1
|
Steiner AM, Roscoe RF, Booze RM, Mactutus CF. Motivational dysregulation with melanocortin 4 receptor haploinsufficiency. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:237-250. [PMID: 39741559 PMCID: PMC11683877 DOI: 10.1515/nipt-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
Abstract
Obesity, by any standard, is a global health crisis. Both genetic and dietary contributions to the development and maintenance of obesity were integral factors of our experimental design. As mutations of the melanocortin 4 receptors (MC4R) are the leading monogenetic cause of obesity, MC4R haploinsufficient rats were fed a range of dietary fat (0-12 %) in a longitudinal design. Physiological and motivational assessments were performed using a locomotor task, a 5-choice sucrose preference task, an operant task with fixed and progressive ratios, as well as a distraction operant task. Dendritic spine morphology of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), cells with ample D1 and D2 receptors, was also assessed. The percentage of lipid deposits in the liver of each rat was also analyzed using the Area Fraction Fractionator probe for stereological measurements. MC4R haploinsufficiency resulted in a phenotypic resemblance for adult-onset obesity that was exacerbated by the consumption of a high-fat diet. Results from the operant tasks indicate that motivational deficits due to MC4R haploinsufficiency were apparent prior to the onset of obesity and exacerbated by dietary fat consumption after obesity was well established. Moreover, MSN morphology shifted to longer spines with smaller head diameters for the MC4R+/- animals under the high-fat diet, suggesting a potential mechanism for the dysregulation of motivation to work for food. Increasing our knowledge of the neural circuitry/mechanisms responsible for the rewarding properties of food has significant implications for understanding energy balance and the development of obesity.
Collapse
Affiliation(s)
- Alex M. Steiner
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Robert F. Roscoe
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M. Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| | - Charles F. Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
2
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Deng Q, Zhang SQ, Yang PF, Dong WT, Wang F, Long LH, Chen JG. α-MSH-catabolic enzyme prolylcarboxypeptidase in nucleus accumbens shell ameliorates stress susceptibility in mice through regulating synaptic plasticity. Acta Pharmacol Sin 2023; 44:1576-1588. [PMID: 37012493 PMCID: PMC10374542 DOI: 10.1038/s41401-023-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Emerging evidence demonstrates the vital role of synaptic transmission and structural remodeling in major depressive disorder. Activation of melanocortin receptors facilitates stress-induced emotional behavior. Prolylcarboxypeptidase (PRCP) is a serine protease, which splits the C-terminal amino acid of α-MSH and inactivates it. In this study, we asked whether PRCP, the endogenous enzyme of melanocortin system, might play a role in stress susceptibility via regulating synaptic adaptations. Mice were subjected to chronic social defeat stress (CSDS) or subthreshold social defeat stress (SSDS). Depressive-like behavior was assessed in SIT, SPT, TST and FST. Based on to behavioral assessments, mice were divided into the susceptible (SUS) and resilient (RES) groups. After social defeat stress, drug infusion or viral expression and behavioral tests, morphological and electrophysiological analysis were conducted in PFX-fixed and fresh brain slices containing the nucleus accumbens shell (NAcsh). We showed that PRCP was downregulated in NAcsh of susceptible mice. Administration of fluoxetine (20 mg·kg-1·d-1, i.p., for 2 weeks) ameliorated the depressive-like behavior, and restored the expression levels of PRCP in NAcsh of susceptible mice. Pharmacological or genetic inhibition of PRCP in NAcsh by microinjection of N-benzyloxycarbonyl-L-prolyl-L-prolinal (ZPP) or LV-shPRCP enhanced the excitatory synaptic transmission in NAcsh, facilitating stress susceptibility via central melanocortin receptors. On the contrary, overexpression of PRCP in NAcsh by microinjection of AAV-PRCP alleviated the depressive-like behavior and reversed the enhanced excitatory synaptic transmission, abnormal dendritogenesis and spinogenesis in NAcsh induced by chronic stress. Furthermore, chronic stress increased the level of CaMKIIα, a kinase closely related to synaptic plasticity, in NAcsh. The elevated level of CaMKIIα was reversed by overexpression of PRCP in NAcsh. Pharmacological inhibition of CaMKIIα in NAcsh alleviated stress susceptibility induced by PRCP knockdown. This study has revealed the essential role of PRCP in relieving stress susceptibility through melanocortin signaling-mediated synaptic plasticity in NAcsh.
