1
|
Schwartz NE, Schmill MP, Cadney MD, Castro AA, Hillis DA, McNamara MP, Rashid JO, Lampman W, DeLaCruz DF, Tran BD, Trutalli NL, Garland T. Maternal exercise opportunity before, during, and after pregnancy alters maternal care behavior and offspring development and survival, but has few effects on offspring physical activity or body composition. Physiol Behav 2025; 291:114752. [PMID: 39549866 DOI: 10.1016/j.physbeh.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Early-life experiences, especially during critical periods of development and growth, can have long-lasting effects on adult phenotypes. Parents are a crucial part of the offspring early-life environment, particularly in mammals (e.g., via pregnancy), and parental behaviors (e.g., maternal exercise) can modify the early-life environment experienced by offspring. Such changes might be beneficial or detrimental, depending on how they affect offspring development and growth or interact with other key parental behaviors (e.g., nursing). We used mice from a long-term artificial selection experiment for high voluntary wheel-running behavior to determine whether maternal exercise opportunity affected (1) maternal physical activity, (2) maternal care behavior, or (3) offspring physical activity and body composition. Eighty prospective dams (40 from 4 selectively bred High Runner [HR] lines and 40 from 4 non-selected Control [CON] lines) were housed with continuous wheel access starting two weeks prior to breeding and ending 10 days postpartum, after which dams were housed without wheels until offspring weaning (21 days postpartum). An additional 100 dams (50 HR, 50 CON) were housed without wheels. Prospective dams from HR lines ran more revolutions/day (mainly by running faster) than those from CON lines when individually housed and in the days leading up to, but not after, birth. During postpartum days 1-5, HR and CON dams with wheels tended to exhibit less maternal behavior than those without (PWheel = 0.0672). During post-partum days 6-10, HR dams with wheels continued to exhibit less maternal behavior than those without, whereas CON dams with wheels exhibited more than those without (PLinetype*Wheel = 0.0218). The proportion of dams giving birth did not differ among groups. However, CON dams with wheels were less likely to have litter death between birth and weaning than those without wheels, whereas the opposite was true for HR dams (PLinetype*Wheel = 0.0447). Both HR and CON dams with wheels had litters with a higher proportion of females at weaning than those without wheels (PWheel = 0.0129). Maternal wheel access had few statistically significant effects on offspring, but may have resulted in developmental delays (e.g., delayed eye opening and decreased lean mass at weaning and sexual maturity). Additionally, maternal wheel access and sex may have interacted to affect wheel-running distance (PSex*Wheel = 0.0683) and duration (PSex*Wheel = 0.0926); female offspring from dams with wheels ran fewer revolutions per day, by running fewer minutes per day, than from dams without wheels, whereas males ran more. However, maternal exercise had no statistically significant effects on offspring food consumption (mass-adjusted), home-cage activity, open-field behavior, the reproductive characteristics of offspring, their adult body composition, nor relative organ masses; nor did maternal wheel access have statistically significant effects on grand-offspring food consumption, body composition or voluntary exercise behavior. Overall, our results provide some support for maternal exercise opportunity altering maternal care behavior. Altered maternal care could explain the observed trends in offspring survival, development, and voluntary exercise behavior. However, these effects did not have apparent long-lasting impacts on offspring or grand-offspring body composition or reproductive characteristics.
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA.
