1
|
Sosa R, Espinosa-Villafranca P, Saavedra P, Chávez-Hernández ME, Leal-Galicia P, Lago G, Mata F, Mata-Luévanos J, Rodríguez-Serrano LM, Tapia-De-Jesús A, Buenrostro-Jáuregui M. Assessing acute effects of methylphenidate and modafinil on inhibitory capacity, time estimation, attentional lapses, and compulsive-like behavior in rats. Behav Pharmacol 2025; 36:76-96. [PMID: 39883117 DOI: 10.1097/fbp.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Medications known as 'cognitive enhancers' are increasingly being consumed off-label by healthy people, raising concerns about their safety. The aim of our study was to profile behavioral performance upon oral administration of methylphenidate (2.5 mg/kg) and modafinil (64 mg/kg) - two popular cognitive enhancers - and upon their discontinuation. We modeled cognitively demanding challenges in neurotypical individuals using a behavioral task where Wistar - Lewis rats had to withhold responses for a specified time to obtain food rewards. This task allowed us to extract several measures of behavioral performance associated with clinically meaningful indices, such as compulsive-like responding, incapacity to wait (impulsivity), time estimation (precision and accuracy), and attentional lapses. Our study design involved examining these behavioral indices in subjects administered either methylphenidate, modafinil, or vehicle. We found that subjects administered modafinil obtained fewer rewards and were less efficient in reward pursuing than the vehicle group; this result was likely due to a drug-induced inability to wait. Upon modafinil discontinuation, subjects earned more rewards but did not entirely catch up with the vehicle group. As for methylphenidate, neither favorable nor unfavorable effects were found in our main analyses. However, an exploratory analysis of changes in behavioral performance within sessions suggested that methylphenidate fostered favorable, yet short-lived, effects. We discuss our results in terms of the risks and cost-benefits of doses above or below the effective dose of cognitive enhancement drugs.
Collapse
Affiliation(s)
- Rodrigo Sosa
- Universidad Panamericana, Escuela de Pedagogía y Psicología, Guadalajara, Mexico
| | - Pedro Espinosa-Villafranca
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - Pablo Saavedra
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City
| | | | | | - Gustavo Lago
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México
| | - Florencia Mata
- Departamento de Psicología, Universidad Iberoamericana Ciudad de México
| | | | | | | | | |
Collapse
|
2
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
3
|
Shehata SA, Kolieb E, Ali DA, Maher SA, Korayem HE, Ibrahim MA, Nafie MS, Ameen SH. Selenium alleviates modafinil-induced neurobehavioral toxicity in rat via PI3K/Akt/mTOR/GSK3B signaling pathway and suppression of oxidative stress and apoptosis: in vivo and in silico study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:458-480. [PMID: 38015391 DOI: 10.1007/s11356-023-31093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Nonmedical use of modafinil (MOD) led to increased rates of overdose toxicity, road accidents, addiction, withdrawal, suicide, and mental illnesses. The current study aims to determine the probable MOD brain toxicity and elucidate the possible role of selenium (Se) in ameliorating the neurotoxicity in rat models. Fifty-four male Albino rats were randomly assigned into nine groups. The groups were G1 (control negative), G2 (Se0.1), G3 (Se0.2), G4 (MOD300), G5 (MOD600), G6 (Se0.1 + MOD300), G7 (Se0.2 + MOD300), G8 (Se0.1 + MOD600), and G9 (Se0.2 + MOD600). After finishing the experiment, blood and brain tissue were harvested for biochemical and histological investigation. Neurobehavior parameters were assessed. Tissue neurotransmitter levels and oxidative stress markers were assessed. Gene expression of PI3K/Akt/mTOR-GSK3B, orexin, and orexin receptor2 was measured by qRT-PCR. Histological and immunohistochemistry assessments, as well as molecular docking, were carried out. MOD-induced neurobehavioral toxicity exhibited by behavioral and cognitive function impairments, which are associated with decreased antioxidant activities, increased MDA levels, and decreases in neurotransmitter levels. Brain levels of mRNA expression of PI3K, Akt, and mTOR were decreased, while GS3K, orexin, and orexin receptors were significantly elevated. These disturbances were confirmed by histopathological brain changes with increased silver and Bax immunostaining and decreased crystal violet levels. MOD induced neurotoxic effects in a dose-dependent manner. Compared with the MOD groups, SE coadministration significantly attenuates MOD-induced toxic changes. Docking study shows the protective role of Se as an apoptosis inhibitor and inflammation inhibitor. In conclusion, Se could be used as a biologically effective antioxidant compound to protect from MOD neurobehavioral toxicity in Wistar rats by reversing behavioral alterations, inflammation, apoptosis, and oxidative injury.
