1
|
Zambrano AK, Paz-Cruz E, Ruiz-Pozo VA, Cadena-Ullauri S, Tamayo-Trujillo R, Guevara-Ramírez P, Zambrano-Villacres R, Simancas-Racines D. Microbiota dynamics preceding bariatric surgery as obesity treatment: a comprehensive review. Front Nutr 2024; 11:1393182. [PMID: 38633602 PMCID: PMC11021787 DOI: 10.3389/fnut.2024.1393182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The review present data on the intricate relationship between bariatric surgery, gut microbiota, and metabolic health in obesity treatment. Bariatric surgery, is recognized as an effective intervention for managing morbid obesity, including various techniques with distinct mechanisms of action, efficacy, and safety profiles including Roux-en-Y Gastric Bypass (RYGB), Sleeve Gastrectomy (SG), Laparoscopic Adjustable Gastric Banding (LAGB), and Biliopancreatic Diversion (BPD). RYGB and SG are the most prevalent procedures globally, inducing gut microbiota changes that influence microbial diversity and abundance. Post-surgery, alterations in bacterial communities occur, such as the increased of Escherichia coli inversely correlated with fat mass and leptin levels. During digestion, microbiota produce physiologically active compounds like bile acids (Bas) and short-chain fatty acids (SCFAs). SCFAs, derived by microbial fermentation, influence appetite, energy metabolism, and obesity-related pathways. Bas, altered by surgery, modulate glucose metabolism and insulin sensitivity. Furthermore, SG and RYGB enhance incretin secretion, particularly glucagon-like peptide 1 (GLP-1). Therefore, understanding microbiota changes after bariatric surgery could be crucial for predicting metabolic outcomes and developing targeted interventions for obesity management.
Collapse
Affiliation(s)
- Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| |
Collapse
|
2
|
Niu S, Ren L. Treatment of obesity by acupuncture combined with medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2023; 102:e36071. [PMID: 38050318 PMCID: PMC10695503 DOI: 10.1097/md.0000000000036071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023] Open
Abstract
Obesity is a complex, multifactorial disease. The incidence of overweight and obesity has doubled worldwide since 1980, and nearly one-third of the world population is now classified as overweight or obese. Obesity rates are increasing in all age groups and for both sexes, regardless of geographic region, race, or socioeconomic status, although they are generally higher in older adults and women. Although the absolute prevalence of overweight and obesity varies widely, this trend is similar across different regions and countries. In some developed countries, the prevalence of obesity has levelled off over the past few years. However, obesity has become a health problem that cannot be ignored in low- and middle-income countries. Although the drug treatment model of modern medicine has a significant therapeutic effect in the treatment of obesity, its adverse effects are also obvious. Acupuncture combined with Chinese medicine treatment of obesity has prominent advantages in terms of clinical efficacy, and its clinical safety is higher, with fewer adverse reactions. The combination of acupuncture and medicine in the treatment of obesity is worth exploring.
Collapse
Affiliation(s)
- Shiyu Niu
- Second Affiliated Hospital of Heilongjiang Traditional Chinese Medicine, Harbin, Heilongjiang Province
| | - Lihong Ren
- The Second Hospital of Harbin, Harbin, Heilongjiang Province
| |
Collapse
|
3
|
Shi Y, Cui H, Wang F, Zhang Y, Xu Q, Liu D, Wang K, Hou S. Role of gut microbiota in postoperative complications and prognosis of gastrointestinal surgery: A narrative review. Medicine (Baltimore) 2022; 101:e29826. [PMID: 35866808 PMCID: PMC9302249 DOI: 10.1097/md.0000000000029826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gastrointestinal surgery is often challenging because of unexpected postoperative complications such as pouchitis, malabsorption, anastomotic leak, diarrhea, inflammatory responses, and life-threatening infections. Moreover, the gut microbiota has been shown to be associated with the complications described above. Major intestinal reconstruction, such as Roux-en-Y gastric bypass (RYGB) and ileal pouch-anal anastomosis surgery, could result in altered gut microbiota, which might lead to some of the benefits of these procedures but could also contribute to the development of postsurgical complications. Moreover, postsurgical reestablishment of the gut microbiota population is still poorly understood. Here, we review evidence outlining the role of gut microbiota in complications of gastrointestinal surgery, especially malabsorption, anastomotic leak, pouchitis, and infections. In addition, this review will evaluate the risks and benefits of live biotherapeutics in the complications of gastrointestinal surgery.
Collapse
Affiliation(s)
- Yong Shi
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Huxiao Cui
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Fangjie Wang
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Yanxia Zhang
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Qingbin Xu
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Dan Liu
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Kunhui Wang
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
| | - Sen Hou
- Department of General Surgery, Xuchang Central Hospital, Xuchang City, Henan Province, China
- *Correspondence: Sen Hou, Department of General Surgery, Xuchang Central Hospital, No. 30, Huatuo Road, Weidu District, Xuchang City, Henan Province, China (e-mail: )
| |
Collapse
|
4
|
Blonde GD, Mathes CM, Inui T, Hamel EA, Price RK, Livingstone MBE, Le Roux CW, Spector AC. Oromotor and somatic taste reactivity during sucrose meals reveals internal state and stimulus palatability after gastric bypass in rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R204-R218. [PMID: 35043683 PMCID: PMC8858674 DOI: 10.1152/ajpregu.00285.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
After Roux-en-Y gastric bypass (RYGB), rats consume less high-energy foods and fluids, though whether this reflects a concomitant change in palatability remains unclear. By measuring behavior during intraorally delivered liquid meals across days (1 water, 8 sucrose sessions), we showed that RYGB rats (RYGB, n = 8/sex) consumed less 1.0 M sucrose than their sham surgery counterparts (SHAM, n = 8 males, n = 11 females) but displayed similarly high levels of ingestive taste reactivity responses at the start of infusions. Relative to water, both groups increased intake of sucrose, and ingestive responses were dominated by tongue protrusions rather than mouth movements. Thus, RYGB animals still found sucrose palatable despite consuming less than the SHAM group. As the intraoral infusion progressed but before meal termination, aversive behavior remained low and both RYGB and SHAM animals showed fewer ingestive responses, predominantly mouth movements as opposed to tongue protrusions. This shift in responsiveness unrelated to surgical manipulation suggests negative alliesthesia, or a decreased palatability, as rats approach satiation. Notably, only in RYGB rats, across sessions, there was a striking emergence of aversive behavior immediately after the sucrose meal. Thus, although lower intake in RYGB rats seems independent of the hedonic taste properties of sucrose, taste reactivity behavior in these animals immediately after termination of a liquid meal appears to be influenced by postoral events and reflects a state of nimiety or excessive consumption. Measurement of taste reactivity behaviors during an intraorally delivered meal represents a promising way to make inferences about internal state in nonverbal preclinical models.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Clare M Mathes
- Department of Neuroscience, Baldwin Wallace University, Berea, Ohio
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Elizabeth A Hamel
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Ruth K Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - M Barbara E Livingstone
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Carel W Le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
5
|
Stefura T, Zapała B, Gosiewski T, Skomarovska O, Pędziwiatr M, Major P. Changes in the Composition of Oral and Intestinal Microbiota After Sleeve Gastrectomy and Roux-En-Y Gastric Bypass and Their Impact on Outcomes of Bariatric Surgery. Obes Surg 2022; 32:1439-1450. [PMID: 35188608 PMCID: PMC8986729 DOI: 10.1007/s11695-022-05954-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/14/2023]
Abstract
Background We aimed to assess the changes in composition of bacterial microbiota at two levels of the digestive tract: oral cavity and large intestine in patients 6 months after bariatric surgery. Methods This was a prospective cohort study including patients undergoing bariatric surgery. Before surgery and 6 months after the procedure, oral swabs were obtained and stool samples were provided. Our endpoint was the analysis of the differences in compositions of oral and fecal microbiota prior and after the surgical treatment of obesity. Results Bacteria from phylum Bacteroidetes seemed to increase in abundance in both the oral cavity and the large intestine 6 months after surgery among patients undergoing bariatric surgery. The subgroup analysis we conducted based on the volume of weight-loss revealed that patients achieving at least 50% of excess weight loss present similar results to the entire study group. Patients with less favorable outcomes presented an increase in the population of bacteria from phylum Fusobacteria and a decrease of phylum Firmicutes in oral cavity. Conclusion Intestinal microbiota among these patients underwent similar changes in composition to the rest of the study group. Bariatric surgery introduces a significant change in composition of oral and intestinal microbiota. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11695-022-05954-9.