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California - Riverside, Riverside, CA, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Jaanam O Rashid
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - William Lampman
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Dorothea F DeLaCruz
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Bao D Tran
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Natalie L Trutalli
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California - Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Hiramatsu L, Careau V, Garland T. Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice? Behav Genet 2025; 55:43-58. [PMID: 39636486 PMCID: PMC11790750 DOI: 10.1007/s10519-024-10209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance. We also attempted to break the selection limit by crossing two HR lines, then continuing directional selection on this hybrid line and on the two parental lines for nine generations. The genetic correlation between speed and duration was positive in the base population, but evolved to be negative in the two parental HR lines. Although heritability for both speed and duration (but not distance) increased in the hybrid line, their genetic correlation remained negative. Hybrid F1 mice from generation 68 parents showed heterosis for running distance, which was lost in subsequent generations, and the hybrid line did not exceed the limit. Both male and female hybrids ran faster than parental lines for most generations, but running duration was intermediate or reduced, reflecting their negative genetic correlation. The evolved genetic trade-off between speed and duration may explain the inability for the hybrid line to break the selection limit for distance run, despite renewed additive genetic variance for at least one of its component traits.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
3
|
Phan JMP, Yi J, Foote JHA, Ayabe ARK, Guan K, Garland T, Parfitt KD. Hippocampal long-term potentiation is modulated by exercise-induced alterations in dopaminergic synaptic transmission in mice selectively bred for high voluntary wheel running. Restor Neurol Neurosci 2024:9226028241290400. [PMID: 39973602 DOI: 10.1177/09226028241290400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHigh-Runner (HR) mice, selectively bred for increased voluntary wheel running behavior, exhibit heightened motivation to run. Exercise has been shown to influence hippocampal long-term potentiation (LTP) and memory, and is neuroprotective in several neurodegenerative diseases.ObjectiveThis study aimed to determine the impact of intense running in HR mice with wheel access on hippocampal LTP, compared to HR mice without wheels and non-selected control (C) mice with/without wheels. Additionally, we investigated the involvement of D1/D5 receptors and the dopamine transporter (DAT) in LTP modulation and examined levels of these proteins in HR and C mice.MethodsAdult female HR and C mice were individually housed with/without running wheels for at least two weeks. Hippocampal LTP of extracellular field excitatory postsynaptic potentials (fEPSPs) was measured in area CA1, and SKF-38393 (D1/D5 receptor agonist) and GBR 12909 (DAT inhibitor) were used to probe the role of D1/D5 receptors and DAT in LTP differences. Western blot analyses assessed D1/D5 receptor and DAT expression in the hippocampus, prefrontal cortex, and cerebellum.ResultsHR mice with wheel access showed significantly increased hippocampal LTP compared to those without wheels and to C mice with/without wheels. Treatment with SKF-38393 or GBR 12909 prevented the heightened LTP in HR mice with wheels, aligning it with levels in C mice. Hippocampal D1/D5 receptor levels were lower, and DAT levels were higher in HR mice compared to C mice. No significant changes were observed in other brain regions.ConclusionsThe increased hippocampal LTP seen in HR mice with wheel access may be related to alterations in dopaminergic synaptic transmission that underlie the neurophysiological basis of hyperactivity, motor disorders, and/or motivation.
Collapse
Affiliation(s)
| | - Jiwon Yi
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | | - Kevin Guan
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Karen Diane Parfitt
- Program in Molecular Biology, Pomona College, Claremont, CA, USA
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| |
Collapse
|
4
|
Schwartz NE, Garland T. A meta-analysis of whole-body and heart mass effect sizes from a long-term artificial selection experiment for high voluntary exercise. J Exp Biol 2024; 227:jeb249213. [PMID: 39119628 DOI: 10.1242/jeb.249213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Selection experiments play an increasingly important role in comparative and evolutionary physiology. However, selection experiments can be limited by relatively low statistical power, in part because replicate line is the experimental unit for analyses of direct or correlated responses (rather than number of individuals measured). One way to increase the ability to detect correlated responses is through a meta-analysis of studies for a given trait across multiple generations. To demonstrate this, we applied meta-analytic techniques to two traits (body mass and heart ventricle mass, with body mass as a covariate) from a long-term artificial selection experiment for high voluntary wheel-running behavior. In this experiment, all four replicate High Runner (HR) lines reached apparent selection limits around generations 17-27, running approximately 2.5- to 3-fold more revolutions per day than the four non-selected Control (C) lines. Although both traits would also be expected to change in HR lines (relative heart size expected to increase, expected direction for body mass is less clear), their statistical significance has varied, despite repeated measurements. We compiled information from 33 unique studies and calculated a measure of effect size (Pearson's R). Our results indicate that, despite a lack of statistical significance in most generations, HR mice have evolved larger hearts and smaller bodies relative to controls. Moreover, plateaus in effect sizes for both traits coincide with the generational range during which the selection limit for wheel-running behavior was reached. Finally, since reaching the selection limit, absolute effect sizes for body mass and heart ventricle mass have become smaller (i.e. closer to 0).