Collapse
Affiliation(s)
- Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping-Fen Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wan-Ting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Singh U, Saito K, Khan MZ, Jiang J, Toth BA, Rodeghiero SR, Dickey JE, Deng Y, Deng G, Kim YC, Cui H. Collateralizing ventral subiculum melanocortin 4 receptor circuits regulate energy balance and food motivation. Physiol Behav 2023; 262:114105. [PMID: 36736416 PMCID: PMC9981473 DOI: 10.1016/j.physbeh.2023.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Z. Khan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A. Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R. Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E. Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
5
|
Allen AT, Heaton EC, Shapiro LP, Butkovich LM, Yount ST, Davies RA, Li DC, Swanson AM, Gourley SL. Inter-individual variability amplified through breeding reveals control of reward-related action strategies by Melanocortin-4 Receptor in the dorsomedial striatum. Commun Biol 2022; 5:116. [PMID: 35136204 PMCID: PMC8825839 DOI: 10.1038/s42003-022-03043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
In day-to-day life, we often must choose between pursuing familiar behaviors or adjusting behaviors when new strategies might be more fruitful. The dorsomedial striatum (DMS) is indispensable for arbitrating between old and new action strategies. To uncover molecular mechanisms, we trained mice to generate nose poke responses for food, then uncoupled the predictive relationship between one action and its outcome. We then bred the mice that failed to rapidly modify responding. This breeding created offspring with the same tendencies, failing to inhibit behaviors that were not reinforced. These mice had less post-synaptic density protein 95 in the DMS. Also, densities of the melanocortin-4 receptor (MC4R), a high-affinity receptor for α-melanocyte-stimulating hormone, predicted individuals' response strategies. Specifically, high MC4R levels were associated with poor response inhibition. We next found that reducing Mc4r in the DMS in otherwise typical mice expedited response inhibition, allowing mice to modify behavior when rewards were unavailable or lost value. This process required inputs from the orbitofrontal cortex, a brain region canonically associated with response strategy switching. Thus, MC4R in the DMS appears to propel reward-seeking behavior, even when it is not fruitful, while moderating MC4R presence increases the capacity of mice to inhibit such behaviors.
Collapse
Affiliation(s)
- Aylet T Allen
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth C Heaton
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Lauren P Shapiro
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Laura M Butkovich
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sophie T Yount
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA
| | - Rachel A Davies
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Dan C Li
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Andrew M Swanson
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory School of Medicine, Atlanta, GA, USA.
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA.
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Dieterich A, Floeder J, Stech K, Lee J, Srivastava P, Barker DJ, Samuels BA. Activation of Basolateral Amygdala to Nucleus Accumbens Projection Neurons Attenuates Chronic Corticosterone-Induced Behavioral Deficits in Male Mice. Front Behav Neurosci 2021; 15:643272. [PMID: 33716685 PMCID: PMC7943928 DOI: 10.3389/fnbeh.2021.643272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
The basolateral amygdala (BLA) is critical for reward behaviors via a projection to the nucleus accumbens (NAc). Specifically, BLA-NAc projections are involved in reinforcement learning, reward-seeking, sustained instrumental responding, and risk behaviors. However, it remains unclear whether chronic stress interacts with BLA-NAc projection neurons to result in maladaptive behaviors. Here we take a chemogenetic, projection-specific approach to clarify how NAc-projecting BLA neurons affect avoidance, reward, and feeding behaviors in male mice. Then, we examine whether chemogenetic activation of NAc-projecting BLA neurons attenuates the maladaptive effects of chronic corticosterone (CORT) administration on these behaviors. CORT mimics the behavioral and neural effects of chronic stress exposure. We found a nuanced role of BLA-NAc neurons in mediating reward behaviors. Surprisingly, activation of BLA-NAc projections rescues CORT-induced deficits in the novelty suppressed feeding, a behavior typically associated with avoidance. Activation of BLA-NAc neurons also increases instrumental reward-seeking without affecting free-feeding in chronic CORT mice. Taken together, these data suggest that NAc-projecting BLA neurons are involved in chronic CORT-induced maladaptive reward and motivation behaviors.
Collapse
Affiliation(s)
- Andrew Dieterich
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joseph Floeder
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Karina Stech
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jay Lee
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Prachi Srivastava
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - David J. Barker
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Benjamin A. Samuels
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
7
|
Cross-disorder genetic analyses implicate dopaminergic signaling as a biological link between Attention-Deficit/Hyperactivity Disorder and obesity measures. Neuropsychopharmacology 2020; 45:1188-1195. [PMID: 31896117 PMCID: PMC7234984 DOI: 10.1038/s41386-019-0592-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) and obesity are frequently comorbid, genetically correlated, and share brain substrates. The biological mechanisms driving this association are unclear, but candidate systems, like dopaminergic neurotransmission and circadian rhythm, have been suggested. Our aim was to identify the biological mechanisms underpinning the genetic link between ADHD and obesity measures and investigate associations of overlapping genes with brain volumes. We tested the association of dopaminergic and circadian rhythm gene sets with ADHD, body mass index (BMI), and obesity (using GWAS data of N = 53,293, N = 681,275, and N = 98,697, respectively). We then conducted genome-wide ADHD-BMI and ADHD-obesity gene-based meta-analyses, followed by pathway enrichment analyses. Finally, we tested the association of ADHD-BMI overlapping genes with brain volumes (primary GWAS data N = 10,720-10,928; replication data N = 9428). The dopaminergic gene set was associated with both ADHD (P = 5.81 × 10-3) and BMI (P = 1.63 × 10-5); the circadian rhythm was associated with BMI (P = 1.28 × 10-3). The genome-wide approach also implicated the dopaminergic system, as the Dopamine-DARPP32 Feedback in cAMP Signaling pathway was enriched in both ADHD-BMI and ADHD-obesity results. The ADHD-BMI overlapping genes were associated with putamen volume (P = 7.7 × 10-3; replication data P = 3.9 × 10-2)-a brain region with volumetric reductions in ADHD and BMI and linked to inhibitory control. Our findings suggest that dopaminergic neurotransmission, partially through DARPP-32-dependent signaling and involving the putamen, is a key player underlying the genetic overlap between ADHD and obesity measures. Uncovering shared etiological factors underlying the frequently observed ADHD-obesity comorbidity may have important implications in terms of prevention and/or efficient treatment of these conditions.