Collapse
Affiliation(s)
- Shaimaa A Shehata
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman Kolieb
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Shymaa Ahmed Maher
- Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Horeya Erfan Korayem
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mahrous A Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, 72341, Aljouf, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Shimaa H Ameen
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharqia, Egypt
| |
Collapse
|
4
|
Zamanian MY, Karimvandi MN, Nikbakhtzadeh M, Zahedi E, Bokov DO, Kujawska M, Heidari M, Rahmani MR. Effects of Modafinil (Provigil) on Memory and Learning in Experimental and Clinical Studies: From Molecular Mechanisms to Behaviour Molecular Mechanisms and Behavioural Effects. Curr Mol Pharmacol 2023; 16:507-516. [PMID: 36056861 DOI: 10.2174/1874467215666220901122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Modafinil (MOD, 2-diphenyl-methyl-sulphinil-2-acetamide) is a stimulant-like medicine used to treat narcolepsy. Off-label uses include improving cognitive ability in the course of other diseases. This review aims to discuss findings demonstrating the memory and learningenhancing activity of MOD in experimental and clinical studies. We included behavioral evaluations alongside the effects of MOD at the cellular and molecular level. MOD in different animal disease models exerted beneficial effects on induced memory and learning impairment, which in some cases were accompanied by modulation of neurotransmitter pathways or neuroplastic capabilities, reducing oxidative stress, or expression of synaptic proteins. Individuals treated with MOD showed improved memory and learning skills in different conditions. These effects were associated with regulating brain activity in some participants, confirmed by functional magnetic resonance imaging. Presented herein, data support the use of MOD in treating memory and learning deficits in various disease conditions.
Collapse
Affiliation(s)
| | | | - Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohammad Reza Rahmani
- Department of Physiology and Pharmacology, School of Medicine, Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Cognitive profiling and proteomic analysis of the modafinil analogue S-CE-123 in experienced aged rats. Sci Rep 2021; 11:23962. [PMID: 34907284 PMCID: PMC8671572 DOI: 10.1038/s41598-021-03372-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.
Collapse
|
6
|
Chronic modafinil therapy ameliorates depressive-like behavior, spatial memory and hippocampal plasticity impairments, and sleep-wake changes in a surgical mouse model of menopause. Transl Psychiatry 2021; 11:116. [PMID: 33558464 PMCID: PMC7870893 DOI: 10.1038/s41398-021-01229-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Depression, cognitive deficits, and sleep disturbances are common and often severe in menopausal women. Hormone replacement cannot effectively alleviate these symptoms and sometimes elicits life-threatening adverse reactions. Exploring effective therapies to target psychological problems is urgently needed. In this work, we developed a mouse model of menopause by bilateral ovariectomies (OVXs) and investigated whether menopausal mental symptoms can be ameliorated by psychostimulant modafinil (MOD) as well as explored the underlying mechanisms. At ~3 weeks after OVXs, mice got daily intraperitoneal administrations of MOD at the beginning of the active phase. Several behavioral tests and electroencephalogram (EEG) recordings were conducted. Electrophysiological and immunohistochemical experiments were carried out to evaluate the synaptic plasticity and neurogenesis, respectively. We found that chronic MOD administration in OVX mice significantly decreased immobility time. The spatial memory performance of OVX mice improved significantly in response to MOD administration in the Morris water-maze test. The OVX mice were characterized by an attenuation of hippocampal synaptic transmission and synaptic long-term potentiation and had fewer 5-ethynyl-2'-deoxyuridine-labeled cells in the dentate gyrus, which were restored after MOD administration. Antagonists of dopamine D1 and D2 receptors and GABAA receptor agonists were involved in MOD-exerted anti-depressant actions and augments of hippocampal neurogenesis in OVX mice. Moreover, night-dosed MOD therapy significantly promoted the night-time delta-band EEG power during wakefulness and the day-time rapid eye movement sleep amount, which were significantly reduced by OVXs. Collectively, these findings suggest that MOD is a promising therapeutic candidate for menopausal women.
