in the regulation of metabolic homeostasis by stimulating glucose uptake into peripheral organs. In the central nervous system (CNS), insulin plays a critical role in the formation of neural circuits and synaptic connections from the earliest stages of development and facilitates and promotes neuroplasticity in the adult brain. Beyond these physiological roles of insulin, a shared feature between the periphery and CNS is that decreases in insulin receptor activity and signaling (i.e. insulin resistance) contributes to the pathological consequences of type 2 diabetes (T2DM) and obesity. Indeed, clinical and preclinical studies illustrate that CNS insulin resistance elicits neuroplasticity deficits that lead to decreases in cognitive function and increased risk of neuropsychiatric disorders. The goals of this review are to provide an overview of the literature that have identified the neuroplasticity deficits observed in T2DM and obesity, as well as to discuss the potential causes and consequences of insulin resistance in the CNS, with a particular focus on how insulin resistance impacts hippocampal neuroplasticity. Interestingly, studies that have examined the effects of hippocampal-specific insulin resistance illustrate that brain insulin resistance may impair neuroplasticity independent of peripheral insulin resistance, thereby supporting the concept that restoration of brain insulin activity is an attractive therapeutic strategy to ameliorate or reverse cognitive decline observed in patients with CNS insulin resistance such as T2DM and Alzheimer's Disease.
Collapse
Affiliation(s)
- Claudia A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Jennifer L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Victoria A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, & Neuroscience, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
18
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Ross A, Barnett N, Faulkner A, Hannapel R, Parent MB. Sucrose ingestion induces glutamate AMPA receptor phosphorylation in dorsal hippocampal neurons: Increased sucrose experience prevents this effect. Behav Brain Res 2019; 359:792-798. [PMID: 30076854 PMCID: PMC6594687 DOI: 10.1016/j.bbr.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
Abstract
Evidence suggests that meal-related memory influences later eating behavior. Memory can serve as a powerful mechanism for controlling eating behavior because it provides a record of recent intake that likely outlasts most physiological signals generated by ingestion. Dorsal (dHC) and ventral hippocampal (vHC) neurons are critical for memory, and we demonstrated previously that they limit energy intake during the postprandial period. If dHC or vHC neurons control intake through a process that requires memory, then ingestion should increase events necessary for synaptic plasticity in dHC and vHC during the postprandial period. To test this, we determined whether ingesting a sucrose solution induced posttranslational events critical for hippocampal synaptic plasticity: phosphorylation of AMPAR GluA1 subunits at 1) serine 831 (pSer831) and 2) serine 845 (pSer845). We also examined whether increasing the amount of previous experience with the sucrose solution, which would be expected to decrease the mnemonic demand involved in an ingestion bout, would also attenuate sucrose-induced phosphorylation. Quantitative immunoblotting of dHC and vHC membrane fractions demonstrated that sucrose ingestion increased postprandial pSer831 in dHC but not vHC. Increased previous sucrose experience prevented sucrose-induced dHC pSer831. Sucrose ingestion did not affect pSer845 in either dHC or vHC. Thus, the present findings show that ingestion activates a postranslational event necessary for synaptic plasticity in an experience-dependent manner, which is consistent with the hypothesis that dHC neurons form a memory of a meal during the postprandial period.
Collapse
Affiliation(s)
- Amy Ross
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Nicolette Barnett
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Alexa Faulkner
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302, United States.
| |
Collapse
|
20
|
Hannapel R, Ramesh J, Ross A, LaLumiere RT, Roseberry AG, Parent MB. Postmeal Optogenetic Inhibition of Dorsal or Ventral Hippocampal Pyramidal Neurons Increases Future Intake. eNeuro 2019; 6:ENEURO.0457-18.2018. [PMID: 30693314 PMCID: PMC6348449 DOI: 10.1523/eneuro.0457-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023] Open
Abstract
Memory of a recently eaten meal can serve as a powerful mechanism for controlling future eating behavior because it provides a record of intake that likely outlasts most physiological signals generated by the meal. In support, impairing the encoding of a meal in humans increases the amount ingested at the next eating episode. However, the brain regions that mediate the inhibitory effects of memory on future intake are unknown. In the present study, we tested the hypothesis that dorsal hippocampal (dHC) and ventral hippocampal (vHC) glutamatergic pyramidal neurons play a critical role in the inhibition of energy intake during the postprandial period by optogenetically inhibiting these neurons at specific times relative to a meal. Male Sprague Dawley rats were given viral vectors containing CaMKIIα-eArchT3.0-eYFP or CaMKIIα-GFP and fiber optic probes into dHC of one hemisphere and vHC of the other. Compared to intake on a day in which illumination was not given, inhibition of dHC or vHC glutamatergic neurons after the end of a chow, sucrose, or saccharin meal accelerated the onset of the next meal and increased the amount consumed during that next meal when the neurons were no longer inhibited. Inhibition given during a meal did not affect the amount consumed during that meal or the next one but did hasten meal initiation. These data show that dHC and vHC glutamatergic neuronal activity during the postprandial period is critical for limiting subsequent ingestion and suggest that these neurons inhibit future intake by consolidating the memory of the preceding meal.