Collapse
|
8
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Klawonn AM, Fritz M, Nilsson A, Bonaventura J, Shionoya K, Mirrasekhian E, Karlsson U, Jaarola M, Granseth B, Blomqvist A, Michaelides M, Engblom D. Motivational valence is determined by striatal melanocortin 4 receptors. J Clin Invest 2018; 128:3160-3170. [PMID: 29911992 DOI: 10.1172/jci97854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.
Collapse
Affiliation(s)
- Anna Mathia Klawonn
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Fritz
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Nilsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elahe Mirrasekhian
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maarit Jaarola
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA.,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
DNA methylation in demyelinated multiple sclerosis hippocampus. Sci Rep 2017; 7:8696. [PMID: 28821749 PMCID: PMC5562763 DOI: 10.1038/s41598-017-08623-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated demyelinating disease of the human central nervous system (CNS). Memory impairments and hippocampal demyelination are common features in MS patients. Our previous data have shown that demyelination alters neuronal gene expression in the hippocampus. DNA methylation is a common epigenetic modifier of gene expression. In this study, we investigated whether DNA methylation is altered in MS hippocampus following demyelination. Our results show that mRNA levels of DNA methyltransferase were increased in demyelinated MS hippocampus, while de-methylation enzymes were decreased. Comparative methylation profiling identify hypo-methylation within upstream sequences of 6 genes and hyper-methylation of 10 genes in demyelinated MS hippocampus. Genes identified in the current study were also validated in an independent microarray dataset generated from MS hippocampus. Independent validation using RT-PCR revealed that DNA methylation inversely correlated with mRNA levels of the candidate genes. Queries across cell-specific databases revealed that a majority of the candidate genes are expressed by astrocytes and neurons in mouse and human CNS. Taken together, our results expands the list of genes previously identified in MS hippocampus and establish DNA methylation as a mechanism of altered gene expression in MS hippocampus.
Collapse
|
11
|
Hill JW, Faulkner LD. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances. Neuroendocrinology 2017; 104:330-346. [PMID: 27728914 PMCID: PMC5724371 DOI: 10.1159/000450649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022]
Abstract
Obesity is increasing in prevalence across all sectors of society, and with it a constellation of associated ailments including hypertension, type 2 diabetes, and eating disorders. The melanocortin system is a critical neural system underlying the control of body weight and other functions. Deficits in the melanocortin system may promote or exacerbate the comorbidities of obesity. This system has therefore generated great interest as a potential target for treatment of obesity. However, drugs targeting melanocortin receptors are plagued by problematic side effects, including undesirable increases in sympathetic nervous system activity, heart rate, and blood pressure. Circumnavigating this roadblock will require a clearer picture of the precise neural circuits that mediate the functions of melanocortins. Recent, novel experimental approaches have significantly advanced our understanding of these pathways. We here review the latest advances in our understanding of the role of melanocortins in food intake, reward pathways, blood pressure, glucose control, and energy expenditure. The evidence suggests that downstream melanocortin-responsive circuits responsible for different physiological actions do diverge. Ultimately, a more complete understanding of melanocortin pathways and their myriad roles should allow treatments tailored to the mix of metabolic disorders in the individual patient.
Collapse
Affiliation(s)
- Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
12
|
Devarakonda K, Mobbs CV. Mechanisms and significance of brain glucose signaling in energy balance, glucose homeostasis, and food-induced reward. Mol Cell Endocrinol 2016; 438:61-69. [PMID: 27637346 DOI: 10.1016/j.mce.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense glucose, and the function of glucose signaling in the brain, has been difficult to establish. Nevertheless recent studies probing mechanisms of glucose signaling have also strongly supported a role for glucose signaling in regulating energy balance, glucose homeostasis, and food-induced reward.
Collapse
Affiliation(s)
- Kavya Devarakonda
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Endocrinology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA
| | - Charles V Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Endocrinology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA.
| |
Collapse
|
13
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
14
|
Lutter M, Croghan AE, Cui H. Escaping the Golden Cage: Animal Models of Eating Disorders in the Post-Diagnostic and Statistical Manual Era. Biol Psychiatry 2016; 79:17-24. [PMID: 25777657 DOI: 10.1016/j.biopsych.2015.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/21/2015] [Accepted: 02/07/2015] [Indexed: 12/13/2022]
Abstract
Eating disorders (EDs) are severe, life-threatening mental illnesses characterized by marked disturbances in body image and eating patterns. Attempts to understand the neurobiological basis of EDs have been hindered by the perception that EDs are primarily socially reinforced behaviors and not the result of a pathophysiologic process. This view is reflected by the diagnostic criteria of anorexia nervosa and bulimia nervosa, which emphasize intrapsychic conflicts such as "inability to maintain body weight," "undue influence of body weight or shape on self-evaluation," and "denial of the seriousness of low body weight" over neuropsychological measures. The neuropsychological constructs introduced within the research domain criteria (RDoC) matrix offer new hope for determining the neural substrate underlying the biological predisposition to EDs. We present selected studies demonstrating deficits in patients with EDs within each domain of the RDoC and propose a set of behavioral tasks in model systems that reflect aspects of that deficit. Finally, we propose a battery of tasks to examine comprehensively the function of neural circuits relevant to the development of EDs.