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Thompson Z, Fonseca IAT, Acosta W, Idarraga L, Garland T. Effects of food restriction on voluntary wheel-running behavior and body mass in selectively bred High Runner lines of mice. Physiol Behav 2024; 282:114582. [PMID: 38750805 DOI: 10.1016/j.physbeh.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA; Present Address: Department of Biology, Utah Valley University, Orem, UT, USA
| | - Ivana A T Fonseca
- Department of Physical Education, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Wendy Acosta
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Laidy Idarraga
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
6
|
Tan BB, Schwartz NE, Copes LE, Garland T. Effects of long-term voluntary wheel running and selective breeding for wheel running on femoral nutrient canals. J Anat 2024; 244:1015-1029. [PMID: 38303650 PMCID: PMC11095308 DOI: 10.1111/joa.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The nutrient artery provides ~50%-70% of the total blood volume to long bones in mammals. Studying the functional characteristics of this artery in vivo can be difficult and expensive, so most researchers have measured the nutrient foramen, an opening on the outer surface of the bone that served as the entry point for the nutrient artery during development and bone ossification. Others have measured the nutrient canal (i.e., the passage which the nutrient artery once occupied), given that the external dimensions of the foramen do not necessarily remain uniform from the periosteal surface to the medullary cavity. The nutrient canal, as an indicator of blood flow to long bones, has been proposed to provide a link to studying organismal activity (e.g., locomotor behavior) from skeletal morphology. However, although external loading from movement and activity causes skeletal remodeling, it is unclear whether it affects the size or configuration of nutrient canals. To investigate whether nutrient canals can exhibit phenotypic plasticity in response to physical activity, we studied a mouse model in which four replicate high runner (HR) lines have been selectively bred for high voluntary wheel-running behavior. The selection criterion is the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access as young adults (~6-8 weeks old). An additional four lines are bred without selection to serve as controls (C). For this study, 100 female mice (half HR, half C) from generation 57 were split into an active group housed with wheels and a sedentary group housed without wheels for 12 weeks starting at ~24 days of age. Femurs were collected, soft tissues were removed, and femora were micro-computed tomography scanned at a resolution of 12 μm. We then imported these scans into AMIRA and created 3D models of femoral nutrient canals. We tested for evolved differences in various nutrient canal traits between HR and C mice, plastic changes resulting from chronic exercise, and the selection history-by-exercise interaction. We found few differences between the nutrient canals of HR versus C mice, or between the active and sedentary groups. We did find an interaction between selection history and voluntary exercise for the total number of nutrient canals per femur, in which wheel access increased the number of canals in C mice but decreased it in HR mice. Our results do not match those from an earlier study, conducted at generation 11, which was prior to the HR lines reaching selection limits for wheel running. The previous study found that mice from the HR lines had significantly larger total canal cross-sectional areas compared to those from C lines. However, this discrepancy is consistent with studies of other skeletal traits, which have found differences between HR and C mice to be somewhat inconsistent across generations, including the loss of some apparent adaptations with continued selective breeding after reaching a selection limit for wheel-running behavior.
Collapse
Affiliation(s)
- Brandon B Tan
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| | - Lynn E Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, Connecticut, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
7
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
8
|
Leszczynski EC, Schwartz NE, McPeek AC, Currie KD, Ferguson DP, Garland T. Selectively breeding for high voluntary physical activity in female mice does not bestow inherent characteristics that resemble eccentric remodeling of the heart, but the mini-muscle phenotype does. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:205-212. [PMID: 37753423 PMCID: PMC10518799 DOI: 10.1016/j.smhs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p = 0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p = 0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p = 0.000 6), fractional shortening percentage (p < 0.000 1), and ventricular mass at dissection (p < 0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V ˙ O2max.