Collapse
Affiliation(s)
- Reilly Hannapel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Janavi Ramesh
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Amy Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Aaron G. Roseberry
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Department of Biology, Georgia State University, Atlanta, GA 30303
| | - Marise B. Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Department of Psychology, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
21
|
Del Olmo N, Ruiz-Gayo M. Influence of High-Fat Diets Consumed During the Juvenile Period on Hippocampal Morphology and Function. Front Cell Neurosci 2018; 12:439. [PMID: 30515083 PMCID: PMC6255817 DOI: 10.3389/fncel.2018.00439] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
The negative impact of obesity on neurocognitive functioning is an issue of increasing clinical interest. Over the last decade, a number of studies have analyzed the influence of high-fat diets (HFDs) on cognitive performance, particularly in adolescent individuals. Different approaches, including behavioral, neurochemical, electrophysiological and morphological studies, have been developed to address the effect of HFDs on neural processes interfering with learning and memory skills in rodents. Many of the studies have focused on learning and memory related to the hippocampus and the mechanisms underlying these processes. The goal of the current review article is to highlight the relationship between hippocampal learning/memory deficits and nutritional/endocrine inputs derived from HFDs consumption, with a special emphasis on research showing the effect of HFDs intake during the juvenile period. We have also reviewed recent research regarding the effect of HFDs on hippocampal neurotransmission. An overview of research suggesting the involvement of fatty acid (FA) receptor-mediated signaling pathways in memory deficits triggered by HFDs is also provided. Finally, the role of leptin and HFD-evoked hyperleptinemia is discussed.
Collapse
Affiliation(s)
- Nuria Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
22
|
Macht VA, Woodruff JL, Grillo CA, Wood CS, Wilson MA, Reagan LP. Pathophysiology in a model of Gulf War Illness: Contributions of pyridostigmine bromide and stress. Psychoneuroendocrinology 2018; 96:195-202. [PMID: 30041099 DOI: 10.1016/j.psyneuen.2018.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
During the Gulf War, prophylactic treatment with pyridostigmine bromide (PB) along with the stress of deployment may have caused unexpected alterations in neural and immune function, resulting in a host of cognitive deficits which have become clinically termed Gulf War Illness (GWI). In order to test this interaction between PB and stress, the following study used a rodent model of GWI to examine how combinations of repeated restraint stress and PB induced alterations of peripheral cholinesterase (ChE) activity, corticosterone (CORT) levels, and cytokines on the last day of treatment, and then 10 days and three months post-treatment. Results indicate that PB decreases ChE activity acutely but sensitizes it by three months post-treatment selectively in rats subjected to stress. Similarly, while stress increased CORT levels acutely, rats in the PB/stressed condition continued to exhibit elevations in CORT at the delayed time point, indicating that PB and stress interact to progressively disrupt homeostasis in several peripheral measures. Because memory deficits are also common in clinical populations with GWI, we examined the effects of PB and stress on contextual fear conditioning. PB exacerbates stress-induced impairments in contextual fear conditioning ten days post-treatment, but protects against stress-induced augmentation of contextual fear conditioning at three months post-treatment. Collectively, these results provide critical insight as to how PB and stress may interact to contribute to the pathophysiological progression of GWI.
Collapse
Affiliation(s)
- V A Macht
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; University of South Carolina, Department of Psychology, Columbia, SC, USA
| | - J L Woodruff
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - C A Grillo
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - C S Wood
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA
| | - M A Wilson
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; University of South Carolina, Department of Psychology, Columbia, SC, USA; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA
| | - L P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, USA; Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
23
|
Casquero-Veiga M, García-García D, Pascau J, Desco M, Soto-Montenegro ML. Stimulating the nucleus accumbens in obesity: A positron emission tomography study after deep brain stimulation in a rodent model. PLoS One 2018; 13:e0204740. [PMID: 30261068 PMCID: PMC6160153 DOI: 10.1371/journal.pone.0204740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The nucleus accumbens (NAcc) has been suggested as a possible target for deep brain stimulation (DBS) in the treatment of obesity. Our hypothesis was that NAcc-DBS would modulate brain regions related to reward and food intake regulation, consequently reducing the food intake and, finally, the weight gain. Therefore, we examined changes in brain glucose metabolism, weight gain and food intake after NAcc-DBS in a rat model of obesity. PROCEDURES Electrodes were bilaterally implanted in 2 groups of obese Zucker rats targeting the NAcc. One group received stimulation one hour daily during 15 days, while the other remained as control. Weight and daily consumption of food and water were everyday registered the days of stimulation, and twice per week during the following month. Positron emission tomography (PET) studies with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) were performed 1 day after the end of DBS. PET data was assessed by statistical parametric mapping (SPM12) software and region of interest (ROI) analyses. RESULTS NAcc-DBS lead to increased metabolism in the cingulate-retrosplenial-parietal association cortices, and decreased metabolism in the NAcc, thalamic and pretectal nuclei. Furthermore, ROIs analyses confirmed these results by showing a significant striatal and thalamic hypometabolism, and a cortical hypermetabolic region. However, NAcc-DBS did not induce a decrease in either weight gain or food intake. CONCLUSIONS NAcc-DBS led to changes in the metabolism of regions associated with cognitive and reward systems, whose impairment has been described in obesity.