Collapse
|
7
|
Abstract
Substantial evidence, composed of drug mechanisms of action, in vivo testing, and epidemiological data, exists to support clinical testing of FDA-approved drugs for repurposing to the treatment of Alzheimer's disease (AD). Licensed compound investigation can often proceed at a faster and more cost-effective manner than un-approved compounds moving through the drug pipeline. As the prevalence of AD increases with life expectancy, the current rise in life expectancy amalgamated with the lack of an effective drug for the treatment of AD unnecessarily burdens our medical system and is an urgent public health concern. The unfounded reluctance to examine repurposing existing drugs for possible AD therapy further impedes the possibility of improving the quality of patient lives with a terminal disease. This review summarizes some evidence which exists to suggest certain already-approved drugs may be considered for the treatment of AD and will perhaps encourage physicians to off-label prescribe these safe therapeutics.
Collapse
|
8
|
Kumar M, Maqbool S. Memory improvement by modafinil at cost of metabolic hazards? A study to decipher the benefits and risks of modafinil in rats. Neurotoxicology 2020; 78:106-115. [PMID: 32126242 DOI: 10.1016/j.neuro.2020.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Modafinil is approved for narcolepsy and achieved high success in off-label indications in memory-related disorders. However, chronic indiscriminate use of modafinil imposes several health hazards like hyperglycaemia, obesity and metabolic syndrome, owing to impairment of sleep-wake cycle, circadian-rhythm, and neurotransmission. The present protocol elucidates the effects of modafinil per se and diabetic complications apropos. METHODS Modafinil (100 and 200 mg/kg) was administered in rats from day 5-26. To induce type-2 diabetes, streptozotocin (STZ) was given on day 1, and blood glucose assessed on day 5. CPP (combination propranolol and phentolamine) was administered to antagonize sympathetic activity. After evaluation of cognitive functions, serum lipid profile, and biomarkers of oxidative stress and acetylcholinesterase (AChE) activity were assessed. RESULTS Subacute dosing of modafinil significantly elevated blood glucose levels, albeit considerably less than diabetic group, and attenuated brain oxidative stress and AChE activity. Modafinil caused significant dyslipidaemia, increased body weight, whereas modestly altered abdominal circumference (AC) and thoracic circumference (TC) in rats. Significant hyperglycaemia, derangement of serum lipid-profile, brain lipid peroxidation, cholinergic hypofunction, and decrease in body weight and ACTC was noted in diabetic rats. Modafinil (100 mg/kg) significantly potentiated the hyperglycaemia and dyslipidaemia, however, attenuated oxidative stress and AChE activity in diabetic rats. Modafinil increased short-term (working) memory but not long-term spatial memory in normal and diabetic rats. CPP infusion attenuated these effects of modafinil. CONCLUSION Subacute dosing of modafinil differentially modulates long-term and short-term memory subtypes, and also predisposes towards metabolic derangements.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai (Rajpura), Punjab, 140401, India.