Collapse
Affiliation(s)
- Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa..
| | - Anna E Croghan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| | - Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
15
|
He ZG, Liu BW, Xiang HB. Cross interaction of melanocortinergic and dopaminergic systems in neural modulation. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2015; 7:152-157. [PMID: 26823964 PMCID: PMC4697671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Melanocortinergic and dopaminergic systems are widely distributed in the CNS and have been established as a crucial regulatory component in diverse physiological functions. The pharmacology of both melanocortinergic and dopaminergic systems including their individual receptors, signaling mechanisms, agonists and antagonists has been extensively studied. Several lines of evidence showed that there existed a cross interaction between the receptors of melanocortinergic and dopaminergic systems. The data available at present had expanded our understanding of melanocortinergic and dopaminergic system interaction in neural modulation, which will be main discussed in this paper.
Collapse
Affiliation(s)
- Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030, Hubei, PR China
| |
Collapse
|
16
|
Abstract
There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a 'pathological' drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a 'food addiction' phenotype as a valid, diagnosable disorder.
Collapse
|
17
|
Roseberry AG, Stuhrman K, Dunigan AI. Regulation of the mesocorticolimbic and mesostriatal dopamine systems by α-melanocyte stimulating hormone and agouti-related protein. Neurosci Biobehav Rev 2015; 56:15-25. [DOI: 10.1016/j.neubiorev.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 11/24/2022]
|
18
|
Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, Begg DP, Krawczewski Carhuatanta KA, Haas MK, Davis JF, Woods SC, Sandoval DA, Seeley RJ, Goodyear LJ, Pothos EN, Mul JD. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab 2015; 4:692-705. [PMID: 26500841 PMCID: PMC4588435 DOI: 10.1016/j.molmet.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training. MC4R-deficiency causes metabolic syndrome. Loss of MC4R signaling decreases voluntary wheel running (VWR). Despite moderate amounts of VWR, MC4R-associated metabolic syndrome is severely attenuated. MC4R-deficiency is associated with mesolimbic dopamine dysregulation during VWR.
Collapse
Affiliation(s)
- Silvana Obici
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - I Jack Magrisso
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Armen S Ghazarian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alireza Shirazian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jonas R Miller
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christine M Loyd
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | | | - Michael K Haas
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jon F Davis
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Darleen A Sandoval
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Emmanuel N Pothos
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Dopamine release in the lateral hypothalamus is stimulated by α-MSH in both the anticipatory and consummatory phases of feeding. Psychoneuroendocrinology 2015; 56:79-87. [PMID: 25805178 DOI: 10.1016/j.psyneuen.2015.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH), is a hypothalamic neuropeptide signaling satiation, but it is not known if α-MSH may stimulate dopamine release in a feeding control brain region of the lateral hypothalamic area (LHA), during the anticipatory and consummatory phases of feeding behavior. To address these questions, dynamics of dopamine release were measured in 15 min microdialysis samples simultaneously from the LHA and the nucleus accumbens (NAc) during consecutive exposure and provision of food and 1% sucrose in Wistar rats after overnight food deprivation. α-MSH was infused via the microdialysis probe either into the LHA or NAc starting before food exposure. Food, sucrose and water intakes were automatically monitored and analyzed concomitantly with microdialysis samples. We found that LHA-α-MSH-infused rats stopped eating earlier and consumed less food and sucrose as compared to control and NAc-α-MSH-infused rats. Exposure to food produced a peak of LHA dopamine in both LHA-α-MSH and NAc-α-MSH-infused rats but not in the controls. During food provision, LHA dopamine levels were strongly elevated in LHA-α-MSH infused rats, while delivery of α-MSH into the NAc induced a less intense increase of dopamine in both NAc and LHA. In all rats, LHA dopamine levels correlated inversely with sucrose intake. In conclusion, our study showed that α-MSH stimulates dopamine release in the LHA during both the anticipatory and consummatory phases of feeding, decreases food intake and inhibits sucrose intake. These data suggest that LHA dopamine release can be involved in α-MSH anorexigenic effects.