Collapse
Affiliation(s)
| | | | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
24
|
Nguyen TTL, Chan LC, Borreginne K, Kale RP, Hu C, Tye SJ. A review of brain insulin signaling in mood disorders: From biomarker to clinical target. Neurosci Biobehav Rev 2018; 92:7-15. [PMID: 29758232 DOI: 10.1016/j.neubiorev.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Patients with mood disorders are at increased risk for metabolic dysfunction. Co-occurrence of the two conditions is typically associated with a more severe disease course and poorer treatment outcomes. The specific pathophysiological mechanisms underlying this bidirectional relationship between mood and metabolic dysfunction remains poorly understood. However, it is likely that impairment of metabolic processes within the brain play a critical role. The insulin signaling pathway mediates metabolic homeostasis and is important in the regulation of neurotrophic and synaptic plasticity processes, including those involved in neurodegenerative diseases like Alzheimer's. Thus, insulin signaling in the brain may serve to link metabolic function and mood. Central insulin signaling is mediated through locally secreted insulin and widespread insulin receptor expression. Here we review the preclinical and clinical data addressing the relationships between central insulin signaling, cellular metabolism, neurotrophic processes, and mood regulation, including key points of mechanistic overlap. These relationships have important implications for developing biomarker-based diagnostics and precision medicine approaches to treat severe mood disorders.
Collapse
Affiliation(s)
- Thanh Thanh L Nguyen
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Biology and Psychology, Green Mountain College, 1 Brennan Cir, Poultney, VT, 05764, United States
| | - Lily C Chan
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Kristin Borreginne
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Rajas P Kale
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; School of Engineering, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Psychiatry, University of Minnesota, 3 Morrill Hall, 100 Church Street SE, Minneapolis, MN, 55454, United States; School of Psychology, Deakin University, Burwood, VIC, 3125, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
25
|
Park HS, Cho HS, Kim TW. Physical exercise promotes memory capability by enhancing hippocampal mitochondrial functions and inhibiting apoptosis in obesity-induced insulin resistance by high fat diet. Metab Brain Dis 2018; 33:283-292. [PMID: 29185193 DOI: 10.1007/s11011-017-0160-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
A high-fat diet induces obesity in mice, leading to insulin resistance, decreased mitochondrial function, and increased apoptosis in the hippocampus, which eventually result in memory loss. The present study investigated the effect of physical exercise on memory, hippocampal mitochondrial function, and apoptosis in mice with in insulin resistance caused by obesity due to high-fat diet. Mice were randomly divided into four groups: control (CON), control and exercise (CON + EX), high fat diet (HFD), and high fat diet and exercise (HFD + EX). After receiving a high-fat (60%) diet for 20 weeks to induce obesity, the animals were subjected to an exercise routine 6 times per week, for 12 weeks. The exercise duration and intensity gradually increased over 4-week intervals. Hippocampal memory was examined using the step-down avoidance task. Mitochondrial function and apoptosis were also examined in the hippocampus and dentate gyrus. We found that obesity owing to a high-fat diet induced insulin resistance and caused a decrease in memory function. Insulin resistance also caused a decrease in mitochondrial function in the hippocampus by reducing Ca2+ retention and O2, respiration, increasing the levels of H2O2, and Cyp-D, and mPTP opening. In addition, apoptosis in the hippocampus increased owing to decreased expression of Bcl-2 and increased expression of Bax, cytochrome c, and caspase-3 and TUNEL-positive cells. In contrast, physical exercise led to reduced insulin resistance, improved mitochondrial function, and reduced apoptosis in the hippocampus. The results suggest that physiological stimulations such as exercise improve hippocampal function and suppress apoptosis, potentially preventing the memory loss associated with obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Han-Sam Cho
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung-Hee University, Seoul, Republic of Korea.
- Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, SangMyung University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Gancheva S, Galunska B, Zhelyazkova-Savova M. Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: is there a role for lipid peroxidation? Int J Exp Pathol 2017; 98:296-306. [PMID: 29210119 DOI: 10.1111/iep.12254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Epidemiological studies reveal associations between obesity/metabolic syndrome and mood disorders. We assessed behavioural changes in rats fed diets enriched in fat and fructose in different proportions and correlated the observed alterations with biochemical changes induced by the diets. Three groups of rats were used as follows: control (C) animals fed regular rat chow, rats fed high-fat diet (HF) and rats fed high-fat and high-fructose diet (HFHF). HF and HFHF animals were also given a 10% fructose solution as drinking water. Behavioural and biochemical parameters were determined. Anxiety was measured by the open-field and the social interaction test. Depression-like behaviour was evaluated by the forced swimming test. The object recognition test was utilized to assess effects on memory. Diet-exposed animals displayed signs of anxiety in the open-field (HF rats had reduced central time; HFHF rats had reduced number of central entries) and in the social interaction test (decreased time of interaction in HF group). In the forced swimming test, the immobility time was prolonged in the HFHF group. While different measures of anxiety scores correlated with visceral adiposity and dyslipidemia, results from both social interaction and forced swimming tests were significantly associated with lipid peroxidation, which in turn also correlated with the metabolic parameters. The experimental diets did not affect the object recognition memory. Both experimental diets induced metabolic derangements in rats and provoked similar anxiety- and depression-like behaviours. Lipid peroxidation seems to play a role in translating diet-induced metabolic alterations into behavioural disorders.
Collapse
Affiliation(s)
- Silvia Gancheva
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna, Bulgaria
| | - Bistra Galunska
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Maria Zhelyazkova-Savova
- Department of Pharmacology and Clinical Pharmacology and Therapeutics, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
27
|
Zanini P, Arbo BD, Niches G, Czarnabay D, Benetti F, Ribeiro MF, Cecconello AL. Diet-induced obesity alters memory consolidation in female rats. Physiol Behav 2017; 180:91-97. [PMID: 28821446 DOI: 10.1016/j.physbeh.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
Abstract
Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance.