| | - Shahnawaz Maqbool
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai (Rajpura), Punjab, 140401, India
| |
Collapse
|
9
|
Kalaba P, Ilić M, Aher NY, Dragačević V, Wieder M, Zehl M, Wackerlig J, Beyl S, Sartori SB, Ebner K, Roller A, Lukic N, Beryozkina T, Gonzalez ERP, Neill P, Khan JA, Bakulev V, Leban JJ, Hering S, Pifl C, Singewald N, Lubec J, Urban E, Sitte HH, Langer T, Lubec G. Structure-Activity Relationships of Novel Thiazole-Based Modafinil Analogues Acting at Monoamine Transporters. J Med Chem 2019; 63:391-417. [PMID: 31841637 DOI: 10.1021/acs.jmedchem.9b01938] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Atypical dopamine reuptake inhibitors, such as modafinil, are used for the treatment of sleeping disorders and investigated as potential therapeutics against cocaine addiction and for cognitive enhancement. Our continuous effort to find modafinil analogues with higher inhibitory activity on and selectivity toward the dopamine transporter (DAT) has previously led to the promising thiazole-containing derivatives CE-103, CE-111, CE-123, and CE-125. Here, we describe the synthesis and activity of a series of compounds based on these scaffolds, which resulted in several new selective DAT inhibitors and gave valuable insights into the structure-activity relationships. Introduction of the second chiral center and subsequent chiral separations provided all four stereoisomers, whereby the S-configuration on both generally exerted the highest activity and selectivity on DAT. The representative compound of this series was further characterized by in silico, in vitro, and in vivo studies that have demonstrated both safety and efficacy profile of this compound class.
Collapse
Affiliation(s)
- Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Marija Ilić
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry , University of Vienna , Währinger Straße 38 , 1090 Vienna , Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Stanislav Beyl
- Department of Pharmacology and Toxicology, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Simone B Sartori
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy , Leopold Franzens University Innsbruck , 6020 Innsbruck , Austria
| | - Karl Ebner
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy , Leopold Franzens University Innsbruck , 6020 Innsbruck , Austria
| | - Alexander Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry , University of Vienna , Währinger Straße 38 , 1090 Vienna , Austria
| | - Natalie Lukic
- X-ray Structure Analysis Centre, Faculty of Chemistry , University of Vienna , Währinger Straße 38 , 1090 Vienna , Austria
| | - Tetyana Beryozkina
- Ural Federal University Named after the First President of Russia B. N. Yeltsin , 19 Mira st. , Yekaterinburg 620002 , Russia
| | - Eduardo Rene Perez Gonzalez
- Laboratory of Fine Organic Chemistry, Department of Chemistry and Biochemistry, Faculty of Science and Technology , University of Sao Paulo State , Roberto Simonsen 305 , CEP 19060-900 , Presidente Prudente , SP , Brazil
| | - Philip Neill
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Jawad Akbar Khan
- Institute of Pharmacology, Centre of Physiology and Pharmacology , Medical University of Vienna , 1090 Vienna , Austria
| | - Vasiliy Bakulev
- Ural Federal University Named after the First President of Russia B. N. Yeltsin , 19 Mira st. , Yekaterinburg 620002 , Russia
| | - Johann Jakob Leban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Christian Pifl
- Centre for Brain Research , Medical University of Vienna , 1090 Vienna , Austria
| | - Nicolas Singewald
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Institute of Pharmacy , Leopold Franzens University Innsbruck , 6020 Innsbruck , Austria
| | - Jana Lubec
- Neuroscience Laboratory , Paracelsus Medical University , A-5020 Salzburg , Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Harald H Sitte
- Institute of Pharmacology, Centre of Physiology and Pharmacology , Medical University of Vienna , 1090 Vienna , Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gert Lubec
- Neuroscience Laboratory , Paracelsus Medical University , A-5020 Salzburg , Austria
| |
Collapse
|
10
|
Ekstrand E, Murphy HM, Wideman CH. The effects of the prodrug Vyvanse on spatial working memory and adiposity in rats. Pharmacol Biochem Behav 2019; 186:172765. [PMID: 31470022 DOI: 10.1016/j.pbb.2019.172765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
The present study investigated the influence of Vyvanse (lisdexamfetamine), a psychomotor stimulant, on spatial working memory, body weight, and adiposity in rats. Control and experimental rats were placed in individual cages equipped with a running wheel, and food and water were provided ad-libitum. The study was divided into three periods: 1) habituation, 2) experimental, and 3) withdrawal. Control rats received a placebo in periods 1, 2 and 3, while experimental rats received a placebo in periods 1 and 3. Experimental rats received a treatment of Vyvanse in place of the placebo during period 2. Spatial working memory was examined by utilizing the methodology of the Morris Water Maze. Rats were evaluated by performance in the maze each day during the experimental and withdrawal periods. Each assessment consisted of two trials. The first was a sample trial in which an escape platform was discovered by trial and error. The second was a test trial in which the platform location was recalled using working memory. Platform placement and start location of the rats were changed every session. It was hypothesized that Vyvanse would effectively enhance spatial working memory, and significantly decrease body weight and adiposity without side effects on activity level and anxiety in rats. Results supported the hypothesis. Compared to control rats, Vyvanse treated rats had significant improvement in working memory and significantly lowered body weight, as well as significantly decreased mesenteric, renal, and epididymal adiposity. No significant effects on activity level and task specific anxiety were noted in experimental animals. When compared to placebo treatment, Vyvanse treatment produced no significant influence on food and water intake. It was concluded that Vyvanse treatment in rats can enhance spatial working memory, and decrease adiposity without suppressing normal appetite.