Collapse
|
20
|
Morgan DA, McDaniel LN, Yin T, Khan M, Jiang J, Acevedo MR, Walsh SA, Ponto LLB, Norris AW, Lutter M, Rahmouni K, Cui H. Regulation of glucose tolerance and sympathetic activity by MC4R signaling in the lateral hypothalamus. Diabetes 2015; 64:1976-87. [PMID: 25605803 PMCID: PMC4439564 DOI: 10.2337/db14-1257] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/10/2015] [Indexed: 02/06/2023]
Abstract
Melanocortin 4 receptor (MC4R) signaling mediates diverse physiological functions, including energy balance, glucose homeostasis, and autonomic activity. Although the lateral hypothalamic area (LHA) is known to express MC4Rs and to receive input from leptin-responsive arcuate proopiomelanocortin neurons, the physiological functions of MC4Rs in the LHA are incompletely understood. We report that MC4R(LHA) signaling regulates glucose tolerance and sympathetic nerve activity. Restoring expression of MC4Rs specifically in the LHA improves glucose intolerance in obese MC4R-null mice without affecting body weight or circulating insulin levels. Fluorodeoxyglucose-mediated tracing of whole-body glucose uptake identifies the interscapular brown adipose tissue (iBAT) as a primary source where glucose uptake is increased in MC4R(LHA) mice. Direct multifiber sympathetic nerve recording further reveals that sympathetic traffic to iBAT is significantly increased in MC4R(LHA) mice, which accompanies a significant elevation of Glut4 expression in iBAT. Finally, bilateral iBAT denervation prevents the glucoregulatory effect of MC4R(LHA) signaling. These results identify a novel role for MC4R(LHA) signaling in the control of sympathetic nerve activity and glucose tolerance independent of energy balance.
Collapse
Affiliation(s)
- Donald A Morgan
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Latisha N McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Terry Yin
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Jingwei Jiang
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael R Acevedo
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Laura L Boles Ponto
- Department of Radiology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Andrew W Norris
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA Obesity Research and Education Initiative, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, IA Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA
| |
Collapse
|
21
|
Shpakov AO, Derkach KV, Zharova OA, Shpakova EA. The functional activity of the adenylate cyclase system in the brains of rats with metabolic syndrome induced by immunization with peptide 11–25 of the type 4 melanocortin receptor. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shelkar GP, Kale AD, Singh U, Singru PS, Subhedar NK, Kokare DM. Alpha-melanocyte stimulating hormone modulates ethanol self-administration in posterior ventral tegmental area through melanocortin-4 receptors. Addict Biol 2015; 20:302-15. [PMID: 24635847 DOI: 10.1111/adb.12126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the role of alpha-melanocyte stimulating hormone (α-MSH) in alcohol seeking behaviour in rats has been demonstrated, the underlying mechanisms are not understood. Herein, we test the hypothesis that α-MSH might have a permissive effect in promoting the reward action of ethanol. Rats were implanted with cannulae targeted at the posterior ventral tegmental area (pVTA), because the site is sensitive to reinforcing effects of ethanol. These rats were trained to self-administer ethanol in standard two-lever (active/inactive) operant chamber test. Each active lever press resulted in self-administration of 100 nl of ethanol (100-300 mg%) containing solution. Over a period of 7 days, ethanol significantly increased the number of lever presses, which was considered as a measure of reward. Because ethanol at 200 mg% resulted in maximum number of lever presses (∼18-20 lever presses/30-minute session), the dose was employed in further studies. While prior administration of melanocortin (MC) agonists, α-MSH or [Nle4,D-Phe7]-alpha-MSH into pVTA, resulted in an 89% increase in lever presses, the response was attenuated following pre-treatment with MC4 receptors (MC4R) antagonist, HS014. In an immunohistochemical study, the brains of rats that were trained to self-infuse ethanol showed significantly increased α-MSH immunoreactivity in the nucleus accumbens shell, bed nucleus of stria terminalis and arcuate nucleus of the hypothalamus. In the pVTA, α-MSH fibres were found to run close to the dopamine cells, labelled with tyrosine hydroxylase antibodies. We suggest that α-MSH-MC4R system in the pVTA might be a part of the neuroadaptive mechanism underlying ethanol addiction.
Collapse
Affiliation(s)
- Gajanan P. Shelkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Atmaram D. Kale
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| | - Uday Singh
- School of Biological Sciences; National Institute of Science Education & Research (NISER); Institute of Physics Campus; Bhubaneswar Orrisa India
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education & Research (NISER); Institute of Physics Campus; Bhubaneswar Orrisa India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; Nagpur Maharashtra India
| |
Collapse
|
23
|
Hao Y, Tian XB, Liu TT, Liu C, Xiang HB, Zhang JG. MC4R expression in pedunculopontine nucleus involved in the modulation of midbrain dopamine system. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2039-2043. [PMID: 25973101 PMCID: PMC4396322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Separate studies have implicated the pedunculopontine tegmental nucleus (PPTg) in processing aversive stimuli to dopamine systems, and melanocortin-4 receptor (MC4R) are broadly expressed by the neurons in the PPTg, but the exact neurosubstrate underlying the regulation of dopamine systems by the central melanocortin pathway is poorly understood. METHODS In this study, the PPTg of 6 adult mice expressing green fluorescent protein (GFP) under the control of the MC4R promoter was detected by fluorescence immunohistochemistry. RESULTS A large number of GFP-positive neurons in the dissipated parts of PPTg (dpPPTg) were found, and approximately 50% of MC4R-GFP- positive neurons in the dpPPTg coexpressed tyrosine hydroxylase, a marker of dopamine neurons, indicating that they were dopaminergic. CONCLUSIONS Our findings support the hypothesis that MC4R signaling in the dpPPTg may involve in the modulation of midbrain dopamine systems.