Collapse
Affiliation(s)
- Tomasz Stefura
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2 st, 30-688 Cracow, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Cracow, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Division of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Cracow, Poland
| | - Oksana Skomarovska
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2 st, 30-688 Cracow, Poland
| | - Michał Pędziwiatr
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2 st, 30-688 Cracow, Poland
- Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), 30-688 Cracow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2 st, 30-688 Cracow, Poland
- Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), 30-688 Cracow, Poland
| |
Collapse
|
6
|
Dang JT, Mocanu V, Park H, Laffin M, Tran C, Hotte N, Karmali S, Birch DW, Madsen K. Ileal microbial shifts after Roux-en-Y gastric bypass orchestrate changes in glucose metabolism through modulation of bile acids and L-cell adaptation. Sci Rep 2021; 11:23813. [PMID: 34893681 PMCID: PMC8664817 DOI: 10.1038/s41598-021-03396-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
Abstract
Roux-en-Y gastric bypass (RYGB)-induced glycemic improvement is associated with increases in glucagon-like-peptide-1 (GLP-1) secreted from ileal L-cells. We analyzed changes in ileal bile acids and ileal microbial composition in diet-induced-obesity rats after RYGB or sham surgery to elucidate the early and late effects on L-cells and glucose homeostasis. In early cohorts, there were no significant changes in L-cell density, GLP-1 or glucose tolerance. In late cohorts, RYGB demonstrated less weight regain, improved glucose tolerance, increased L-cell density, and increased villi height. No difference in the expression of GLP-1 genes was observed. There were lower concentrations of ileal bile acids in the late RYGB cohort. Microbial analysis demonstrated decreased alpha diversity in early RYGB cohorts which normalized in the late group. The early RYGB cohorts had higher abundances of Escherichia-Shigella but lower abundances of Lactobacillus, Adlercreutzia, and Proteus while the late cohorts demonstrated higher abundances of Escherichia-Shigella and lower abundances of Lactobacillus. Shifts in Lactobacillus and Escherichia-Shigella correlated with decreases in multiple conjugated bile acids. In conclusion, RYGB caused a late and substantial increase in L-cell quantity with associated changes in bile acids which correlated to shifts in Escherichia-Shigella and Lactobacillus. This proliferation of L-cells contributed to improved glucose homeostasis.
Collapse
Affiliation(s)
- Jerry T Dang
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada.
| | - Valentin Mocanu
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Heekuk Park
- Department of Medicine, Columbia University, New York City, NY, USA
| | - Michael Laffin
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Caroline Tran
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Shahzeer Karmali
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Daniel W Birch
- Division of General Surgery, Department of Surgery, University of Alberta Hospital, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Karen Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Blonde GD, Price RK, le Roux CW, Spector AC. Meal Patterns and Food Choices of Female Rats Fed a Cafeteria-Style Diet Are Altered by Gastric Bypass Surgery. Nutrients 2021; 13:3856. [PMID: 34836110 PMCID: PMC8623594 DOI: 10.3390/nu13113856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
After Roux-en-Y gastric bypass surgery (RYGB), rats tend to reduce consumption of high-sugar and/or high-fat foods over time. Here, we sought to investigate the behavioral mechanisms underlying these intake outcomes. Adult female rats were provided a cafeteria diet comprised of five palatable foodstuffs varying in sugar and fat content and intake was monitored continuously. Rats were then assigned to either RYGB, or one of two control (CTL) groups: sham surgery or a nonsurgical control group receiving the same prophylactic iron treatments as RYGB rats. Post-sur-gically, all rats consumed a large first meal of the cafeteria diet. After the first meal, RYGB rats reduced intake primarily by decreasing the meal sizes relative to CTL rats, ate meals more slowly, and displayed altered nycthemeral timing of intake yielding more daytime meals and fewer nighttime meals. Collectively, these meal patterns indicate that despite being motivated to consume a cafeteria diet after RYGB, rats rapidly learn to modify eating behaviors to consume foods more slowly across the entire day. RYGB rats also altered food preferences, but more slowly than the changes in meal patterns, and ate proportionally more energy from complex carbohydrates and protein and proportionally less fat. Overall, the pattern of results suggests that after RYGB rats quickly learn to adjust their size, eating rate, and distribution of meals without altering meal number and to shift their macronutrient intake away from fat; these changes appear to be more related to postingestive events than to a fundamental decline in the palatability of food choices.
Collapse
Affiliation(s)
- Ginger D. Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| | - Ruth K. Price
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Carel W. le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
8
|
Agnes A, Puccioni C, D'Ugo D, Gasbarrini A, Biondi A, Persiani R. The gut microbiota and colorectal surgery outcomes: facts or hype? A narrative review. BMC Surg 2021; 21:83. [PMID: 33579260 PMCID: PMC7881582 DOI: 10.1186/s12893-021-01087-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) has been proposed as one of the main determinants of colorectal surgery complications and theorized as the "missing factor" that could explain still poorly understood complications. Herein, we investigate this theory and report the current evidence on the role of the GM in colorectal surgery. METHODS We first present the findings associating the role of the GM with the physiological response to surgery. Second, the change in GM composition during and after surgery and its association with colorectal surgery complications (ileus, adhesions, surgical-site infections, anastomotic leak, and diversion colitis) are reviewed. Finally, we present the findings linking GM science to the application of the enhanced recovery after surgery (ERAS) protocol, for the use of oral antibiotics with mechanical bowel preparation and for the administration of probiotics/synbiotics. RESULTS According to preclinical and translational evidence, the GM is capable of influencing colorectal surgery outcomes. Clinical evidence supports the application of an ERAS protocol and the preoperative administration of multistrain probiotics/synbiotics. GM manipulation with oral antibiotics with mechanical bowel preparation still has uncertain benefits in right-sided colic resection but is very promising for left-sided colic resection. CONCLUSIONS The GM may be a determinant of colorectal surgery outcomes. There is an emerging need to implement translational research on the topic. Future clinical studies should clarify the composition of preoperative and postoperative GM and the impact of the GM on different colorectal surgery complications and should assess the validity of GM-targeted measures in effectively reducing complications for all colorectal surgery locations.
Collapse
Affiliation(s)
- Annamaria Agnes
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Caterina Puccioni
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
| | - Domenico D'Ugo
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Antonio Gasbarrini
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| | - Alberto Biondi
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy.
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy.
| | - Roberto Persiani
- Università Cattolica del Sacro Cuore, Largo F. Vito n.1, 00168, Rome, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli n. 8, 00168, Rome, Italy
| |
Collapse
|
9
|
Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne) 2021; 12:706978. [PMID: 34552557 PMCID: PMC8450866 DOI: 10.3389/fendo.2021.706978] [Citation(s) in RCA: 542] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is a complex multifactorial disease that accumulated excess body fat leads to negative effects on health. Obesity continues to accelerate resulting in an unprecedented epidemic that shows no significant signs of slowing down any time soon. Raised body mass index (BMI) is a risk factor for noncommunicable diseases such as diabetes, cardiovascular diseases, and musculoskeletal disorders, resulting in dramatic decrease of life quality and expectancy. The main cause of obesity is long-term energy imbalance between consumed calories and expended calories. Here, we explore the biological mechanisms of obesity with the aim of providing actionable treatment strategies to achieve a healthy body weight from nature to nurture. This review summarizes the global trends in obesity with a special focus on the pathogenesis of obesity from genetic factors to epigenetic factors, from social environmental factors to microenvironment factors. Against this background, we discuss several possible intervention strategies to minimize BMI.
Collapse
|
10
|
Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009-2019). Obes Surg 2020; 31:317-326. [PMID: 33130944 DOI: 10.1007/s11695-020-05074-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.
Collapse
|
11
|
Cook J, Lehne C, Weiland A, Archid R, Ritze Y, Bauer K, Zipfel S, Penders J, Enck P, Mack I. Gut Microbiota, Probiotics and Psychological States and Behaviors after Bariatric Surgery-A Systematic Review of Their Interrelation. Nutrients 2020; 12:nu12082396. [PMID: 32785153 PMCID: PMC7468806 DOI: 10.3390/nu12082396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal (GI) microbiota plays an important role in health and disease, including brain function and behavior. Bariatric surgery (BS) has been reported to result in various changes in the GI microbiota, therefore demanding the investigation of the impact of GI microbiota on treatment success. The goal of this systematic review was to assess the effects of BS on the microbiota composition in humans and other vertebrates, whether probiotics influence postoperative health, and whether microbiota and psychological and behavioral factors interact. A search was conducted using PubMed and Web of Science to find relevant studies with respect to the GI microbiota and probiotics after BS, and later screened for psychological and behavioral parameters. Studies were classified into groups and subgroups to provide a clear overview of the outcomes. Microbiota changes were further assessed for whether they were specific to BS in humans through the comparison to sham operated controls in other vertebrate studies. Changes in alpha diversity appear not to be specific, whereas dissimilarity in overall microbial community structure, and increases in the abundance of the phylum Proteobacteria and Akkermansia spp. within the phylum Verrucomicrobia after surgery were observed in both human and other vertebrates studies and may be specific to BS in humans. Human probiotic studies differed regarding probiotic strains and dosages, however it appeared that probiotic interventions were not superior to a placebo for quality of life scores or weight loss after BS. The relationship between GI microbiota and psychological diseases in this context is unclear due to insufficient available data.
Collapse
Affiliation(s)
- Jessica Cook
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Christine Lehne
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Alisa Weiland
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Rami Archid
- Department of General, Visceral and Transplant Surgery, University Hospital, 72072 Tübingen, Germany;
| | - Yvonne Ritze
- Institute for Medical Psychology and Behavioral Neurobiology, University Hospital, 72072 Tübingen, Germany;
| | - Kerstin Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute(Caphri), Maastricht University Medical Centre, 6211 Maastricht, The Netherlands;
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, 72072 Tübingen, Germany; (J.C.); (C.L.); (A.W.); (K.B.); (S.Z.); (P.E.)