Collapse
Affiliation(s)
- Ethan Ekstrand
- Neuroscience Program, John Carroll University, 1 John Carroll Boulevard, University Heights, OH 44118, United States of America.
| | - Helen M Murphy
- Neuroscience Program, John Carroll University, 1 John Carroll Boulevard, University Heights, OH 44118, United States of America
| | - Cyrilla H Wideman
- Neuroscience Program, John Carroll University, 1 John Carroll Boulevard, University Heights, OH 44118, United States of America
| |
Collapse
|
11
|
Teutsch J, Kätzel D. Operant Assessment of DMTP Spatial Working Memory in Mice. Front Behav Neurosci 2019; 13:193. [PMID: 31507388 PMCID: PMC6718719 DOI: 10.3389/fnbeh.2019.00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM) is required to bridge the time between the moment of sensory perception and the usage of the acquired information for subsequent actions. Its frequent and pharmacoresistent impairment in mental health disorders urges the development of rodent paradigms through back-translation of human WM tests, ideally avoiding the confounds of alternation-based assays. Here we show, that mice can acquire a delayed-matching-to-position (DMTP) operant spatial WM (SWM) paradigm that is akin to the combined attention and memory (CAM) task previously developed for rats, and that relies on a 5-choice wall [5-CSWM, 5-choice based operant testing of SWM (5-CSWM)]. Requiring ca. 3 months of daily training with a non-illuminated operant box in the default state, mice could attain a performance level of ≥70% choice accuracy with short (2 s) delays in the DMTP 5-CSWM task. Performance decreased with extended delays, as expected for WM processes. Modafinil (15 and 30 mg/kg) and guanfacine (0.3 and 1 mg/kg) showed no consistent efficacy in enhancing task performance. We also found, that mice did not improve beyond chance level, when trained in the DNMTP-version of the 5-CSWM. Our results outline the methodical possibility and constraints of assessing spatial WM in mice with an operant paradigm that provides high control over potentially confounding variables, such as cue-directed attention, motivation or mediating strategies like body-positioning.
Collapse
Affiliation(s)
- Jasper Teutsch
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Kristofova M, Aher YD, Ilic M, Radoman B, Kalaba P, Dragacevic V, Aher NY, Leban J, Korz V, Zanon L, Neuhaus W, Wieder M, Langer T, Urban E, Sitte HH, Hoeger H, Lubec G, Aradska J. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res 2018; 343:83-94. [PMID: 29410048 DOI: 10.1016/j.bbr.2018.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 01/25/2023]
Abstract
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions.