Collapse
Affiliation(s)
- Yan Hao
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, People’s Republic of China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, People’s Republic of China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, People’s Republic of China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, People’s Republic of China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, People’s Republic of China
| | - Jian-Guo Zhang
- Beijing Key Laboratory of NeurostimulationBeijing 100050, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical UniversityBeijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100050, People’s Republic of China
| |
Collapse
|
24
|
Yilmaz Z, Davis C, Loxton NJ, Kaplan AS, Levitan RD, Carter JC, Kennedy JL. Association between MC4R rs17782313 polymorphism and overeating behaviors. Int J Obes (Lond) 2015; 39:114-20. [PMID: 24827639 PMCID: PMC4232480 DOI: 10.1038/ijo.2014.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Melanocortins have a crucial role in appetite and weight regulation. Although the melanocortin 4 receptor (MC4R) gene has been repeatedly linked to obesity and antipsychotic-induced weight gain, the mechanism behind how it leads to this effect in still undetermined. The goal of this study was to conduct an in-depth and sophisticated analysis of MC4R polymorphisms, body mass index (BMI), eating behavior and depressed mood. SUBJECTS/METHODS We genotyped 328 individuals of European ancestry on the following MC4R markers based on the relevant literature on obesity and antipsychotic-induced weight gain: rs571312, rs17782313, rs489693, rs11872992, and rs8087522. Height and weight were measured, and information on depressed mood and overeating behaviors was obtained during the in-person assessment. RESULTS BMI was associated with rs17782313 C allele; however, this finding did not survive correction for multiple testing (P = 0.018). Although rs17782313 was significantly associated with depressed mood and overeating behaviors, tests of indirect effects indicated that emotional eating and food cravings, rather than depressed mood, uniquely accounted for the effect of this marker and BMI (n = 152). CONCLUSIONS To our knowledge, this is the first study to investigate the link between MC4R rs17782313, mood and overeating behavior, as well as to demonstrate possible mechanisms behind MC4R's influence on body weight. If replicated in a larger sample, these results may have important clinical implications, including potential for the use of MC4R agonists in the treatment of obesity and disordered eating.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Center of Excellence for Eating Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Caroline Davis
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Kinesiology & Health Sciences, York University, Toronto, Ontario, Canada
- Eating Disorders Program, Toronto General Hospital, Toronto, Ontario, Canada
| | - Natalie J. Loxton
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Allan S. Kaplan
- Clinical Research Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert D. Levitan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Mood and Anxiety Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | - James L. Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Differential regulation of MeCP2 and PP1 in passive or voluntary administration of cocaine or food. Int J Neuropsychopharmacol 2014; 17:2031-44. [PMID: 24936739 DOI: 10.1017/s1461145714000972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cocaine exposure induces changes in the expression of numerous genes, in part through epigenetic modifications. We have initially shown that cocaine increases the expression of the chromatin remodeling protein methyl-CpG binding protein 2 (MeCP2) and characterized the protein phosphatase-1Cβ (PP1Cβ) gene, as repressed by passive i.p. cocaine injections through a Mecp2-mediated mechanism involving de novo DNA methylation. Both proteins being involved in learning and memory processes, we investigated whether voluntary cocaine administration would similarly affect their expression using an operant self-administration paradigm. Passive and voluntary i.v. cocaine intake was found to induce Mecp2 and to repress PP1Cβ in the prefrontal cortex and the caudate putamen. This observation is consistent with the role of Mecp2 acting as a transcriptional repressor of PP1Cβ and shows that passive intake was sufficient to alter their expression. Surprisingly, striking differences were observed under the same conditions in food-restricted rats tested for food pellet delivery. In the prefrontal cortex and throughout the striatum, both proteins were induced by food operant conditioning, but remained unaffected by passive food delivery. Although cocaine and food activate a common reward circuit, changes observed in the expression of other genes such as reelin and GAD67 provide new insights into molecular mechanisms differentiating neuroadaptations triggered by each reinforcer. The identification of hitherto unknown genes differentially regulated by drugs of abuse and a natural reinforcer should improve our understanding of how two rewarding stimuli differ in their ability to drive behavior.
Collapse
|
26
|
Lippert RN, Ellacott KLJ, Cone RD. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 2014; 155:1718-27. [PMID: 24605830 PMCID: PMC3990839 DOI: 10.1210/en.2013-2049] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.
Collapse
MESH Headings
- Animals
- Appetitive Behavior
- Behavior, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/cytology
- Dopaminergic Neurons/metabolism
- Female
- Food Preferences
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Homeostasis
- Limbic System/cytology
- Limbic System/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Ovariectomy
- Promoter Regions, Genetic
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Sex Characteristics
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Rachel N Lippert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0165
| | | | | |
Collapse
|
27
|
Oude Ophuis RJA, Boender AJ, van Rozen AJ, Adan RAH. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum. Front Neuroanat 2014; 8:14. [PMID: 24723856 PMCID: PMC3972466 DOI: 10.3389/fnana.2014.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/10/2014] [Indexed: 01/28/2023] Open
Abstract
The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1) and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2) and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive, and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in situ hybridization to quantify the percentage of striatal cells that (co)express dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R) is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.
Collapse
Affiliation(s)
- Ralph J A Oude Ophuis
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands ; Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht Utrecht, Netherlands
| | - Arjen J Boender
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Andrea J van Rozen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
28
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
29
|
Abstract
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role--Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function.