- Correspondence: ; Tel.: +49-7071-2985614; Fax: +49-7071-294382
| |
Collapse
|
12
|
Zhang T, Wang Y, Yan W, Lu L, Tao Y, Jia J, Cai W. Microbial alteration of small bowel stoma effluents and colonic feces in infants with short bowel syndrome. J Pediatr Surg 2020; 55:1366-1372. [PMID: 31493882 DOI: 10.1016/j.jpedsurg.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM Studies about differences in microbial communities between the small intestine and colon in infants with short bowel syndrome (SBS) are rare. We aimed to characterize the bacterial diversity of small bowel stoma effluents and feces of SBS infants. METHODS Seven SBS infants were enrolled in this study and provided two samples (one from the stoma and the other from the anus) each. Eleven age-matched healthy controls were recruited to provide one fecal sample each. 16S rRNA gene MiSeq sequencing was conducted to characterize the microbiota diversity and composition. RESULTS The bacterial diversity of the stoma effluents was significantly higher than that in the feces of SBS infants. Proteobacteria dominated in both the stoma effluents and colonic. Acinetobacter (P = 0.004), Klebsiella (P = 0.015), Citrobacter (P = 0.019), and Lactobacillus (P = 0.030) were more abundant in stoma effluents compared to feces of SBS patients, while Bacteroidetes, Bifidobacterium and Veillonella were less abundant in stoma effluents. Significantly higher levels of Proteobacteria, Enterococcus and lower levels of Blautia, Collinsella, Faecalibacterium, Veillonella were present in the fecal samples of SBS patients than those in the healthy controls. Kyoto Encyclopedia of Genes and Genomes pathways related to metabolism and membrane function were depleted in SBS patients. CONCLUSIONS The predominant intestinal bacterial groups were different in SBS children before and after the fistula closure. Fecal samples of SBS patients featured overabundant Proteobacteria and less SCFA producing bacteria. Depleted functional profiles of the microbiome were found in fecal samples of SBS patients. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lina Lu
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yijing Tao
- Division of Pediatric GI and Nutrition, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Jia
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
13
|
Péan N, Le Lay A, Brial F, Wasserscheid J, Rouch C, Vincent M, Myridakis A, Hedjazi L, Dumas ME, Grundberg E, Lathrop M, Magnan C, Dewar K, Gauguier D. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia 2020; 63:1223-1235. [PMID: 32173762 PMCID: PMC7228998 DOI: 10.1007/s00125-020-05122-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. METHODS We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. RESULTS VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. CONCLUSIONS Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.
Collapse
Affiliation(s)
- Noémie Péan
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Aurelie Le Lay
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Francois Brial
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
| | - Jessica Wasserscheid
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Claude Rouch
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Mylène Vincent
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Elin Grundberg
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Christophe Magnan
- Unit of Functional and Adaptive Biology, UMR 8251, CNRS, Université de Paris, 4 rue Marie Andrée Lagroua Weill-Halle, Paris, France
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| | - Dominique Gauguier
- Inserm UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France.
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Enteric hyperoxaluria is commonly observed in malabsorptive conditions including Roux en Y gastric bypass (RYGB) and inflammatory bowel diseases (IBD). Its incidence is increasing secondary to an increased prevalence of both disorders. In this review, we summarize the evidence linking the gut microbiota to the risk of enteric hyperoxaluria. RECENT FINDINGS In enteric hyperoxaluria, fat malabsorption leads to increased binding of calcium to free fatty acids resulting in more soluble oxalate in the intestinal lumen. Bile acids and free fatty acids in the lumen also cause increased gut permeability allowing more passive absorption of oxalate. In recent years, there is more interest in the role of the gut microbiota in modulating urinary oxalate excretion in enteric hyperoxaluria, stemming from our knowledge that microbiota in the intestines can degrade oxalate. Oxalobacter formigenes reduced urinary oxalate in animal models of RYGB. The contribution of other oxalate-degrading organisms and the microbiota community to the pathophysiology of enteric hyperoxaluria are also currently under investigation. SUMMARY Gut microbiota might play a role in modulating the risk of enteric hyperoxaluria through oxalate degradation and bile acid metabolism. O. formigenes is a promising therapeutic target in this population; however, further studies in humans are needed to test its effectiveness.
Collapse
|
15
|
Chen KF, Chan LN, Senn TD, Oelschlager BK, Flum DR, Shen DD, Horn JR, Lin YS. The Impact of Proximal Roux-en-Y Gastric Bypass Surgery on Acetaminophen Absorption and Metabolism. Pharmacotherapy 2020; 40:191-203. [PMID: 31960977 DOI: 10.1002/phar.2368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGBS), a surgery that creates a smaller stomach pouch and reduces the length of small intestine, is one of the most common medical interventions for the treatment of obesity. AIM The aim of this study was to determine how RYGBS affects the absorption and metabolism of acetaminophen. MATERIALS AND METHODS Ten morbidly obese patients received 1.5 g of liquid acetaminophen (APAP) orally on three separate pharmacokinetic study days (i.e., pre-RYGBS baseline and 3 and 12 months post-RYGBS). Plasma was collected at pre-specified timepoints over 24 hours, and the samples were analyzed using liquid chromatography-mass spectrometry for APAP, APAPglucuronide (APAP-gluc), APAP-sulfate (APAP-sulf), APAP-cysteine (APAP-cys), and APAP-Nacetylcysteine (APAP-nac). RESULT Following RYGBS, peak APAP concentrations at the 3-month and 12-month visits increased by 2.0-fold compared to baseline (p=0.0039 and p=0.0078, respectively) and the median time to peak concentration decreased from 35 to 10 minutes. In contrast, peak concentrations of APAP-gluc, APAP-sulf, APAP-cys, and APAP-nac were unchanged following RYGBS. The apparent oral clearance of APAP and the ratios of metabolite area under the curve (AUC)-to-APAP AUC for all four metabolites decreased at 3 and 12 months post-RYGBS compared to the presurgical baseline. In a simulation of expected steady-state plasma concentrations following multiple dosing of 650 mg APAP every 4 hours, post-RYGBS patients had higher steady-state peak APAP concentrations compared to healthy individuals and obese pre-RYGBS patients, though APAP exposure was unchanged compared to healthy individuals. CONCLUSION Following RYGBS, the rate and extent of APAP absorption increased and decreased formation of APAP metabolites was observed, possibly due to downregulation of Phase II and cytochrome P450 2E1 enzymes.
Collapse
Affiliation(s)
- Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Taurence D Senn
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | | | - David R Flum
- Department of Surgery, University of Washington, Seattle, Washington
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - John R Horn
- Department of Pharmacy, University of Washington, Seattle, Washington
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Stefater MA, Pacheco JA, Bullock K, Pierce K, Deik A, Liu E, Clish C, Stylopoulos N. Portal Venous Metabolite Profiling After RYGB in Male Rats Highlights Changes in Gut-Liver Axis. J Endocr Soc 2020; 4:bvaa003. [PMID: 32099946 PMCID: PMC7033034 DOI: 10.1210/jendso/bvaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery’s remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) blood from lean, Long Evans rats after RYGB vs sham surgery. We found that one-carbon metabolism (OCM), nitrogen metabolism, and arginine and proline metabolism were significantly enriched in PV blood. Nitrogen, OCM, and sphingolipid metabolism as well as ubiquinone biosynthesis were also overrepresented among metabolites uniquely affected in PV vs peripheral blood in RYGB-operated but not sham-operated animals. Peripheral blood demonstrated changes in AA metabolism, OCM, sphingolipid metabolism, and glycerophospholipid metabolism. Despite enrichment for many of the same pathways, the overall metabolite fingerprint of the 2 compartments did not correlate, highlighting a unique role for PV metabolomic profiling as a window into gut metabolism. AA metabolism and OCM were enriched in peripheral blood both from humans and lean rats after RYGB, demonstrating that these conserved pathways might represent mechanisms for clinical improvement elicited by the surgery in patients. Together, our data provide novel insight into RYGB’s effects on the gut-liver axis and highlight a role for OCM as a key metabolic pathway affected by RYGB.
Collapse
Affiliation(s)
- Margaret A Stefater
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Kevin Bullock
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Enju Liu
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nicholas Stylopoulos
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Bastos ELDS, Liberatore AMA, Tedesco RC, Koh IHJ. Gut Microbiota Imbalance Can Be Associated with Non-malabsorptive Small Bowel Shortening Regardless of Blind Loop. Obes Surg 2019; 29:369-375. [PMID: 30293133 DOI: 10.1007/s11695-018-3540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Some traditional bariatric surgery procedures may lead to functional gut shortening, which may unsettle the fine-tuned gastrointestinal physiology and affect gut microbiota balance. PURPOSE Evaluate the gut microbiota behavior in rat models facing gut shortening due to intestinal bypass. MATERIALS AND METHODS Wistar rats (n = 17) were randomly distributed in three groups: (1) sham group (n = 5); (2) blind loop group (n = 6); and (3) resection group (n = 6). Intestinal samples and feces were analyzed to measure bacterial concentrations (small intestinal bacterial overgrowth-SIBO) 12 weeks after the experimental procedures. Bacterial translocation (BT) was investigated in the mesenteric lymph node (MLN), liver, spleen, and lung of the animals. In addition, inflammatory aspects were investigated in their liver and small bowel through histological analysis. RESULTS Regardless of blind loop, gut shortening groups recorded similar high level of bacterial concentrations in intestine compartments, greater than that of the sham group (p ≤ 0.05). BT was only observed in the MLN of gut shortening models, with higher percentage in the blind loop group (p ≤ 0.05). The gut and liver histopathological analysis showed similar low-grade chronic inflammation in both gut shortening groups, likely associated with SIBO/BT events. CONCLUSION Sustained SIBO/BT was associated with proximal gut shortening in half regardless of blind loop, whereas the GI tract's ability to restore gut microbiota balance after a surgical challenge on the small bowel appears to be linked to the functional remaining gut.