Collapse
Affiliation(s)
- P Zanini
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - B D Arbo
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Department of Pharmacology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - G Niches
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - D Czarnabay
- Laboratório de Neurofisiologia Cognitiva e do Desenvolvimento, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - F Benetti
- Laboratório de Neurofisiologia Cognitiva e do Desenvolvimento, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - M F Ribeiro
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - A L Cecconello
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
28
|
Van Doorn C, Macht VA, Grillo CA, Reagan LP. Leptin resistance and hippocampal behavioral deficits. Physiol Behav 2017; 176:207-213. [PMID: 28267584 PMCID: PMC10538552 DOI: 10.1016/j.physbeh.2017.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
The adipocyte-derived hormone leptin is an important regulator of body weight and metabolism through activation of brain leptin receptors expressed in regions such as the hypothalamus. Beyond these well described and characterized activities of leptin in the hypothalamus, it is becoming increasingly clear that the central activities of leptin extend to the hippocampus. Indeed, leptin receptors are expressed in the hippocampus where these receptors are proposed to mediate various aspects of hippocampal synaptic plasticity that ultimately impact cognitive function. This concept is supported by studies demonstrating that leptin promotes hippocampal-dependent learning and memory, as well as studies indicating that leptin resistance is associated with deficits in hippocampal-dependent behaviors and in the induction of depressive-like behaviors. The effects of leptin on cognitive/behavioral plasticity in the hippocampus may be regulated by direct activation of leptin receptors expressed in the hippocampus; additionally, leptin-mediated activation of synaptic networks that project to the hippocampus may also impact hippocampal-mediated behaviors. In view of these previous observations, the goal of this review will be to discuss the mechanisms through which leptin facilitates cognition and behavior, as well as to dissect the loci at which leptin resistance leads to impairments in hippocampal synaptic plasticity, including the development of cognitive deficits and increased risk of depressive illness in metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Catherine Van Doorn
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Victoria A Macht
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, United States.
| |
Collapse
|
29
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
30
|
Zilkha N, Kuperman Y, Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience 2017; 345:142-154. [DOI: 10.1016/j.neuroscience.2016.01.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/13/2022]
|
31
|
Macht VA, Vazquez M, Petyak CE, Grillo CA, Kaigler K, Enos RT, McClellan JL, Cranford TL, Murphy EA, Nyland JF, Solomon G, Gertler A, Wilson MA, Reagan LP. Leptin resistance elicits depressive-like behaviors in rats. Brain Behav Immun 2017; 60:151-160. [PMID: 27743935 DOI: 10.1016/j.bbi.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
There is a growing appreciation that the complications of obesity extend to the central nervous system (CNS) and include increased risk for development of neuropsychiatric co-morbidities such as depressive illness. The neurological consequences of obesity may develop as a continuum and involve a progression of pathological features which is initiated by leptin resistance. Leptin resistance is a hallmark feature of obesity, but it is unknown whether leptin resistance or blockage of leptin action is casually linked to the neurological changes which underlie depressive-like phenotypes. Accordingly, the aim of the current study was to examine whether chronic administration of a pegylated leptin receptor antagonist (Peg-LRA) elicits depressive-like behaviors in adult male rats. Peg-LRA administration resulted in endocrine and metabolic features that are characteristic of an obesity phenotype. Peg-LRA rats also exhibited increased immobility in the forced swim test, depressive-like behaviors that were accompanied by indices of peripheral inflammation. These results demonstrate that leptin resistance elicits an obesity phenotype that is characterized by peripheral immune changes and depressive-like behaviors in rats, supporting the concept that co-morbid obesity and depressive illness develop as a continuum resulting from changes in the peripheral endocrine and metabolic milieu.
Collapse
Affiliation(s)
- V A Macht
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - M Vazquez
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - C E Petyak
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - C A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - K Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - R T Enos
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - J L McClellan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - T L Cranford
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - E A Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - J F Nyland
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - G Solomon
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - A Gertler
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - M A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, USA
| | - L P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA; W.J.B. Dorn VA Medical Center, Columbia, SC 29208, USA.
| |
Collapse
|
32
|
Osborne DM, Fitzgerald DP, O'Leary KE, Anderson BM, Lee CC, Tessier PM, McNay EC. Intrahippocampal administration of a domain antibody that binds aggregated amyloid-β reverses cognitive deficits produced by diet-induced obesity. Biochim Biophys Acta Gen Subj 2016; 1860:1291-8. [PMID: 26970498 DOI: 10.1016/j.bbagen.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND The prevalence of high fat diets (HFD), diet-induced obesity (DIO) and Type 2 diabetes continues to increase, associated with cognitive impairment in both humans and rodent models. Mechanisms transducing these impairments remain largely unknown: one possibility is that a common mechanism may be involved in the cognitive impairment seen in obese and/or diabetic states and in dementia, specifically Alzheimer's disease (AD). DIO is well established as a risk factor for development of AD. Oligomeric amyloid-β (Aβ) is neurotoxic, and we showed that intrahippocampal oligomeric Aβ produces cognitive and metabolic dysfunction similar to that seen in DIO or diabetes. Moreover, animal models of DIO show elevated brain Aβ, a hallmark of AD, suggesting that this may be one source of cognitive impairment in both conditions. METHODS Intrahippocampal administration of a novel anti-Aβ domain antibody for aggregated Aβ, or a control domain antibody, to control or HFD-induced DIO rats. Spatial learning measured in a conditioned contextual fear (CCF) task after domain antibody treatment; postmortem, hippocampal NMDAR and AMPAR were measured. RESULTS DIO caused impairment in CCF, and this impairment was eliminated by intrahippocampal administration of the active domain antibody. Measurement of hippocampal proteins suggests that DIO causes dysregulation of hippocampal AMPA receptors, which is also reversed by acute domain antibody administration. CONCLUSIONS Our findings support the concept that oligomeric Aβ within the hippocampus of DIO animals may not only be a risk factor for development of AD but may also cause cognitive impairment before the development of dementia. GENERAL SIGNIFICANCE AND INTEREST Our work integrates the engineering of domain antibodies with conformational- and sequence-specificity for oligomeric amyloid beta with a clinically relevant model of diet-induced obesity in order to demonstrate not only the pervasive effects of obesity on several aspects of brain biochemistry and behavior, but also the bioengineering of a successful treatment against the long-term detrimental effects of a pre-diabetic state on the brain. We show for the first time that cognitive impairment linked to obesity and/or insulin resistance may be due to early accumulation of oligomeric beta-amyloid in the brain, and hence may represent a pre-Alzheimer's state.