Collapse
Affiliation(s)
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Ashley C. McPeek
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - David P. Ferguson
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
9
|
Schmill MP, Thompson Z, Lee D, Haddadin L, Mitra S, Ezzat R, Shelton S, Levin P, Behnam S, Huffman KJ, Garland T. Hippocampal, Whole Midbrain, Red Nucleus, and Ventral Tegmental Area Volumes Are Increased by Selective Breeding for High Voluntary Wheel-Running Behavior. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:245-263. [PMID: 37604130 DOI: 10.1159/000533524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | - Daisy Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Laurence Haddadin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Shaarang Mitra
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Raymond Ezzat
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Samantha Shelton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Phillip Levin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Sogol Behnam
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Kelly J Huffman
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Psychology, University of California, Riverside, California, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
10
|
Schwartz NE, McNamara MP, Orozco JM, Rashid JO, Thai AP, Garland T. Selective breeding for high voluntary exercise in mice increases maximal (V̇O2,max) but not basal metabolic rate. J Exp Biol 2023; 226:jeb245256. [PMID: 37439323 DOI: 10.1242/jeb.245256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
In general, sustained high rates of physical activity require a high maximal aerobic capacity (V̇O2,max), which may also necessitate a high basal aerobic metabolism (BMR), given that the two metabolic states are linked via shared organ systems, cellular properties and metabolic pathways. We tested the hypotheses that (a) selective breeding for high voluntary exercise in mice would elevate both V̇O2,max and BMR, and (b) these increases are accompanied by increases in the size of some internal organs (ventricle, triceps surae muscle, liver, kidney, spleen, lung, brain). We measured 72 females from generations 88 and 96 of an ongoing artificial selection experiment comprising four replicate High Runner (HR) lines bred for voluntary daily wheel-running distance and four non-selected control lines. With body mass as a covariate, HR lines as a group had significantly higher V̇O2,max (+13.6%, P<0.0001), consistent with previous studies, but BMR did not significantly differ between HR and control lines (+6.5%, P=0.181). Additionally, HR mice did not statistically differ from control mice for whole-body lean or fat mass, or for the mass of any organ collected (with body mass as a covariate). Finally, mass-independent V̇O2,max and BMR were uncorrelated (r=0.073, P=0.552) and the only statistically significant correlation with an organ mass was for V̇O2,max and ventricle mass (r=0.285, P=0.015). Overall, our results indicate that selection for a behavioral trait can yield large changes in behavior without proportional modifications to underlying morphological or physiological traits.
Collapse
Affiliation(s)
- Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jocelyn M Orozco
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jaanam O Rashid
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Angie P Thai
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Effects of early-life voluntary exercise and fructose on adult activity levels, body composition, aerobic capacity, and organ masses in mice bred for high voluntary wheel-running behavior. J Dev Orig Health Dis 2023; 14:249-260. [PMID: 36193024 DOI: 10.1017/s204017442200054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fructose (C6H12O6) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week "washout" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO2max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.
Collapse
|
12
|
McNamara MP, Venable EM, Cadney MD, Castro AA, Schmill MP, Kazzazi L, Carmody RN, Garland T. Weanling gut microbiota composition of a mouse model selectively bred for high voluntary wheel-running behavior. J Exp Biol 2023; 226:287120. [PMID: 36728594 DOI: 10.1242/jeb.245081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 h after weaning, identifying a total of 2074 bacterial operational taxonomic units. HR and control mice did not significantly differ for measures of alpha diversity, but HR mice had a higher relative abundance of the family Clostridiaceae. These results differ from a study of rats, where a line bred for high forced-treadmill endurance and that also ran more on wheels had lower relative abundance of Clostridiaceae, as compared with a line bred for low endurance that ran less on wheels. Within the HR and control groups, replicate lines had unique microbiomes based on unweighted UniFrac beta diversity, indicating random genetic drift and/or multiple adaptive responses to selection.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Emily M Venable
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcell D Cadney
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.,Medpace, 717th St, Suite 500, Denver, CO 80202, USA
| | - Lawrence Kazzazi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 91521, USA
| |
Collapse
|
13
|
The fast and the curious III: speed, endurance, activity, and exploration in mice. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Kay JC, Colbath J, Talmadge RJ, Garland T. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS One 2022; 17:e0278186. [PMID: 36449551 PMCID: PMC9710767 DOI: 10.1371/journal.pone.0278186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Populations that have experienced selection for high locomotor activity may have evolutionary adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury. We tested this hypothesis with an experiment in which mice are bred for high voluntary wheel running. Mice from four high runner lines run ~three times more daily distance than those from four non-selected control lines. To test recovery from injury by external forces, mice experienced contusion via weight drop on the calf. After injury, running distance and speed were reduced in high runner but not control lines, suggesting that the ability of control mice to run exceeds their motivation. To test effects of injury from exercise, mice were housed with/without wheels for six days, then trunk blood was collected and muscles evaluated for injury and regeneration. Both high runner and control mice with wheels had increased histological indicators of injury in the soleus, and increased indicators of regeneration in the plantaris. High runner mice had relatively more central nuclei (regeneration indicator) than control in the soleus, regardless of wheel access. The subset of high runner mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers of injury in the deep gastrocnemius, and more markers of regeneration in the deep and superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations, high runner mice were not more resistant to either type of injury.