Collapse
Affiliation(s)
- Eduardo Lemos de Souza Bastos
- Department of Gastrointestinal Surgery, Marilia Medicine School, 12 Santa Helena St., Marilia, Sao Paulo, 17515-410, Brazil.
| | | | - Roberto Carlos Tedesco
- Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Ivan Hong Jun Koh
- Department of Surgery and Experimental Research Laboratory, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
18
|
Jain AK, le Roux CW, Puri P, Tavakkoli A, Gletsu-Miller N, Laferrère B, Kellermayer R, DiBaise JK, Martindale RG, Wolfe BM. Proceedings of the 2017 ASPEN Research Workshop-Gastric Bypass: Role of the Gut. JPEN J Parenter Enteral Nutr 2019; 42:279-295. [PMID: 29443403 DOI: 10.1002/jpen.1121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
Abstract
The goal of the National Institutes of Health-funded American Society for Parenteral and Enteral Nutrition 2017 research workshop (RW) "Gastric Bypass: Role of the Gut" was to focus on the exciting research evaluating gut-derived signals in modulating outcomes after bariatric surgery. Although gastric bypass surgery has undoubted positive effects, the mechanistic basis of improved outcomes cannot be solely explained by caloric restriction. Emerging data suggest that bile acid metabolic pathways, luminal contents, energy balance, gut mucosal integrity, as well as the gut microbiota are significantly modulated after bariatric surgery and may be responsible for the variable outcomes, each of which was rigorously evaluated. The RW served as a timely and novel academic meeting that brought together clinicians and researchers across the scientific spectrum, fostering a unique venue for interdisciplinary collaboration among investigators. It promoted engaging discussion and evolution of new research hypotheses and ideas, driving the development of novel ameliorative, therapeutic, and nonsurgical interventions targeting obesity and its comorbidities. Importantly, a critical evaluation of the current knowledge regarding gut-modulated signaling after bariatric surgery, potential pitfalls, and lacunae were thoroughly addressed.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- Department of Pediatrics, SSM Cardinal Glennon Children's Medical Center, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Carel W le Roux
- Diabetes Complications Research Center, University College Dublin, School of Medicine, Dublin, Ireland
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Vieginia, USA
| | - Ali Tavakkoli
- Brigham and Women's Hospital, Center for Weight Management and Metabolic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Blandine Laferrère
- Department of Medicine, Division of Endocrinology, Columbia University, New York, New York, USA
| | | | - John K DiBaise
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Bruce M Wolfe
- Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
El Khoury L, Chouillard E, Chahine E, Saikaly E, Debs T, Kassir R. Metabolic Surgery and Diabesity: a Systematic Review. Obes Surg 2019; 28:2069-2077. [PMID: 29679334 DOI: 10.1007/s11695-018-3252-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgery is used to induce weight loss (baros = weight). Evidence has shown that bariatric surgery improves the comorbid conditions associated with obesity such as hypertension, hyperlipidemia, and type 2 diabetes mellitus T2DM. Hence, shifting towards using metabolic surgery instead of bariatric surgery is currently more appropriate in certain subset of patients. Endocrine changes resulting from operative manipulation of the gastrointestinal tract after metabolic surgery translate into metabolic benefits with respect to the comorbid conditions. Other changes include bacterial flora rearrangement, bile acids secretion, and adipose tissue effect. The aim of this systematic review is to examine clinical trials regarding long-term effects of bariatric and metabolic surgery on patients with T2DM and to evaluate the potential mechanisms leading to the improvement in the glycaemic control.
Collapse
Affiliation(s)
- Lionel El Khoury
- Department of Digestive and Minimally Invasive Surgery, Saint-Germain-en-Laye Medical Center, Poissy, France
| | - Elie Chouillard
- Department of Digestive and Minimally Invasive Surgery, Saint-Germain-en-Laye Medical Center, Poissy, France
| | - Elias Chahine
- Department of Digestive and Minimally Invasive Surgery, Saint-Germain-en-Laye Medical Center, Poissy, France
| | - Elias Saikaly
- Saint Georges Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - Tarek Debs
- Department of General Surgery, CHU Archet, Nice, France
| | - Radwan Kassir
- Departement of Digestive Surgery, CHU Félix Guyon, Saint Denis, La Réunion, France.
- Department of Bariatric Surgery, CHU Félix Guyon, Saint Denis, La Réunion, France.
| |
Collapse
|
20
|
Tsuchiya T, Naitoh T, Nagao M, Tanaka N, Watanabe K, Imoto H, Miyachi T, Motoi F, Unno M. Increased Bile Acid Signals After Duodenal-Jejunal Bypass Improve Non-alcoholic Steatohepatitis (NASH) in a Rodent Model of Diet-Induced NASH. Obes Surg 2019; 28:1643-1652. [PMID: 29235014 DOI: 10.1007/s11695-017-3065-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The increasing incidence of non-alcoholic steatohepatitis (NASH) has resulted in it becoming a common cause of liver-related mortality; however, no efficient treatment has been established. It has been reported that bariatric surgery improves metabolic comorbidities, such as diabetes mellitus and NASH. Although the mechanism is unclear, it is thought that the changes in bile acid (BA) signaling via its nuclear receptor, farnesoid X receptor (FXR), produce various metabolic effects. We sought to investigate the effects and mechanisms of bariatric surgery on NASH improvement. METHODS Male Sprague-Dawley rats were fed by a high-fat and high-fructose diet, which results in obesity, insulin resistance, and NASH. Rats underwent duodenal-jejunal bypass (DJB), which is a main component of bariatric procedures. The liver pathological findings and the expression level of mRNA of FXR were investigated. The plasma BA level was measured in peripheral and portal vein blood. RESULTS DJB suppressed weight gain, improved insulin resistance, and ameliorated NASH mainly in a point of inflammation. The plasma BA level along with the expression of FXR and its target transcriptional factor, small heterodimer partner (SHP), in the liver were elevated. CONCLUSIONS DJB has a direct effect on NASH improvement, and there is a possibility that an anti-inflammatory effect is functioning as a part of the mechanism. The increase of plasma bile acid level followed by the stimulation of FXR signaling may contribute to this phenomenon.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Takeshi Naitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Munenori Nagao
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Naoki Tanaka
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kazuhiro Watanabe
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hirofumi Imoto
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tomohiro Miyachi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW In this review, we summarize what is currently described in terms of gut microbiota (GM) dysbiosis modification post-bariatric surgery (BS) and their link with BS-induced clinical improvement. We also discuss how the major inter-individual variability in terms of GM changes could impact the clinical improvements seen in patients. RECENT FINDINGS The persisting increase in severe obesity prevalence has led to the subsequent burst in BS number. Indeed, it is to date the best treatment option to induce major and sustainable weight loss and metabolic improvement in these patients. During obesity, the gut microbiota displays distinctive features such as low microbial gene richness and compositional and functional alterations (termed dysbiosis) which have been associated with low-grade inflammation, increased body weight and fat mass, as well as type-2 diabetes. Interestingly, GM changes post-BS is currently being proposed as one the many mechanism explaining BS beneficial clinical outcomes. BS enables partial rescue of GM dysbiosis observed during obesity. Some of the GM characteristics modified post-BS (composition in terms of bacteria and functions) are linked to BS beneficial outcomes such as weight loss or metabolic improvements. Nevertheless, the changes in GM post-BS display major variability from one patient to the other. As such, further large sample size studies associated with GM transfer studies in animals are still needed to completely decipher the role of GM in the clinical improvements observed post-surgery.
Collapse
Affiliation(s)
- Jean Debédat
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France.
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France.
| | - Judith Aron-Wisnewsky
- INSERM, NutriOmics Research Unit, Sorbonne Université, Paris, France.