Collapse
Affiliation(s)
- Martina Kristofova
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Yogesh D Aher
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marija Ilic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Bojana Radoman
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Johann Leban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Volker Korz
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Zanon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Competence Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH, Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| | - Jana Aradska
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
13
|
Dhawan SS, Xia S, Tait DS, Bundgaard C, Bowman E, Brown VJ. Oral dosing of rodents using a palatable tablet. Psychopharmacology (Berl) 2018; 235:1527-1532. [PMID: 29511808 PMCID: PMC5919998 DOI: 10.1007/s00213-018-4863-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE Delivering orally bioavailable drugs to rodents is an important component to investigating that route of administration in novel treatments for humans. However, the traditional method of oral gavage requires training, is stressful, and can induce oesophageal damage in rodents. OBJECTIVES To demonstrate a novel administrative technique-palatable gelatine tablets-as a stress-free route of oral delivery. METHODS Twenty-four male Lister hooded rats were sacrificed for brain tissue analysis at varying time-points after jelly administration of 30 mg/kg of the wake-promoting drug modafinil. A second group of 22 female rats were tested on locomotor activity after 30 mg/kg modafinil, or after vehicle jellies, with the locomotor data compared to the brain tissue concentrations at the corresponding times. RESULTS Modafinil was present in the brain tissue at all time-points, reducing in concentration over time. The pattern of brain tissue modafinil concentration is comparable to previously reported results following oral gavage. Modafinil-treated rats were more active than control rats, with greater activity during the later time-periods-similar to that previously reported following intraperitoneal injection of 40 mg/kg modafinil. CONCLUSIONS Palatable jelly tablets are an effective route of administration of thermally stable orally bioavailable compounds, eliminating the stress/discomfort and health risk of oral gavage and presenting as an alternative to previously reported palatable routes of administration where high protein and fat levels may adversely affect appetite for food reward, and uptake rate in the gastrointestinal tract.
Collapse
Affiliation(s)
- Sandeep S. Dhawan
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South Street, St Andrews, Fife, KY16 9JP UK
| | - Shuang Xia
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South Street, St Andrews, Fife, KY16 9JP UK
| | - David S. Tait
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South Street, St Andrews, Fife, KY16 9JP UK
| | | | - Ellen Bowman
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South Street, St Andrews, Fife, KY16 9JP UK
| | - Verity J. Brown
- School of Psychology and Neuroscience, University of St Andrews, St Mary’s Quad, South Street, St Andrews, Fife, KY16 9JP UK
| |
Collapse
|
14
|
Kalaba P, Aher NY, Ilić M, Dragačević V, Wieder M, Miklosi AG, Zehl M, Wackerlig J, Roller A, Beryozkina T, Radoman B, Saroja SR, Lindner W, Gonzalez EP, Bakulev V, Leban JJ, Sitte HH, Urban E, Langer T, Lubec G. Heterocyclic Analogues of Modafinil as Novel, Atypical Dopamine Transporter Inhibitors. J Med Chem 2017; 60:9330-9348. [PMID: 29091428 DOI: 10.1021/acs.jmedchem.7b01313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modafinil is a wake promoting compound with high potential for cognitive enhancement. It is targeting the dopamine transporter (DAT) with moderate selectivity, thereby leading to reuptake inhibition and increased dopamine levels in the synaptic cleft. A series of modafinil analogues have been reported so far, but more target-specific analogues remain to be discovered. It was the aim of this study to synthesize and characterize such analogues and, indeed, a series of compounds were showing higher activities on the DAT and a higher selectivity toward DAT versus serotonin and norepinephrine transporters than modafinil. This was achieved by substituting the amide moiety by five- and six-membered aromatic heterocycles. In vitro studies indicated binding to the cocaine pocket on DAT, although molecular dynamics revealed binding different from that of cocaine. Moreover, no release of dopamine was observed, ruling out amphetamine-like effects. The absence of neurotoxicity of a representative analogue may encourage further preclinical studies of the above-mentioned compounds.