Collapse
Affiliation(s)
- Jarren C. Kay
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| | - James Colbath
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Robert J. Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| |
Collapse
|
15
|
Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behav Processes 2022; 199:104650. [PMID: 35504410 DOI: 10.1016/j.beproc.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
16
|
Castro AA, Karakostis FA, Copes LE, McClendon HE, Trivedi AP, Schwartz NE, Garland T. Effects of selective breeding for voluntary exercise, chronic exercise, and their interaction on muscle attachment site morphology in house mice. J Anat 2022; 240:279-295. [PMID: 34519035 PMCID: PMC8742976 DOI: 10.1111/joa.13547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscles attach to bone at their origins and insertions, and the interface where tendon meets bone is termed the attachment site or enthesis. Mechanical stresses at the muscle/tendon-bone interface are proportional to the surface area of the bony attachment sites, such that a larger attachment site will distribute loads over a wider area. Muscles that are frequently active and/or are of larger size should cause attachment sites to hypertrophy (training effect); however, experimental studies of animals subjected to exercise have provided mixed results. To enhance our ability to detect training effects (a type of phenotypic plasticity), we studied a mouse model in which 4 replicate lines of High Runner (HR) mice have been selectively bred for 57 generations. Selection is based on the average number of wheel revolutions on days 5 & 6 of a 6-day period of wheel access as young adults (6-8 weeks old). Four additional lines are bred without regard to running and serve as non-selected controls (C). On average, mice from HR lines voluntarily run ~3 times more than C mice on a daily basis. For this study, we housed 50 females (half HR, half C) with wheels (Active group) and 50 (half HR, half C) without wheels (Sedentary group) for 12 weeks starting at weaning (~3 weeks old). We tested for evolved differences in muscle attachment site surface area between HR and C mice, plastic changes resulting from chronic exercise, and their interaction. We used a precise, highly repeatable method for quantifying the three-dimensional (3D) surface area of four muscle attachment sites: the humerus deltoid tuberosity (the insertion point for the spinodeltoideus, superficial pectoralis, and acromiodeltoideus), the femoral third trochanter (the insertion point for the quadratus femoris), the femoral lesser trochanter (the insertion point for the iliacus muscle), and the femoral greater trochanter (insertion point for the middle gluteal muscles). In univariate analyses, with body mass as a covariate, mice in the Active group had significantly larger humerus deltoid tuberosities than Sedentary mice, with no significant difference between HR and C mice and no interaction between exercise treatment and linetype. These differences between Active and Sedentary mice were also apparent in the multivariate analyses. Surface areas of the femoral third trochanter, femoral lesser trochanter, and femoral greater trochanter were unaffected by either chronic wheel access or selective breeding. Our results, which used robust measurement protocols and relatively large sample sizes, demonstrate that muscle attachment site morphology can be (but is not always) affected by chronic exercise experienced during ontogeny. However, contrary to previous results for other aspects of long bone morphology, we did not find evidence for evolutionary coadaptation of muscle attachments with voluntary exercise behavior in the HR mice.