- Assistance Publique Hôpitaux de Paris, Nutrition Departement, Pitié-Salpêtrière Hospital, Sorbonne Université, 47-83 bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
22
|
A Preventive Prebiotic Supplementation Improves the Sweet Taste Perception in Diet-Induced Obese Mice. Nutrients 2019; 11:nu11030549. [PMID: 30841548 PMCID: PMC6471995 DOI: 10.3390/nu11030549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Orosensory perception of sweet stimulus is blunted in diet-induced obese (DIO) rodents. Although this alteration might contribute to unhealthy food choices, its origin remains to be understood. Cumulative evidence indicates that prebiotic manipulations of the gut microbiota are associated with changes in food intake by modulating hedonic and motivational drive for food reward. In the present study, we explore whether a prebiotic supplementation can also restore the taste sensation in DIO mice. The preference and licking behavior in response to various sucrose concentrations were determined using respectively two-bottle choice tests and gustometer analysis in lean and obese mice supplemented or not with 10% inulin-type fructans prebiotic (P) in a preventive manner. In DIO mice, P addition reduced the fat mass gain and energy intake, limited the gut dysbiosis and partially improved the sweet taste perception (rise both of sucrose preference and number of licks/10 s vs. non-supplemented DIO mice). No clear effect on orosensory perception of sucrose was found in the supplemented control mice. Therefore, a preventive P supplementation can partially correct the loss of sweet taste sensitivity found in DIO mice, with the efficiency of treatment being dependent from the nutritional status of mice (high fat diet vs. regular chow).
Collapse
|
23
|
Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol 2019; 13:3-15. [PMID: 30791839 DOI: 10.1080/17474124.2019.1543023] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity and diabetes are two of the most prevalent health problems and leading causes of death globally. As research on the intestinal microbiome increases, so does our understanding of its intricate relationship to these diseases, although this has yet to be fully elucidated. Areas covered: This review evaluates the role of the gut microbiome in obesity and diabetes, including the influences of internal and environmental factors. Literature searches were performed using the keywords 'diabetes,' 'insulin resistance,' 'gut microbiome,' 'gut microbes,' 'obesity,' and 'weight gain.' Expert commentary: Highlights of recent research include new findings regarding the effects of caloric restriction, which expound the importance of diet in shaping the gut microbiome, and studies reinforcing the lasting implications of antibiotic use for diabetes and obesity, particularly repeated doses in early childhood. Mechanistically, interactions between the microbiome and the host innate immune system, mediated by TLR4-LPS signaling, have been shown to meditate the metabolic benefits of caloric restriction. Further, gut microbes haven now been shown to regulate oxygen availability via butyrate production, thus protecting against the proliferation of pathogens such as E. coli and Salmonella. However, many microbial metabolites remain unidentified and their roles in obesity and diabetes remain to be determined.
Collapse
Affiliation(s)
- Tahli Singer-Englar
- a Medically Associated Science and Technology (MAST) Program , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Gillian Barlow
- a Medically Associated Science and Technology (MAST) Program , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Ruchi Mathur
- a Medically Associated Science and Technology (MAST) Program , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
24
|
Ðanić M, Stanimirov B, Pavlović N, Goločorbin-Kon S, Al-Salami H, Stankov K, Mikov M. Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front Pharmacol 2018; 9:1382. [PMID: 30559664 PMCID: PMC6287190 DOI: 10.3389/fphar.2018.01382] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Apart from well-known functions of bile acids in digestion and solubilization of lipophilic nutrients and drugs in the small intestine, the emerging evidence from the past two decades identified the role of bile acids as signaling, endocrine molecules that regulate the glucose, lipid, and energy metabolism through complex and intertwined pathways that are largely mediated by activation of nuclear receptor farnesoid X receptor (FXR) and cell surface G protein-coupled receptor 1, TGR5 (also known as GPBAR1). Interactions of bile acids with the gut microbiota that result in the altered composition of circulating and intestinal bile acids pool, gut microbiota composition and modified signaling pathways, are further extending the complexity of biological functions of these steroid derivatives. Thus, bile acids signaling pathways have become attractive targets for the treatment of various metabolic diseases and metabolic syndrome opening the new potential avenue in their treatment. In addition, there is a significant effort to unveil some specific properties of bile acids relevant to their intrinsic potency and selectivity for particular receptors and to design novel modulators of these receptors with improved pharmacokinetic and pharmacodynamic profiles. This resulted in synthesis of few semi-synthetic bile acids derivatives such as 6α-ethyl-chenodeoxycholic acid (obeticholic acid, OCA), norursodeoxycholic acid (norUDCA), and 12-monoketocholic acid (12-MKC) that are proven to have positive effect in metabolic and hepato-biliary disorders. This review presents an overview of the current knowledge related to bile acids implications in glucose, lipid and energy metabolism, as well as a potential application of bile acids in metabolic syndrome treatment with future perspectives.
Collapse
Affiliation(s)
- Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Biosciences Research Precinct, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
25
|
Peiris M, Aktar R, Raynel S, Hao Z, Mumphrey MB, Berthoud HR, Blackshaw LA. Effects of Obesity and Gastric Bypass Surgery on Nutrient Sensors, Endocrine Cells, and Mucosal Innervation of the Mouse Colon. Nutrients 2018; 10:E1529. [PMID: 30336615 PMCID: PMC6213226 DOI: 10.3390/nu10101529] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nutrient-sensing receptors located on enteroendocrine (EEC) cells modulate appetite via detection of luminal contents. Colonic 'tasting' of luminal contents may influence changes to appetite observed in obesity and after weight loss induced by bariatric surgery. We assessed the effects of obesity and gastric bypass-induced weight loss on expression of nutrient-sensing G-protein coupled receptors (GPCRs), EEC and enterochromaffin (EC) cells and mucosal innervation. METHODS qPCR and immunohistochemistry were used to study colonic tissue from (a) chow-fed/lean, (b) high-fat fed/obese, (c) Roux-en-Y gastric bypass surgery (RYGB), and (d) calorie restriction-induced weight loss mice. RESULTS Expression of GPR41, GPR43, GPR40, GPR120, GPR84, GPR119, GPR93 and T1R3 was increased in obese mice. Obesity-induced overexpression of GPR41, 40, 84, and 119 further increased after RYGB whereas GPR120 and T1R3 decreased. RYGB increased TGR5 expression. L-cells, but not EC cells, were increased after RYGB. No differences in mucosal innervation by protein gene product (PGP) 9.5 and GLP-1R-positive nerve fibers were observed. Stimulation of colonic mucosa with GPR41, GPR40, GPR85, GPR119, and TGR5 agonists increased cell activation marker expression. CONCLUSIONS Several nutrient-sensing receptors induced activation of colonic EEC. Profound adaptive changes to the expression of these receptors occur in response to diet and weight loss induced by RYGB or calorie restriction.
Collapse
Affiliation(s)
- Madusha Peiris
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Rubina Aktar
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Sarah Raynel
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Zheng Hao
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Michael B Mumphrey
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | - L Ashley Blackshaw
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
26
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Metabolic surgery is recommended for the treatment of type 2 diabetes for its potent ability to improve glycemic control. However, the mechanisms underlying the beneficial effects of metabolic surgery are still under investigation. We provide an updated review of recent studies into the molecular underpinnings of metabolic surgery, focusing in on what is known about the role of gut microbiota. Over the last 7 years several reports have been published on the topic, however the field is expanding rapidly. RECENT FINDINGS Studies have now linked the regulation of glucose and lipid metabolism, neuronal and intestinal adaptations, and hormonal and nutrient signaling pathways to gut microbiota. Given that the composition of gut microbiota is altered by metabolic surgery, investigating the potential mechanism and outcomes of this change are now a priority to the field. SUMMARY As evidence for a role for microbiota builds, we expect future patients may receive microbe-based therapeutics to improve surgical outcomes and perhaps one day preclude the need for surgical therapies all together. In this review and perspective, we evaluate the current state of the field and its future.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Randy J. Seeley
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
- Correspondence should be addressed to: Randy J. Seeley, Department of Surgery, University of Michigan, 2800 Plymouth Road, NCRC Building 26-343N, Ann Arbor, MI 48109, USA; Phone: +1 (734) 615-2880;
| |
Collapse
|
28
|
Leong KSW, Derraik JGB, Hofman PL, Cutfield WS. Antibiotics, gut microbiome and obesity. Clin Endocrinol (Oxf) 2018; 88:185-200. [PMID: 29023853 DOI: 10.1111/cen.13495] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
Abstract
Antibiotics have been hailed by many as "miracle drugs" that have been effectively treating infectious diseases for over a century, leading to a marked reduction in morbidity and mortality. However, with the increasing use of antibiotics, we are now faced not only with the increasing threat of antibiotic resistance, but also with a rising concern about potential long-term effects of antibiotics on human health, including the development of obesity. The obesity pandemic continues to increase, a problem that affects both adults and children alike. Disruptions to the gut microbiome have been linked to a multitude of adverse conditions, including obesity, type 2 diabetes, inflammatory bowel diseases, anxiety, autism, allergies, and autoimmune diseases. This review focuses on the association between antibiotics and obesity, and the role of the gut microbiome. There is strong evidence supporting the role of antibiotics in the development of obesity in well-controlled animal models. However, evidence for this link in humans is still inconclusive, and we need further well-designed clinical trials to clarify this association.