Collapse
Affiliation(s)
- Danielle M Osborne
- Behavioral Neuroscience, University at Albany, Albany, NY, United States; Center for Neuroscience Research, University at Albany, Albany, NY, United States
| | - Dennis P Fitzgerald
- Hofstra North Shore-Long Island School of Medicine, Hofstra University, Hempstead, NY, United States
| | - Kelsey E O'Leary
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian M Anderson
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, United States
| | - Christine C Lee
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Peter M Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, United States; Center for Neuroscience Research, University at Albany, Albany, NY, United States; Biological Sciences, University at Albany, Albany, NY, United States.
| |
Collapse
|
33
|
Mapping inflammation onto mood: Inflammatory mediators of anhedonia. Neurosci Biobehav Rev 2016; 64:148-66. [PMID: 26915929 DOI: 10.1016/j.neubiorev.2016.02.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/30/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Evidence supports inflammatory involvement in mood and cognitive symptoms across psychiatric, neurological and medical disorders; however, inflammation is not a sensitive or specific characteristic of these diagnoses. The National Institute of Mental Health Research Domain Criteria (RDoC) ask for a shift away from symptom-based diagnoses toward a transdiagnostic neurobiological focus in the study of brain illnesses. The RDoC matrix may provide a useful framework for integrating the effects of inflammation on brain function. Based on preclinical and clinical findings, relevant relationships span negative and positive valence systems, cognitive systems, systems for social processes and arousal/regulatory systems. As an exemplar, we consider the psychopathological domain of anhedonia, conceptualizing the relevance of inflammation (e.g., cellular immunity) and downstream processes (e.g., indoleamine 2,3-dioxygenase activation and oxidative inactivation of tetrahydrobiopterin) across RDoC units of analysis (e.g., catecholamine neurotransmitter molecules, nucleus accumbens medium spiny neuronal cells, dopaminergic mesolimbic and mesocortical reward circuits, animal paradigms, etc.). We discuss implications across illnesses affecting the brain, including infection, major depressive disorder, stroke, Alzheimer's disease and type 2 diabetes.
Collapse
|
34
|
Cheke LG, Simons JS, Clayton NS. Higher body mass index is associated with episodic memory deficits in young adults. Q J Exp Psychol (Hove) 2016; 69:2305-16. [PMID: 26447832 PMCID: PMC5000869 DOI: 10.1080/17470218.2015.1099163] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18–35 years, with BMIs ranging from 18 to 51, were tested on a novel what–where–when style episodic memory test: the “Treasure-Hunt Task”. This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what–where–when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation.
Collapse
Affiliation(s)
- Lucy G Cheke
- a Department of Psychology , University of Cambridge , Cambridge , UK
| | - Jon S Simons
- a Department of Psychology , University of Cambridge , Cambridge , UK
| | - Nicola S Clayton
- a Department of Psychology , University of Cambridge , Cambridge , UK
| |
Collapse
|
35
|
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem Neurosci 2016; 7:131-42. [PMID: 26667832 DOI: 10.1021/acschemneuro.5b00240] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.
Collapse
Affiliation(s)
- Joana M. Gaspar
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - Filipa I. Baptista
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M. Paula Macedo
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - António F. Ambrósio
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
| |
Collapse
|
36
|
Obesity Reduces Cognitive and Motor Functions across the Lifespan. Neural Plast 2016; 2016:2473081. [PMID: 26881095 PMCID: PMC4737453 DOI: 10.1155/2016/2473081] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.
Collapse
|
37
|
Cordner ZA, Tamashiro KLK. Effects of high-fat diet exposure on learning & memory. Physiol Behav 2015; 152:363-71. [PMID: 26066731 PMCID: PMC5729745 DOI: 10.1016/j.physbeh.2015.06.008] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/14/2015] [Accepted: 06/05/2015] [Indexed: 01/13/2023]
Abstract
The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring.
Collapse
Affiliation(s)
- Zachary A Cordner
- Cellular & Molecular Medicine Graduate Program, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Kellie L K Tamashiro
- Cellular & Molecular Medicine Graduate Program, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
38
|
Fadel JR, Reagan LP. Stop signs in hippocampal insulin signaling: the role of insulin resistance in structural, functional and behavioral deficits. Curr Opin Behav Sci 2015; 9:47-54. [PMID: 26955646 DOI: 10.1016/j.cobeha.2015.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In peripheral tissues insulin activates signaling cascades to facilitate glucose uptake from the blood into tissues like liver, muscle and fat. While insulin appears to play a minor role in the regulation of glucose uptake in the central nervous system (CNS), insulin is known to play a major role in regulating synaptic plasticity in brain regions like the hippocampus. The concept that insulin regulates hippocampal neuroplasticity is further supported from animal models of type 2 diabetes (T2DM) and Alzheimer's disease (AD). The goal of this review is to provide an overview of these studies, as well as the studies that have examined whether deficits in hippocampal insulin signaling are amenable to intervention strategies.