Collapse
Affiliation(s)
- Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Nilima Y Aher
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Marija Ilić
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Andras G Miklosi
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 38, 1090 Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Alexander Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna , Währinger Straße 38, 1090 Vienna, Austria
| | - Tetyana Beryozkina
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira St., Yekaterinburg 620002, Russia
| | - Bojana Radoman
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | | | - Wolfgang Lindner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Straße 38, 1090 Vienna, Austria
| | - Eduardo Perez Gonzalez
- Laboratory of Fine Organic Chemistry, Department of Chemistry and Biochemistry, Faculty of Science and Technology, University of Sao Paulo State , Roberto Simonsen 305, CEP 19060-900 Presidente Prudente, Sao Paolo, Brazil
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira St., Yekaterinburg 620002, Russia
| | - Johann Jakob Leban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Harald H Sitte
- Institute of Pharmacology, Centre of Physiology and Pharmacology, Medical University of Vienna , 1090, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstraße 14, 1090 Vienna, Austria
| | - Gert Lubec
- Neuroscience Laboratory, Paracelsus Medical University , 5020 Salzburg, Austria
| |
Collapse
|
15
|
Bezu M, Maliković J, Kristofova M, Engidawork E, Höger H, Lubec G, Korz V. Spatial Working Memory in Male Rats: Pre-Experience and Task Dependent Roles of Dopamine D1- and D2-Like Receptors. Front Behav Neurosci 2017; 11:196. [PMID: 29081740 PMCID: PMC5645514 DOI: 10.3389/fnbeh.2017.00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
The dopaminergic system is known to be involved in working memory processed by several brain regions like prefrontal cortex (PFC), hippocampus, striatum. In an earlier study we could show that Levodopa but not Modafinil enhanced working memory in a T-maze only during the early phase of training (day 3), whereas the later phase remained unaffected. Rats treated with a higher dose performed better than low dose treated rats. Here we could more specifically segregate the contributions of dopamine type 1- and 2- like receptors (D1R; D2R) to the training state dependent modulation of spatial working memory by intracerebroventricular (ICV) application of a D1R-like (SKF81297) and D2R-like agonist (Sumanirole) and antagonist (SCH23390, Remoxipride) at a low and high dose through 3 days of training. The D1R-like-agonist at both doses enhanced working memory at day 1 but only in the low dose treated rats enhancement persists over training compared to control rats. Rats treated with a high dose of a D1R-like-antagonist show persistent enhancement of working memory over training, whereas in low dose treated rats no statistical difference at any time point could be determined compared to controls. The D2R-like-agonist at both doses does not show an effect at any time point when compared to control animals, whereas the D2R-like antagonist at a low dose enhanced working memory at day 2. For the most effective D1R-like agonist, we repeated the experiments in a water maze working memory task, to test for task dependent differences in working memory modulations. Treated rats at both doses did not differ as compared to controls, but the temporal behavioral performance of all groups was different compared to T-maze trained rats. The results are in line with the view that spatial working memory is optimized within a limited range of dopaminergic transmission, however suggest that these ranges vary during spatial training.
Collapse
Affiliation(s)
- Mekite Bezu
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jovana Maliković
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Ephrem Engidawork
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Department of Biomedicine, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Volker Korz
- Brain Research Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Hussein AM, Aher YD, Kalaba P, Aher NY, Dragačević V, Radoman B, Ilić M, Leban J, Beryozkina T, Ahmed ABM, Urban E, Langer T, Lubec G. A novel heterocyclic compound improves working memory in the radial arm maze and modulates the dopamine receptor D1R in frontal cortex of the Sprague-Dawley rat. Behav Brain Res 2017. [DOI: 10.1016/j.bbr.2017.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Abstract
Although exposure-based treatments and anxiolytic medications are more effective than placebo for treating anxiety disorders, there is still considerable room for further improvement. Interestingly, combining these two modalities is usually not more effective than the monotherapies. Recent translational research has identified a number of novel approaches for treating anxiety disorders using agents that serve as neuroenhancers (also known as cognitive enhancers). Several of these agents have been studied to determine their efficacy at improving treatment outcome for patients with anxiety and other psychiatric disorders. In this review, we examine d-cycloserine, yohimbine, cortisol, catecholamines, oxytocin, modafinil, and nutrients such as caffeine and amino fatty acids as potential neuroenhancers. Of these agents, d-cycloserine shows the most promise as an effective neuroenhancer for extinction learning and exposure therapy. Yet, the optimal dosing and dose timing for drug administration remains uncertain. There is partial support for cortisol, catecholamines, yohimbine and oxytocin for improving extinction learning and exposure therapy. There is less evidence to indicate that modafinil and nutrients such as caffeine and amino fatty acids are effective neuroenhancers. More research is needed to determine their long term efficacy and clinical utility of these agents.
Collapse
Affiliation(s)
- Stefan G Hofmann
- Psychotherapy and Emotion Research Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA USA
| | - Elizabeth A Mundy
- Psychotherapy and Emotion Research Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA USA
| | - Joshua Curtiss
- Psychotherapy and Emotion Research Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA USA
| |
Collapse
|