Collapse
Affiliation(s)
- Karen S W Leong
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Paul L Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Guo Y, Huang ZP, Liu CQ, Qi L, Sheng Y, Zou DJ. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol 2018; 178:43-56. [PMID: 28916564 DOI: 10.1530/eje-17-0403] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/14/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Bariatric surgery is recommended for patients with obesity and type 2 diabetes. Recent evidence suggested a strong connection between gut microbiota and bariatric surgery. DESIGN Systematic review. METHODS The PubMed and OVID EMBASE were used, and articles concerning bariatric surgery and gut microbiota were screened. The main outcome measures were alterations of gut microbiota after bariatric surgery and correlations between gut microbiota and host metabolism. We applied the system of evidence level to evaluate the alteration of microbiota. Modulation of short-chain fatty acid and gut genetic content was also investigated. RESULTS Totally 12 animal experiments and 9 clinical studies were included. Based on strong evidence, 4 phyla (Bacteroidetes, Fusobacteria, Verrucomicrobia and Proteobacteria) increased after surgery; within the phylum Firmicutes, Lactobacillales and Enterococcus increased; and within the phylum Proteobacteria, Gammaproteobacteria, Enterobacteriales Enterobacteriaceae and several genera and species increased. Decreased microbial groups were Firmicutes, Clostridiales, Clostridiaceae, Blautia and Dorea. However, the change in microbial diversity is still under debate. Faecalibacterium prausnitzii, Lactobacillus and Coprococcus comes are implicated in many of the outcomes, including body composition and glucose homeostasis. CONCLUSIONS There is strong evidence to support a considerable alteration of the gut microbiome after bariatric surgery. Deeper investigations are required to confirm the mechanisms that link the gut microbiome and metabolic alterations in human metabolism.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, Shanghai, China
| | - Zhi-Ping Huang
- Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- Department of General Surgery, Shangai Changhai Hospital, Shanghai, China
| | - Chao-Qian Liu
- Department of General Surgery, Shangai Changhai Hospital, Shanghai, China
| | - Lin Qi
- Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Sheng
- Department of General Surgery, Shangai Changhai Hospital, Shanghai, China
| | - Da-Jin Zou
- Department of Endocrinology, Changhai Hospital, Shanghai, China
| |
Collapse
|
30
|
Garruti G, Di Ciaula A, Wang HH, Wang DQH, Portincasa P. Cross-Talk Between Bile Acids and Gastro-Intestinal and Thermogenic Hormones: Clues from Bariatric Surgery. Ann Hepatol 2017; 16:s68-s82. [PMID: 29080342 DOI: 10.5604/01.3001.0010.5499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023]
Abstract
Obesity is rapidly increasing and has reached epidemic features worldwide. It´s linked to insulin resistance, systemic low-grade inflammation and common pathogenic pathways with a number of comorbidities (including cancer), leading to high mortality rates. Besides change of lifestyles (diet and physical exercise) and pharmacological therapy, bariatric surgery is able to rapidly improve several metabolic and morphologic features associated with excessive fat storage, and currently represents an in vivo model to study the pathogenic mechanisms underlying obesity and obesity-related complications. Studies on obese subjects undergoing bariatric surgery find that the effects of surgery are not simply secondary to gastric mechanical restriction and malabsorption which induce body weight loss. In fact, some surgical procedures positively modify key pathways involving the intestine, bile acids, receptor signaling, gut microbiota, hormones and thermogenesis, leading to systemic metabolic changes. Furthermore, bariatric surgery represents a suitable model to evaluate the gene-environment interaction and some epigenetic mechanisms linking obesity and insulin resistance to metabolic diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Department of Emergency and Organ Transplants, Unit of Endocrinology, University of Bari Medical School, Bari, Italy
| | | | - Helen H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| |
Collapse
|
31
|
Celiker H. A new proposed mechanism of action for gastric bypass surgery: Air hypothesis. Med Hypotheses 2017; 107:81-89. [PMID: 28915970 DOI: 10.1016/j.mehy.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatments for obesity and type II diabetes. RYGB was originally believed to work by mechanically restricting caloric intake or causing macronutrient malabsorption. However, such mechanical effects play no role in the remarkable efficacy of gastric bypass. Instead, mounting evidence shows that altered neuroendocrine signaling is responsible for the weight reducing effects of RYGB. The exact mechanism of this surgical response is still a mystery. Here, we propose that RYGB leads to weight loss primarily by inducing a functional shift in the gut microbiome, manifested by a relative expansion of aerobic bacteria numbers in the colon. We point to compelling evidence that gastric bypass changes the function of the microbiome by disrupting intestinal gas homeostasis, causing excessive transit of swallowed air (oxygen) into the colon.
Collapse
Affiliation(s)
- Hasan Celiker
- Xeno Biosciences Inc., 12 Mt Auburn St #7, Cambridge, MA, USA.
| |
Collapse
|
32
|
Anhê FF, Varin TV, Schertzer JD, Marette A. The Gut Microbiota as a Mediator of Metabolic Benefits after Bariatric Surgery. Can J Diabetes 2017; 41:439-447. [PMID: 28552651 DOI: 10.1016/j.jcjd.2017.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
|
33
|
Guo Y, Liu CQ, Shan CX, Chen Y, Li HH, Huang ZP, Zou DJ. Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev 2017; 33. [PMID: 27572277 DOI: 10.1002/dmrr.2857] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/04/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
Recent work with gut microbiota after bariatric surgery is limited, and the results have not been in agreement. Given the role of the gut microbiota in regulating host metabolism, we explored the effect of Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) on the modifications of gut microbiota with regard to the potential influence of food intake and/or weight loss and examined their links with host metabolism. Zucker diabetic fatty rats were divided into the following groups: RYGB; sham-operated with pair-fed as RYGB; sham-operated fed ad libitum; and SG. The metabolic effects and gut microbiota profile were analyzed 10 weeks postoperatively. Associations between discriminating genera and metabolic markers after RYGB were explored. The 2 procedures induced similar glucose improvement and increased flora diversity after 10 weeks compared with sham-operated groups. RYGB induced a marked higher relative abundance of Proteobacteria/Gammaproteobacteria and Betaproteobacteria and increased emergence of Fusobacteria and Clostridium, whereas SG resulted in more abundant Actinobacteria compared with other groups. Most of the 12 discriminant genera correlated with changes in metabolic phenotype, but only 28.6% of these correlations were independent of weight, and 4 discriminant genera still negatively correlated with serum insulin level independent of food intake and weight loss after RYGB. These data demonstrate that RYGB and SG surgery produced similar diversity but different microbiota compositions changes in Zucker diabetic fatty rats. These findings stimulate deeper explorations of functions of the discriminate microbiota and the mechanisms linking postsurgical modulation of gut microbiota and improvements in insulin resistance.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chao-Qian Liu
- Department of General Surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Cheng-Xiang Shan
- Department of General Surgery, Changzheng Hospital, the Second Military Medical University, Shanghai, China
| | - Yue Chen
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Hui-Hua Li
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zhi-Ping Huang
- Department of General Surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Da-Jin Zou
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Chávez-Talavera O, Baud G, Spinelli V, Daoudi M, Kouach M, Goossens JF, Vallez E, Caiazzo R, Ghunaim M, Hubert T, Lestavel S, Tailleux A, Staels B, Pattou F. Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs. Int J Obes (Lond) 2017; 41:664-668. [PMID: 28093571 DOI: 10.1038/ijo.2017.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery is widely used in the management of morbid obesity. RYGB improves metabolism independently of weight loss by still unknown mechanisms. Bile acids (BAs) are good candidates to explain this benefit, since they regulate metabolic homeostasis and their systemic concentrations increase upon RYGB. Here we analyzed the mechanisms underlying the increase in systemic BA concentrations after RYGB and the role of the liver therein. To this aim, we used the Göttingen-like minipig, a human-size mammalian model, which allows continuous sampling and simultaneous analysis of pre-hepatic portal and systemic venous blood. BA concentrations and pool composition were measured in portal blood, containing intestinal reabsorbed BAs and compared to systemic blood during a standardized meal test before and after RYGB. Systemic total BA concentrations increased after RYGB, due to an increase in conjugated BAs. Interestingly, the ratio of portal:systemic conjugated BAs decreased after RYGB, indicating a role for the liver in systemic BA concentrations changes. In line, hepatic expression of BA transporter genes decreased after RYGB. Our results show that the increase in systemic BAs after surgery is due to decreased selective hepatic recapture. Thus, alterations in hepatic function contribute to the increase in systemic BAs after RYGB.
Collapse
Affiliation(s)
- O Chávez-Talavera
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,PECEM, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - G Baud
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - V Spinelli
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - M Daoudi
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - M Kouach
- Centre Universitaire de Mesures et d'Analyses, Université de Lille, Lille France
| | - J-F Goossens
- Centre Universitaire de Mesures et d'Analyses, Université de Lille, Lille France
| | - E Vallez
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - R Caiazzo
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - M Ghunaim
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - T Hubert
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - S Lestavel
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - A Tailleux
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - B Staels
- Université de Lille, U1011 - EGID, Lille, France.,Inserm, U1011, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - F Pattou
- CHU Lille, Lille, France.,Université de Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| |
Collapse
|
35
|
Abstract
Surgery involving the gastrointestinal tract continues to prove challenging because of the persistence of unpredictable complications such as anastomotic leakage and life-threatening infections. Removal of diseased intestinal segments results in substantial catabolic stress and might require complex reconstructive surgery to maintain the functional continuity of the intestinal tract. As gastrointestinal surgery necessarily involves a breach of an epithelial barrier colonized by microorganisms, preoperative intestinal antisepsis is used to reduce infection-related complications. The current approach to intestinal antisepsis varies widely across institutions and countries with little understanding of its mechanism of action, effect on the gut microbiota and overall efficacy. Many of the current approaches to intestinal antisepsis before gastrointestinal surgery run counter to emerging concepts of intestinal microbiota contributing to immune function and recovery from injury. Here, we review evidence outlining the role of gut microbiota in recovery from gastrointestinal surgery, particularly in the development of infections and anastomotic leak. To make surgery safer and further reduce complications, a molecular, genetic and functional understanding of the response of the gastrointestinal tract to alterations in its microbiota is needed. Methods can then be developed to preserve the health-promoting functions of the microbiota while at the same time suppressing their harmful effects.