Collapse
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Fotios Alexandros Karakostis
- PaleoanthropologyDepartment of GeosciencesSenckenberg Centre for Human Evolution and PalaeoenvironmentUniversity of TübingenTübingenGermany
| | - Lynn E. Copes
- Department of Medical SciencesFrank H. Netter MD School of MedicineQuinnipiac UniversityHamdenConnecticutUSA
| | - Holland E. McClendon
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Aayushi P. Trivedi
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Nicole E. Schwartz
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| |
Collapse
|
17
|
Wooten JS, Poole KE, Harris MP, Guilford BL, Schaller ML, Umbaugh D, Seija A. The effects of voluntary wheel running during weight-loss on biomarkers of hepatic lipid metabolism and inflammation in C57Bl/6J mice. Curr Res Physiol 2022; 5:63-72. [PMID: 35141529 PMCID: PMC8814598 DOI: 10.1016/j.crphys.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to determine the effect of voluntary wheel running (VWR) during weight-loss on hepatic lipid and inflammatory biomarkers using a murine model. To induce obesity, male C57Bl/6 mice were fed a 60% high-fat diet (HF) for 10 weeks. At 10 weeks, weight-loss was promoted by randomizing HF-fed mice to a normal diet (ND) either with (WL + VWR) or without (WL) access to running wheels for 8 weeks. Age-matched dietary control mice were fed either a ND or HF for 18 weeks. Following weight-loss, WL + VWR had a lower body mass compared to all groups despite an average weekly caloric consumption comparable to HF mice. WL + VWR had an increased adiponectin concentration when compared to WL, but no difference between WL and WL + VWR was observed for plasma glucose and lipid biomarkers. When compared to HF, the lower hepatic total lipids in both WL and WL + VWR were associated with increased pAMPK:AMPK and reduced pACC-1:ACC-1 ratios. When compared to WL, WL + VWR resulted in lower hepatic cholesterol and trended to lower hepatic triglyceride. In both WL and WL + VWR, pNF-κB p65:NF-κB p65 ratio was lower than HF and comparable to ND. TGFβ1 and BAMBI protein levels were evaluated as biomarkers for hepatic fibrosis. No differences in TGFβ1 was observed between groups; however, WL and WL + VWR had BAMBI protein levels comparable to ND. Overall, the addition of voluntary exercise resulted in greater weight-loss and improvements in hepatic cholesterol and triglyceride levels; however, limited improvements in hepatic inflammation were observed when compared to weight-loss by diet alone.
Collapse
Affiliation(s)
- Joshua S. Wooten
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Kaylee E. Poole
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Matthew P. Harris
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Brianne L. Guilford
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Megan L. Schaller
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - David Umbaugh
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Andrew Seija
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
18
|
Berilli P, Fanaro GB, Santos JP, Reyes Reyes FG, Iglesias AH, Reis M, Cazarin CBB, Maróstica Junior MR. White tea modulates antioxidant defense of endurance-trained rats. Curr Res Physiol 2022; 5:256-264. [PMID: 35800140 PMCID: PMC9253650 DOI: 10.1016/j.crphys.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The interest in nutritional strategies that may counteract the deleterious oxidative effects induced by strenuous exercises is remarkable. Herein, the impact of white tea (Camellia sinensis) (WT), a polyphenol-rich beverage, on antioxidant status in endurance-trained rats after one session of exhaustive exercise were evaluated. Male Wistar rats were divided into groups, which received: control groups - water, and testing groups - WT1 (0.25%; w/v) or WT2 (0.5%; w/v). Drinks were consumed, ad libitum, for 5 or 10 weeks, concomitantly with the running training. Exhaustive running tests were applied before and after the experimental periods. WT intake increased the serum antioxidant capacity of rats in a dose-dependent manner (P < 0.001), which was unaccompanied by the activity of endogenous antioxidant enzymes SOD, GPx, and GR, and GSH content. Inflammatory markers in serum [IL-1β (P = 0.004) and IL-6 (P = 0.001)] could be downregulated by tea intake. In liver tissue, lower levels of lipid oxidation (P < 0.05) and improved antioxidant defenses (SOD, GPx, GR, and GSH, P < 0.05) were related to the consumption of 10.13039/100010269WT in both doses, supporting protective effects in this responsible metabolic organ. In conclusion, long-term consumption of WT could be a promising adjuvant to exercise-stress management, emphasizing its ability to regulate antioxidant responses and prevent oxidative tissue damage. White tea intake improved antioxidant status of blood and liver of runner rats. White tea intake promoted protective effect against liver lipid peroxidation after an exhaustive exercise. Long term white tea intake did not enhance physical performance.