Collapse
Affiliation(s)
- Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
39
|
Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, Sakai RR, Kelly SJ, Wilson MA, Mott DD, Reagan LP. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity. Diabetes 2015; 64. [PMID: 26216852 PMCID: PMC4613975 DOI: 10.2337/db15-0596] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control.
Collapse
Affiliation(s)
- Claudia A Grillo
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Robert C Lawrence
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Shayna A Wrighten
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Adrienne J Green
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Steven P Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Randall R Sakai
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH
| | - Sandra J Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Marlene A Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | - David D Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
40
|
Abstract
Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as a potential mediator of cognitive dysfunction in T2DM, as well as in Alzheimer disease (AD). This Review highlights these observations and discusses intervention studies which suggest that the restoration of insulin activity in the hippocampus may be an effective strategy to alleviate the cognitive decline associated with T2DM and AD.
Collapse
|
41
|
Babits R, Szőke B, Sótonyi P, Rácz B. Food restriction modifies ultrastructure of hippocampal synapses. Hippocampus 2015; 26:437-44. [PMID: 26386363 DOI: 10.1002/hipo.22533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 11/09/2022]
Abstract
Consumption of high-energy diets may compromise health and may also impair cognition; these impairments have been linked to tasks that require hippocampal function. Conversely, food restriction has been shown to improve certain aspects of hippocampal function, including spatial memory and memory persistence. These diet-dependent functional changes raise the possibility that the synaptic structure underlying hippocampal function is also affected. To examine how short-term food restriction (FR) alters the synaptic structure of the hippocampus, we used quantitative electron microscopy to analyze the organization of neuropil in the CA1 stratum radiatum of the hippocampus in young rats, consequent to reduced food. While four weeks of FR did not modify the density, size, or shape of postsynaptic spines, the synapses established by these spines were altered, displaying increased mean length, and more frequent perforations of postsynaptic densities. That the number of perforated synapses (believed to be an indicator of synaptic enhancement) increased, and that the CA1 spine population had on average significantly longer PSDs suggests that synaptic efficacy of axospinous synapses also increased in the CA1. Taken together, our ultrastructural data reveal previously unrecognized structural changes at hippocampal synapses as a function of food restriction, supporting a link between metabolic balance and synaptic plasticity.
Collapse
Affiliation(s)
- Réka Babits
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, H-1078, Hungary
| | - Balázs Szőke
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, H-1078, Hungary
| | - Péter Sótonyi
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, H-1078, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, H-1078, Hungary
| |
Collapse
|
42
|
Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 2015; 309:125-39. [PMID: 25934036 DOI: 10.1016/j.neuroscience.2015.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/05/2023]
Abstract
Clinical studies suggest that obesity and Type 2 (insulin-resistant) diabetes impair the structural integrity of medial temporal lobe regions involved in memory and confer greater vulnerability to neurological insults. While eliminating obesity and its endocrine comorbidities would be the most straightforward way to minimize cognitive risk, structural barriers to physical activity and the widespread availability of calorically dense, highly palatable foods will likely necessitate additional strategies to maintain brain health over the lifespan. Research in rodents has identified numerous correlates of hippocampal functional impairment in obesity and diabetes, with several studies demonstrating causality in subsequent mechanistic studies. This review highlights recent work on pathways and cell-cell interactions underlying the synaptic consequences of obesity, diabetes, or in models with both pathological conditions. Although the mechanisms vary across different animal models, immune activation has emerged as a shared feature of obesity and diabetes, with synergistic exacerbation of neuroinflammation in model systems with both conditions. This review discusses these findings with reference to the benefits of incorporating existing models from the fields of obesity and metabolic disease. Many transgenic lines with basal metabolic alterations or differential susceptibility to diet-induced obesity have yet to be characterized with respect to their cognitive and synaptic phenotype. Adopting these models, and building on the extensive knowledge base used to generate them, is a promising avenue for understanding interactions between peripheral disease states and neurodegenerative disorders.
Collapse
|
43
|
Dietary restriction reverses obesity-induced anhedonia. Physiol Behav 2014; 128:126-32. [PMID: 24518861 DOI: 10.1016/j.physbeh.2014.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/21/2023]
Abstract
Obesity-induced changes in the metabolic and endocrine milieu elicit deficits in neuroplasticity, including increased risk for development of neuropsychiatric disorders such as depressive illness. We previously demonstrated that downregulation of hypothalamic insulin receptors (hypo-IRAS) elicits a phenotype that is consistent with features of the metabolic syndrome (MetS) and that rats with this phenotype exhibit deficits in neuronal plasticity, including depressive-like behaviors such as anhedonia. Since food restriction paradigms effectively inhibit obesity-induced neuroplasticity deficits, the aim of the current study was to determine whether food restriction could reverse obesity-induced anhedonia in hypo-IRAS rats. Compared to hypo-IRAS rats provided ad lib food access, food restriction paradigms that were initiated either prior to increases in body weight or following development of the MetS/obesity phenotype effectively restored sucrose intake in hypo-IRAS rats. Moreover, food restriction paradigms were able to prevent and reverse the changes in the endocrine/metabolic/inflammatory milieu observed in hypo-IRAS, such as increases in plasma leptin and triglyceride levels and increases in pro-inflammatory cytokines such as IL-1α, IL-6 and C-reactive protein (CRP). Collectively, these results demonstrate that obesity-induced anhedonia is a reversible process and identify some potential mechanistic mediators that may be responsible for co-morbid depression in obesity.