Collapse
Affiliation(s)
- Kristina Guyton
- MC-6040, Department of Surgery, University of Chicago Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| | - John C Alverdy
- MC-6090, Department of Surgery, University of Chicago Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Hao Z, Mumphrey MB, Morrison CD, Münzberg H, Ye J, Berthoud HR. Does gastric bypass surgery change body weight set point? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S37-S43. [PMID: 28685029 DOI: 10.1038/ijosup.2016.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The relatively stable body weight during adulthood is attributed to a homeostatic regulatory mechanism residing in the brain which uses feedback from the body to control energy intake and expenditure. This mechanism guarantees that if perturbed up or down by design, body weight will return to pre-perturbation levels, defined as the defended level or set point. The fact that weight re-gain is common after dieting suggests that obese subjects defend a higher level of body weight. Thus, the set point for body weight is flexible and likely determined by the complex interaction of genetic, epigenetic and environmental factors. Unlike dieting, bariatric surgery does a much better job in producing sustained suppression of food intake and body weight, and an intensive search for the underlying mechanisms has started. Although one explanation for this lasting effect of particularly Roux-en-Y gastric bypass surgery (RYGB) is simple physical restriction due to the invasive surgery, a more exciting explanation is that the surgery physiologically reprograms the body weight defense mechanism. In this non-systematic review, we present behavioral evidence from our own and other studies that defended body weight is lowered after RYGB and sleeve gastrectomy. After these surgeries, rodents return to their preferred lower body weight if over- or underfed for a period of time, and the ability to drastically increase food intake during the anabolic phase strongly argues against the physical restriction hypothesis. However, the underlying mechanisms remain obscure. Although the mechanism involves central leptin and melanocortin signaling pathways, other peripheral signals such as gut hormones and their neural effector pathways likely contribute. Future research using both targeted and non-targeted 'omics' techniques in both humans and rodents as well as modern, genetically targeted, neuronal manipulation techniques in rodents will be necessary.
Collapse
Affiliation(s)
- Z Hao
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| | - M B Mumphrey
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| | - C D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| | - H Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| | - J Ye
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| | - H R Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
37
|
Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol 2016; 22:8698-8719. [PMID: 27818587 PMCID: PMC5075546 DOI: 10.3748/wjg.v22.i39.8698] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have indicated that circulating bile acid (BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses (RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagon-like peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery - independently of calorie restriction and body-weight loss - could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes (T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gut microbiome may influence circulating BA concentrations and could subsequently contribute to T2DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor (FXR) and membrane G-protein-receptor (TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2DM remission.
Collapse
|
38
|
Neis EPJG, Sabrkhany S, Hundscheid I, Schellekens D, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CHC, Rensen SS. Human splanchnic amino-acid metabolism. Amino Acids 2016; 49:161-172. [PMID: 27714515 PMCID: PMC5241341 DOI: 10.1007/s00726-016-2344-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Plasma levels of several amino acids are correlated with metabolic dysregulation in obesity and type 2 diabetes. To increase our understanding of human amino-acid metabolism, we aimed to determine splanchnic interorgan amino-acid handling. Twenty patients planned to undergo a pylorus preserving pancreatico-duodenectomy were included in this study. Blood was sampled from the portal vein, hepatic vein, superior mesenteric vein, inferior mesenteric vein, splenic vein, renal vein, and the radial artery during surgery. The difference between arterial and venous concentrations of 21 amino acids was determined using liquid chromatography as a measure of amino-acid metabolism across a given organ. Whereas glutamine was significantly taken up by the small intestine (121.0 ± 23.8 µmol/L; P < 0.0001), citrulline was released (−36.1 ± 4.6 µmol/L; P < 0.0001). This, however, was not seen for the colon. Interestingly, the liver showed a small, but a significant uptake of citrulline from the circulation (4.8 ± 1.6 µmol/L; P = 0.0138) next to many other amino acids. The kidneys showed a marked release of serine and alanine into the circulation (−58.0 ± 4.4 µmol/L and −61.8 ± 5.2 µmol/L, P < 0.0001), and a smaller, but statistically significant release of tyrosine (−12.0 ± 1.3 µmol/L, P < 0.0001). The spleen only released taurine (−9.6 ± 3.3 µmol/L; P = 0.0078). Simultaneous blood sampling in different veins provides unique qualitative and quantitative information on integrative amino-acid physiology, and reveals that the well-known intestinal glutamine–citrulline pathway appears to be functional in the small intestine but not in the colon.
Collapse
Affiliation(s)
- Evelien P J G Neis
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S Sabrkhany
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - I Hundscheid
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - D Schellekens
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - K Lenaerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S W Olde Damink
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - E E Blaak
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, P.O. Box 5800, 6229 HX, Maastricht, The Netherlands
| | - C H C Dejong
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, The Netherlands.,Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.,Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Sander S Rensen
- Department of General Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
39
|
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 2016; 230:R95-R113. [PMID: 27496374 DOI: 10.1530/joe-16-0056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.
Collapse
Affiliation(s)
- Paige V Bauer
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada Department of PhysiologyUniversity of Toronto, Toronto, ON, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of MedicineUHN, Toronto, ON, Canada
| |
Collapse
|
40
|
Lutz TA, Bueter M. The Use of Rat and Mouse Models in Bariatric Surgery Experiments. Front Nutr 2016; 3:25. [PMID: 27547753 PMCID: PMC4974272 DOI: 10.3389/fnut.2016.00025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Animal models have been proven to be a crucial tool for investigating the physiological mechanisms underlying bariatric surgery in general and individual techniques in particular. By using a translational approach, most of these studies have been performed in rodents and have helped to understand how bariatric surgery may or may not work. However, data from studies using animal models should always be critically evaluated for their transferability to the human physiology. It is, therefore, the aim of this review to summarize both advantages and limitations of data generated by animal based experiments designed to investigate and understand the physiological mechanisms at the root of bariatric surgery.
Collapse
Affiliation(s)
- Thomas A Lutz
- Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marco Bueter
- Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Department of Surgery, Division of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Bächler T, le Roux CW, Bueter M. How do patients' clinical phenotype and the physiological mechanisms of the operations impact the choice of bariatric procedure? Clin Exp Gastroenterol 2016; 9:181-9. [PMID: 27524917 PMCID: PMC4965261 DOI: 10.2147/ceg.s87205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bariatric surgery is currently the most effective option for the treatment of morbid obesity and its associated comorbidities. Recent clinical and experimental findings have challenged the role of mechanical restriction and caloric malabsorption as the main mechanisms for weight loss and health benefits. Instead, other mechanisms including increased levels of satiety gut hormones, altered gut microbiota, changes in bile acid metabolism, and/or energy expenditure have been proposed as explanations for benefits of bariatric surgery. Beside the standard proximal Roux-en-Y gastric bypass and the biliopancreatic diversion with or without duodenal switch, where parts of the small intestine are excluded from contact with nutrients, resectional techniques like the sleeve gastrectomy (SG) have recently been added to the armory of bariatric surgeons. The variation of weight loss and glycemic control is vast between but also within different bariatric operations. We surveyed members of the Swiss Society for the Study of Morbid Obesity and Metabolic Disorders to assess the extent to which the phenotype of patients influences the choice of bariatric procedure. Swiss bariatric surgeons preferred Roux-en-Y gastric bypass and SG for patients with type 2 diabetes mellitus and patients with a body mass index >50 kg/m2, which is consistent with the literature. An SG was preferred in patients with a high anesthetic risk or previous laparotomy. The surgeons’ own experience was a major determinant as there is little evidence in the literature for this approach. Although trends will come and go, evidence-based medicine requires a rigorous examination of the proof to inform clinical practice.
Collapse
Affiliation(s)
- Thomas Bächler
- Department of General and Visceral Surgery, Fribourg Cantonal Hospital (HFR), Fribourg, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland; Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Marco Bueter
- Division of Visceral and Transplantation Surgery, University Hospital Zurich (USZ), Zürich, Switzerland
| |
Collapse
|
42
|
Abstract
Bile acids have many activities over and above their primary function in aiding absorption of fat and fat soluble vitamins. Bile acids are synthesized from cholesterol, and thus are involved in cholesterol homeostasis. Bile acids stimulate glucagon-like peptide 1 (GLP1) production in the distal small bowel and colon, stimulating insulin secretion, and therefore, are involved in carbohydrate and fat metabolism. Bile acids through their insulin sensitising effect play a part in insulin resistance and type 2 diabetes. Bile acid metabolism is altered in obesity and diabetes. Both dietary restriction and weight loss due to bariatric surgery, alter the lipid carbohydrate and bile acid metabolism. Recent research suggests that the forkhead transcription factor FOXO is a central regulator of bile, lipid, and carbohydrate metabolism, but conflicting studies mean that our understanding of the complexity is not yet complete.