Collapse
|
30
|
Mason BL, Lobo MK, Parada LF, Lutter M. Trk B signaling in dopamine 1 receptor neurons regulates food intake and body weight. Obesity (Silver Spring) 2013; 21:2372-6. [PMID: 23512795 PMCID: PMC3742719 DOI: 10.1002/oby.20382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/16/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Loss of BDNF-TrkB signaling results in obesity in both humans and mice; however, the neural circuit that mediates this effect is unknown. The role of TrkB signaling in dopamine-1 receptor expressing neurons in body weight regulation was tested. METHODS Mice with a floxed allele of the TrkB gene were paired with mice expressing Cre-recombinase under control of the D1 promoter to conditionally knock out expression of TrkB receptors from D1-neurons. RESULTS Deletion of TrkB receptors from D1 neurons results in obesity in chow fed mice due to increased feed efficiency. In contrast, loss of Trk B signaling in D1 neurons induced hyperphagia and hyperglycemia in mice maintained on high fat diet. CONCLUSIONS These findings indicate TrkB signaling in D1 neurons regulates body weight by distinct mechanisms for chow and high fat diet and may be important for defending the body against the development of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Brittany L. Mason
- , Departments of Psychiatrym University of Texas Southwestern Medical Center Dallas, TX. 75390
| | - Mary Kay Lobo
- Developmental Biology. 5323 Harry Hines Blvd. Dallas, TX. 75390
| | - Luis F. Parada
- University of Maryland, Department of Anatomy and Neurobiology, 20 Penn St. HSFII Rm S265 Baltimore, MD 21201
| | - Michael Lutter
- , Departments of Psychiatrym University of Texas Southwestern Medical Center Dallas, TX. 75390
- Corresponding Author: Michael Lutter, University of Iowa, Carver College of Medicine, Department of Psychiatry, 200 Hawkins Dr., B020 ML, Iowa City, IA, 52242, ph: 319-353-5425, f: 319-356-2587.
| |
Collapse
|
31
|
Mul JD, Spruijt BM, Brakkee JH, Adan RAH. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents. Eur J Pharmacol 2013; 719:192-201. [PMID: 23872405 DOI: 10.1016/j.ejphar.2013.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 02/04/2023]
Abstract
Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced.
Collapse
Affiliation(s)
- Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, 2170 East Galbraith Road, 45237 Cincinnati, Ohio, USA.
| | - Berry M Spruijt
- Department of Biology, Faculty of Beta Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan H Brakkee
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Roger A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
32
|
Pandit R, la Fleur SE, Adan RAH. The role of melanocortins and Neuropeptide Y in food reward. Eur J Pharmacol 2013; 719:208-214. [PMID: 23872406 DOI: 10.1016/j.ejphar.2013.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
The Neuropeptide Y and the melanocortin peptides are two well-described hypothalamic feeding peptides regulating energy balance. Predominantly expressed within the arcuate nucleus, these neurons project to different brain areas and modulate various aspects of feeding. Hedonic feeding, where one overindulges in palatable food consumption beyond one's nutritional necessities, is one such aspect regulated by NPY/melanocortin signaling. Research suggests that NPY/melanocortin regulate hedonic aspects of feeding through its projections to the brain reward circuitry (ventral tegmental area, lateral hypothalamus, nucleus accumbens etc.), however, exact target areas have not yet been identified. The current work explores literature to provide a mechanistic explanation for the effects of these peptides on food reward.
Collapse
Affiliation(s)
- R Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - S E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - R A H Adan
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
33
|
Cui H, Lutter M. The expression of MC4Rs in D1R neurons regulates food intake and locomotor sensitization to cocaine. GENES BRAIN AND BEHAVIOR 2013; 12:658-65. [PMID: 23786641 DOI: 10.1111/gbb.12057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 12/27/2022]
Abstract
While it is known that mice lacking melanocortin 4 receptor (MC4R) expression develop hyperphagia resulting in early-onset obesity, the specific neural circuits that mediate this process remain unclear. Here, we report that selective restoration of MC4R expression within dopamine-1 receptor-expressing neurons [MC4R/dopamine 1 receptor (D1R) mice] partially blunts the severe obesity seen in MC4R-null mice by decreasing meal size, but not meal frequency, in the dark cycle. We also report that both acute cocaine-induced anorexia and the development of locomotor sensitization to repeated administration of cocaine are blunted in MC4R-null mice and normalized in MC4R/D1R mice. Neuronal retrograde tracing identifies the lateral hypothalamic area as the primary target of MC4R-expressing neurons in the nucleus accumbens. Biochemical studies in the ventral striatum show that phosphorylation of DARPP-32(Thr) (-34) and GluR1(Ser) (-845) is diminished in MC4R-null mice after chronic cocaine administration but rescued in MC4R/D1R mice. These findings highlight a physiological role of MC4R-mediated signaling within D1R neurons in the long-term regulation of energy balance and behavioral responses to cocaine.
Collapse
Affiliation(s)
- H Cui
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
34
|
Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice. Proc Natl Acad Sci U S A 2013; 110:10759-64. [PMID: 23754400 DOI: 10.1073/pnas.1308195110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normalize compulsive grooming and striatal electrophysiologic impairments in synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3)-null mice, a model of human obsessive-compulsive disorder. Unexpectedly, genetic deletion of SAPAP3 restores normal weight and metabolic features of MC4R-null mice, a model of human obesity. Our findings offer insights into the pathophysiology and treatment of both compulsive behavior and eating disorders.