Collapse
|
44
|
Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol (Lausanne) 2014; 5:167. [PMID: 25352831 PMCID: PMC4195360 DOI: 10.3389/fendo.2014.00167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
After its discovery in 1994, leptin became the great hope as an anti-obesity treatment based on its ability to reduce food intake and increase energy expenditure. However, treating obese people with exogenous leptin was unsuccessful in most cases since most of them present already high circulating leptin levels to which they do not respond anymore defining the so-called state of "leptin resistance." Indeed, leptin therapy is unsuccessful to lower body weight in commonly obese people but effective in people with rare single gene mutations of the leptin gene. Consequently, treatment of obese people with leptin was given less attention and the focus of obesity research shifted toward the prevention and reversal of the state of leptin resistance. Many of these new promising approaches aim to restore or sensitize the impaired function of the leptin receptor by pharmacological means. The current review will focus on the different emerging therapeutic strategies in obesity research that are related to leptin and its receptor.
Collapse
Affiliation(s)
- Clara Roujeau
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- *Correspondence: Julie Dam, Institut Cochin, 22 rue Méchain, 75014, Paris, France e-mail:
| |
Collapse
|
45
|
Campos CA, Shiina H, Silvas M, Page S, Ritter RC. Vagal afferent NMDA receptors modulate CCK-induced reduction of food intake through synapsin I phosphorylation in adult male rats. Endocrinology 2013; 154:2613-25. [PMID: 23715865 PMCID: PMC3713210 DOI: 10.1210/en.2013-1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vagal afferent nerve fibers transmit gastrointestinal satiation signals to the brain via synapses in the nucleus of the solitary tract (NTS). Despite their pivotal role in energy homeostasis, little is known about the cellular mechanisms enabling fleeting synaptic events at vagal sensory endings to sustain behavioral changes lasting minutes to hours. Previous reports suggest that the reduction of food intake by the satiation peptide, cholecystokinin (CCK), requires activation of N-methyl-D-aspartate-type glutamate receptors (NMDAR) in the NTS, with subsequent phosphorylation of ERK1/2 (pERK1/2) in NTS vagal afferent terminals. The synaptic vesicle protein synapsin I is phosphorylated by pERK1/2 at serines 62 and 67. This pERK1/2-catalyzed phosphorylation increases synaptic strength by increasing the readily releasable pool of the neurotransmitter. Conversely, dephosphorylation of serines 62 and 67 by calcineurin reduces the size of the readily releasable transmitter pool. Hence, the balance of synapsin I phosphorylation and dephosphorylation can modulate synaptic strength. We postulated that CCK-evoked activation of vagal afferent NMDARs results in pERK1/2-catalyzed phosphorylation of synapsin I in vagal afferent terminals, leading to the suppression of food intake. We found that CCK injection increased the phosphorylation of synapsin I in the NTS and that this increase is abolished after surgical or chemical ablation of vagal afferent fibers. Furthermore, fourth ventricle injection of an NMDAR antagonist or the mitogen-activated ERK kinase inhibitor blocked CCK-induced synapsin I phosphorylation, indicating that synapsin phosphorylation in vagal afferent terminals depends on NMDAR activation and ERK1/2 phosphorylation. Finally, hindbrain inhibition of calcineurin enhanced and prolonged synapsin I phosphorylation and potentiated reduction of food intake by CCK. Our findings are consistent with a mechanism in which NMDAR-dependent phosphorylation of ERK1/2 modulates satiation signals via synapsin I phosphorylation in vagal afferent endings.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
46
|
Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7:51. [PMID: 23579596 PMCID: PMC3619125 DOI: 10.3389/fnins.2013.00051] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes mellitus are great public health concerns throughout the world because of their increasing incidence and prevalence. Leptin, the adipocyte hormone, is well known for its role in the regulation of food intake and energy expenditure. In addition to the regulation of appetite and satiety that recently has attracted much attentions, insight has also been gained into the critical role of leptin in the control of the insulin-glucose axis, peripheral glucose and insulin responsiveness. Since the discovery of leptin, leptin has been taken for its therapeutic potential to obesity and diabetes. Recently, the therapeutic effects of central leptin gene therapy have been reported in insulin-deficient diabetes in obesity animal models such as ob/ob mise, diet-induced obese mice, and insulin-deficient type 1 diabetes mice, and also in patients with inactivating mutations in the leptin gene. Herein, we review the role of leptin in regulating feeding behavior and glucose metabolism and also the therapeutic potential of leptin in obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Marie Amitani
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima, Japan
| | | | | | | |
Collapse
|
47
|
Mueller K, Sacher J, Arelin K, Holiga Š, Kratzsch J, Villringer A, Schroeter ML. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiatry 2012; 2:e200. [PMID: 23212584 PMCID: PMC3565188 DOI: 10.1038/tp.2012.121] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There is growing evidence that obesity represents a risk for enhanced gray matter (GM) density changes comparable to those demonstrated for mild cognitive impairment in the elderly. However, it is not clear what mechanisms underlie this apparent alteration in brain structure of overweight subjects and to what extent these changes can already occur in the adolescent human brain. In the present volumetric magnetic resonance imaging study, we investigated GM changes and serum levels of neuron-specific enolase (NSE), a marker for neuronal injury, in a set of overweight/obese subjects and controls. We report a negative correlation for overweight and obese subjects between serum NSE and GM density in hippocampal and cerebellar regions. To validate our neuroimaging findings, we complement these data with NSE gene expression information obtained from the Allen Brain atlas. GM density changes were localized in brain areas that mediate cognitive function-the hippocampus associated with memory performance, and the cognitive cerebellum (lateral posterior lobes) associated with executive, spatial and linguistic processing. The data of our present study highlight the importance of extending current research on cognitive function and brain plasticity in the elderly in the context of obesity to young adult subjects and include serum biomarkers to validate imaging findings generally.