Collapse
Affiliation(s)
- Gerald H Tomkin
- Diabetes Institute of Ireland Beacon Clinic Dublin and Trinity College, Dublin 2, Ireland
| | - Daphne Owens
- Diabetes Institute of Ireland Beacon Clinic Dublin and Trinity College, Dublin 2, Ireland
| |
Collapse
|
43
|
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 2016; 15:108. [PMID: 27317359 PMCID: PMC4912704 DOI: 10.1186/s12944-016-0278-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity and its associated complications like type 2 diabetes (T2D) are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. It’s well known that gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. This review summarizes key discoveries during the past decade that established the role of gut microbiota in the development of obesity and diabetes. It will look at the role of key metabolites mainly the short chain fatty acids (SCFA) that are produced by gut microbiota and how they impact key metabolic pathways such as insulin signalling, incretin production as well as inflammation. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.
Collapse
Affiliation(s)
- Othman A Baothman
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ibrahim Taher
- Faculty of Medicine, Aljouf University, Aljouf, Saudi Arabia
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Dasman, P.O. Box 1180, 15462, Kuwait City, Kuwait.
| |
Collapse
|
44
|
del Genio G, Gagner M, Limongelli P, Tolone S, Pournaras D, le Roux CW, Brusciano L, Licia Mozzillo A, del Genio F, Docimo L. Remission of type 2 diabetes in patients undergoing biliointestinal bypass for morbid obesity: a new surgical treatment. Surg Obes Relat Dis 2016; 12:815-821. [PMID: 27150339 DOI: 10.1016/j.soard.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
|
45
|
Abegg K, Corteville C, Bueter M, Lutz TA. Alterations in energy expenditure in Roux-en-Y gastric bypass rats persist at thermoneutrality. Int J Obes (Lond) 2016; 40:1215-21. [PMID: 27102054 DOI: 10.1038/ijo.2016.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The compensatory decrease in energy expenditure (EE) in response to body weight loss is attenuated by Roux-en-Y gastric bypass (RYGB) surgery in rats. The thermoneutral zone (TNZ) is at higher temperatures in rodents than in humans. Consequently, rodents may be under moderate cold stress if EE is measured at room temperature, leading to increased EE due to adaptive thermogenesis. We speculated that the reported alterations in EE of RYGB rats at room temperature are caused by higher adaptive thermogenesis and are therefore not present at thermoneutrality. METHODS Male Wistar rats were randomized for RYGB or sham surgery. Some sham rats were body weight matched (BWM) to the RYGB rats by food restriction, the others received ad libitum access to food (AL). EE, body temperature, physical activity and food intake were measured at ambient temperatures between 22 and 32 °C to determine the TNZ. Adaptive thermogenesis requires β3-adrenergic receptor-mediated uncoupling protein-1 (UCP-1) expression in brown adipose tissue (BAT). The in vivo thermogenic capacity of BAT was determined by administering the β3-adrenergic agonist CL316,243, and UCP-1 protein expression was measured at room temperature. RESULTS The TNZ was between 28 and 30 °C for AL and RYGB and between 30 and 32 °C for BWM rats, respectively. In contrast to AL and BWM rats, EE was not significantly higher at room temperature than at thermoneutrality in RYGB rats, reflecting a lack of adaptive thermogenesis. Consistently, both the thermogenic capacity of BAT and UCP-1 expression were decreased in RYGB compared with AL rats at room temperature. CONCLUSIONS Our data confirm that the decrease in EE after body weight loss is attenuated by RYGB surgery and show that this effect persists at thermoneutrality. Contrary to our hypothesis, we found that adaptive thermogenesis at room temperature is reduced in RYGB rats.
Collapse
Affiliation(s)
- K Abegg
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C Corteville
- Department of Surgery I, University of Wurzburg, Wurzburg, Germany
| | - M Bueter
- Division of Visceral and Transplantation Surgery, Department of Surgery, University Hospital Zurich, Zurich, Switzerland.,Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73:737-55. [PMID: 26542800 PMCID: PMC11108299 DOI: 10.1007/s00018-015-2083-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.
Collapse
Affiliation(s)
- Paige V Bauer
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sophie C Hamr
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank A Duca
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-701H, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
47
|
Association between the gut microbiota and diet: Fetal life, early childhood, and further life. Nutrition 2015; 32:620-7. [PMID: 26946974 DOI: 10.1016/j.nut.2015.12.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/22/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022]
Abstract
Gut microbiota establishment and further microbiota shifts are very important for maintaining host health throughout life. There are some factors, including genetics, the mother's health and diet, delivery mode, breast or formula feeding, that may influence the gut microbiota. By the end of approximately the first 3 y of life, the gut microbiota becomes an adult-like stable system. Once established, 60 to 70% of the microbiota composition remains stable throughout life, but 30 to 40% can be altered by changes in the diet and other factors such as physical activity, lifestyle, bacterial infections, and antibiotic or surgical treatment. Diet-related factors that influence the gut microbiota in people of all ages are of great interest. Nutrition may have therapeutic success in gut microbiota correction. This review describes current evidence concerning the links between gut microbiota composition and dietary patterns throughout life.
Collapse
|
48
|
Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2015; 12:169-81. [PMID: 26616538 DOI: 10.1038/nrneph.2015.191] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiometabolic diseases (CMDs) have been associated with changes in the composition of the gut microbiota, with links between the host environment and microbiota identified in preclinical models. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota, bacterial-derived metabolites, and their association with CMDs. Such strategies have shown that patients with CMDs frequently exhibit enrichment or depletion of certain bacterial groups in their resident microbiota compared to healthy individuals. Furthermore, the ability to transfer resident gut microbiota from mice or humans into germ-free mouse models, or between human patients, has enabled researchers to characterize the causative role of the gut microbiota in CMDs. These approaches have helped identify that dietary intake of choline, which is metabolized by the gut microbiota, is associated with cardiovascular outcomes in mice and humans. Trimethylamine N-oxide (TMAO) - a metabolite derived from the gut microbiota - is also associated with poor cardiovascular outcomes in patients with cardiovascular disease and is elevated in patients with chronic kidney disease (CKD). TMAO might represent a biomarker that links the environment and microbiota with CKD. This Review summarizes data suggesting a link between the gut microbiota and derived metabolites with food intake patterns, metabolic alterations, and chronic CMDs.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, INSERM, Sorbonne Université, Paris 6, Pitié-Salpêtrière hospital, F-75013 Paris, France
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de Paris, INSERM, Sorbonne Université, Paris 6, Pitié-Salpêtrière hospital, F-75013 Paris, France
| |
Collapse
|
49
|
Duodenojejunal Bypass Leads to Altered Gut Microbiota and Strengthened Epithelial Barriers in Rats. Obes Surg 2015; 26:1576-83. [DOI: 10.1007/s11695-015-1968-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Bell DSH. Changes seen in gut bacteria content and distribution with obesity: causation or association? Postgrad Med 2015; 127:863-8. [PMID: 26474235 DOI: 10.1080/00325481.2015.1098519] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE In the microbiota of both obese animals and humans there is an increased ratio of the gram positive Firmicutes to the gram negative Bacteroidetes (the obesity pattern). To assess if altering this ratio in animals and humans would prevent obesity or reduce body weight in the obese subject this review was preformed. METHODS A survey of all the available English language literature utilizing Medline on this topic was obtained and critically reviewed. The key words that were utilized were gut microbiota, diet and obesity. RESULTS In both humans and animals changes in diet, particularly the utilization of the high fat, high calorie Western diet, utilization of artificial sweeteners and disruption of the diurnal rhythm will quickly change the microbiota from a thin to an obese pattern. In animals, the transfer of an obese microbiota to germ free animals and thin animals results in obesity and the introduction of a lean microbiota will result in weight loss in obese animals. However, in humans similar changes in the gut microbiota induced with probiotics and prebiotics have not been shown to result in weight loss. In both animals and humans the most dramatic changes in the gut microbiota occur following weight loss resulting from a gastric bypass where there is a restoration to a normal Firmicutes to Bacteroidetes ratio. These changes could either be due to the dramatic change in the composition of the diet which occurs following this surgery or due to down-regulation of the Farnesoid X Receptor which causes a decrease in bile acid production and an elevation of the gut pH which in turn allows the regrowth of bacteria associated with weight loss which were previously unable to grow in the acidic intestinal environment caused by excess production of bile acids. CONCLUSION In both humans and animals there are characteristic changes in the gut microbiota associated with obesity. In animals but not in humans altering the microbiota can result in weight loss and weight gain which does not occur in humans. This suggests that in humans the changes in gut microbiota are an association with rather than the cause of obesity.
Collapse
Affiliation(s)
- David S H Bell
- a Southside Endocrinology, University of Alabama , Birmingham , AL, USA
| |
Collapse
|