Collapse
|
35
|
Pott W, Albayrak O, Hinney A, Hebebrand J, Pauli-Pott U. Successful treatment with atomoxetine of an adolescent boy with attention deficit/hyperactivity disorder, extreme obesity, and reduced melanocortin 4 receptor function. Obes Facts 2013; 6:109-15. [PMID: 23493066 PMCID: PMC5644743 DOI: 10.1159/000348792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Recent case reports suggest a link between reduced melanocortinergic tone and both obesity and attention deficit / hyperactivity disorder (ADHD). We present the case of a 13-year-old, male, obese MC4R mutation carrier with ADHD. CASE REPORT The boy carries a heterozygous mutation in the melanocortin 4 receptor gene (MC4R; Met281Val), that leads to a reduced receptor function. Dominant mutations of this type represent major gene effects for obesity. He participated in a lifestyle intervention program for obesity and received treatment with the selective norepinephrine re-uptake inhibitor atomoxetine for 31 months. The boy markedly reduced his BMI from 47.2 to 29.6 kg/m². CONCLUSION Atomoxetine proved to efficiently reduce weight in a severely obese MC4R mutation carrier with ADHD. We briefly discuss possible mechanisms for our observation, including evidence for the functional connectivity between melanocortinergic, dopaminergic, and norepinephrinergic brain circuitries.
Collapse
Affiliation(s)
- Wilfried Pott
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Human Medicine, Philipps-University Marburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013; 14:2-18. [PMID: 23016694 PMCID: PMC4827343 DOI: 10.1111/j.1467-789x.2012.01031.x] [Citation(s) in RCA: 513] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/14/2022]
Abstract
Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction.
Collapse
Affiliation(s)
- N D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
37
|
Tucker KR, Godbey SJ, Thiebaud N, Fadool DA. Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity. Physiol Behav 2012; 107:424-32. [PMID: 22995978 PMCID: PMC3513555 DOI: 10.1016/j.physbeh.2012.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/18/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023]
Abstract
Physiological and nutritional state can modify sensory ability and perception through hormone signaling. Obesity and related metabolic disorders present a chronic imbalance in hormonal signaling that could impact sensory systems. In the olfactory system, external chemical cues are transduced into electrical signals to encode information. It is becoming evident that this system can also detect internal chemical cues in the form of molecules of energy homeostasis and endocrine hormones, whereby neurons of the olfactory system are modulated to change animal behavior towards olfactory cues. We hypothesized that chronic imbalance in hormonal signaling and energy homeostasis due to obesity would thereby disrupt olfactory behaviors in mice. To test this idea, we utilized three mouse models of varying body weight, metabolic hormones, and visceral adiposity - 1) C57BL6/J mice maintained on a condensed-milk based, moderately high-fat diet (MHF) of 32% fat for 6 months as the diet-induced obesity model, 2) an obesity-resistant, lean line of mice due to a gene-targeted deletion of a voltage-dependent potassium channel (Kv 1.3-null), and 3) a genetic model of obesity as a result of a gene-targeted deletion of the melanocortin 4 receptor (MC4R-null). Diet-induced obese (DIO) mice failed to find a fatty-scented hidden peanut butter cracker, based solely on olfactory cues, any faster than an unscented hidden marble, initially suggesting general anosmia. However, when these DIO mice were challenged to find a sweet-scented hidden chocolate candy, they had no difficulty. Furthermore, DIO mice were able to discriminate between fatty acids that differ by a single double bond and are components of the MHF diet (linoleic and oleic acid) in a habituation-dishabituation paradigm. Obesity-resistant, Kv1.3-null mice exhibited no change in scented object retrieval when placed on the MHF-diet, nor did they perform differently than wild-type mice in parallel habituation-dishabituation paradigms of fatty food-related odor components. Genetically obese, MC4R-null mice successfully found hidden scented objects, but did so more slowly than lean, wild-type mice, in an object-dependent fashion. In habituation-dishabituation trials of general odorants, MC4R-null mice failed to discriminate a novel odor, but were able to distinguish two fatty acids. Object memory recognition tests for short- and long-term memory retention demonstrated that maintenance on the MHF diet did not modify the ability to perform these tasks independent of whether mice became obese or were resistant to weight gain (Kv1.3-null), however, the genetically predisposed obese mice (MC4R-null) failed the long-term object memory recognition performed at 24h. These results demonstrate that even though both the DIO mice and genetically predisposed obese mice are obese, they vary in the degree to which they exhibit behavioral deficits in odor detection, odor discrimination, and long-term memory.
Collapse
Affiliation(s)
- Kristal R Tucker
- Department of Biological Science, 319 Stadium Drive, Suite 3008, King Life Sciences Building, The Florida State University, Tallahassee, FL 32306-4295, United States; Program in Neuroscience, 319 Stadium Drive, Suite 3008, King Life Sciences Building, The Florida State University, Tallahassee, FL 32306-4295, United States.
| | | | | | | |
Collapse
|