Collapse
Affiliation(s)
- K Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - J Sacher
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - K Arelin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany,Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Š Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - J Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - A Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany,Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - M L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany,Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany,Consortium for Frontotemporal Lobar Degeneration, Ulm, Germany
| |
Collapse
|
48
|
Perianes-Cachero A, Burgos-Ramos E, Puebla-Jiménez L, Canelles S, Viveros MP, Mela V, Chowen JA, Argente J, Arilla-Ferreiro E, Barrios V. Leptin-induced downregulation of the rat hippocampal somatostatinergic system may potentiate its anorexigenic effects. Neurochem Int 2012; 61:1385-96. [PMID: 23073237 DOI: 10.1016/j.neuint.2012.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
Abstract
The learning and memory mechanisms in the hippocampus translate hormonal signals of energy balance into behavioral outcomes involved in the regulation of food intake. As leptin and its receptors are expressed in the hippocampus and somatostatin (SRIF), an orexigenic neuropeptide, may inhibit leptin-mediated suppression of food intake in other brain areas, we asked whether chronic leptin infusion induces changes in the hippocampal somatostatinergic system and whether these modifications are involved in leptin-mediated effects. We studied 18 male Wistar rats divided into three groups: controls (C), treated intracerebroventricularly (icv) with leptin (12 μg/day) for 14 days (L) and a pair-fed group (PF) that received the same amount of food consumed by the L group. Food restriction increased whereas leptin decreased the hippocampal SRIF receptor density, due to changes in SRIF receptor 2 protein levels. These changes in the PF group were concurrent with an increase of hippocampal G protein-coupled receptor kinase 2 protein levels and activation of Akt and cyclic AMP response element binding protein. The inhibitory effect of SRIF on adenylyl cyclase (AC) activity, however, was decreased in L rats, coincident with lower G inhibitory α3 and higher AC-I levels as well as signal transducer and activator of transcription factor 3 activation. In addition, 20 male Wistar rats were included to analyze whether the leptin antagonist L39A/D40A/F41A and the SRIF receptor agonist SMS 201-995 modify SRIF signaling and food intake, respectively. Administration of L39A/D40A/F41A reversed changes in SRIF signaling, whereas SMS 201-995 ameliorated food consumption in L. Altogether, these results suggest that increased somatostatinergic tone in PF rats may be a mechanism to improve the hippocampal orexigenic effects in a situation of metabolic demand, whereas down-regulation of this system in L rats may represent a mechanism to enhance the anorexigenic effects of leptin.
Collapse
Affiliation(s)
- Arancha Perianes-Cachero
- Neurobiochemistry Unit, Department of Biochemistry and Molecular Biology, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:467180. [PMID: 22191013 PMCID: PMC3236428 DOI: 10.1155/2011/467180] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The incidence and prevalence of neurodegenerative diseases (ND) increase with life expectancy. This paper reviews the role of oxidative stress (OS) in ND and pharmacological attempts to fight against reactive oxygen species (ROS)-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.
Collapse
|
50
|
Grillo CA, Piroli GG, Kaigler KF, Wilson SP, Wilson MA, Reagan LP. Downregulation of hypothalamic insulin receptor expression elicits depressive-like behaviors in rats. Behav Brain Res 2011; 222:230-5. [PMID: 21458499 PMCID: PMC3774048 DOI: 10.1016/j.bbr.2011.03.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 11/27/2022]
Abstract
Ongoing epidemiological studies estimate that greater than 60% of the adult US population may be categorized as either overweight or obese. There is a growing appreciation that the complications of obesity extend to the central nervous system (CNS) and may result in increased risk for neurological co-morbidities like depressive illness. One potential mechanistic mediator linking obesity and depressive illness is the adipocyte derived hormone leptin. We previously demonstrated that lentivirus-mediated downregulation of hypothalamic insulin receptors increases body weight, adiposity and plasma leptin levels, which is consistent with features of the metabolic syndrome. Using this novel model of obesity, we examined performance in the forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM), approaches that are often used as measures of depressive-like and anxiety-like behaviors, in rats that received third ventricular injections of either an insulin receptor antisense lentivirus (hypo-IRAS) or a control lentivirus (hypo-Con). Hypo-IRAS rats exhibited significant increases in immobility time and corresponding decreases in active behaviors in the FST and exhibited anhedonia as measured by decreased sucrose intake compared to hypo-Con rats. Hypo-IRAS rats also exhibited increases in anxiety-like behaviors in the EPM. Plasma, hippocampal and amygdalar brain-derived neurotrophic factor (BDNF) levels were reduced in hypo-IRAS rats, suggesting that the obesity/hyperleptinemic phenotype may elicit this behavioral phenotype through modulation of neurotrophic factor expression. Collectively, these data support the hypothesis for an increased risk for mood disorders in obesity, which may be related to decreased expression of hippocampal and amygdalar BDNF.
Collapse
Affiliation(s)
- Claudia A Grillo
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, D40, Columbia, SC 29208, United States
| | | | | | | | | | | |
Collapse
|