Collapse
|
19
|
Schmill MP, Thompson Z, Argueta DA, DiPatrizio NV, Garland T. Effects of Selective Breeding, Voluntary Exercise, and Sex on Endocannabinoid Levels in the Mouse Small-Intestinal Epithelium. Physiol Behav 2021; 245:113675. [PMID: 34929258 DOI: 10.1016/j.physbeh.2021.113675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022]
Abstract
The endocannabinoid (eCB) system in the gut communicates with the body and brain as part of the homeostatic mechanisms that affect energy balance. Although perhaps best known for its effects on energy intake, the eCB system also regulates voluntary locomotor behavior. Here, we examined gut eCB concentrations in relation to voluntary exercise, specifically in mice selectively bred for high voluntary wheel running behavior. We measured gut eCBs in four replicate non-selected Control (C) lines and four replicate lines of High Runner (HR) mice that had been selectively bred for 74 generations based on the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access when young adults. On average, mice from HR lines run voluntarily on wheels ∼3-fold more than C mice on a daily basis. A recent study showed that circulating levels of primary endocannabinoids 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA) are altered by six days of wheel access, by acute wheel running, and differ between HR and C mice in sex-specific ways [1]. We hypothesized that eCBs in the upper small-intestinal epithelium (i.e., proximal jejunum), a region firmly implicated in eCB signaling, would differ between HR and C mice (linetype), between the sexes, between mice housed with vs. without wheels for six days, and would covary with amounts of acute running and/or home-cage activity (during the previous 30 minutes). We used the same 192 mice as in [1] , half males and half females, half HR and half C (all 8 lines), and half either given or not given access to wheels for six days. We assessed the eCBs, 2-AG and AEA, and their analogs docosahexaenoylglycerol (DHG), docosahexaenoylethanolamide (DHEA), and oleoylethanolamide (OEA). Both 2-AG and DHG showed a significant 3-way interaction of linetype, wheel access, and sex. In addition, HR mice had lower concentrations of 2-AG in the small-intestinal epithelium when compared to C mice, which may be functionally related to differences in locomotor activity or to differences in body composition and/or food consumption. Moreover, the amount of home-cage activity during the prior 30 min was a negative predictor of 2-AG and AEA concentrations in jejunum mucosa, particularly in the mice with no wheel access. Lastly, 2-AG, but not AEA, was significantly correlated with 2-AG in plasma in the same mice.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Biology, Utah Valley University, Orem, UT, 84058, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA; Department of Medicine, School of Medicine, University of California, Irvine, 92697, USA
| | - Nicholas V DiPatrizio
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 92521, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, 92521, USA; Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, 92521, USA.
| |
Collapse
|
20
|
Cadney MD, Schwartz NE, McNamara MP, Schmill MP, Castro AA, Hillis DA, Garland T. Cross-fostering selectively bred High Runner mice affects adult body mass but not voluntary exercise. Physiol Behav 2021; 241:113569. [PMID: 34481826 DOI: 10.1016/j.physbeh.2021.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023]
Abstract
While nursing, mammals progress through critical developmental periods for the cardiovascular, musculoskeletal, and central nervous systems. The suckling period in mammals is therefore especially vulnerable to environmental factors that may affect the "developmental programming" of many complex traits. As a result, various aspects of maternal behavior and physiology can influence offspring in ways that have lasting effects into adulthood. Several recent studies of animal models have shown that maternal effects can partially program adult activity behaviors, which has important implications for health and locomotor performance. Here, we used cross-fostering to test for possible maternal effects on adult wheel-running behavior (voluntary exercise), maximal aerobic capacity during forced exercise (VO2max), body mass and composition, and organ masses. Subjects were from a line of mice that has been selectively bred for ∼90 generations for high voluntary wheel-running behavior (High Runner; HR) and a non-selected Control (C) line. Adult HR mice run ∼3-fold the daily distances of C mice and have evolved other differences associated with exercise capacity, including elevated VO2max, reduced body mass and fat mass, and larger hearts. At birth, we fostered offspring to create 4 experimental groups: C pups to other C dams (in-foster), HR pups to other HR dams (in-foster), C pups to HR dams (cross-foster), HR pups to C dams (cross-foster). Thus, all pups were fostered to a different mother. Mice were weaned 3 weeks later, and adult testing began at ∼6 weeks of age. At weaning, pups raised by HR dams were smaller than those raised by C dams for both sexes and as expected, HR pups raised by HR dams weighed less than C pups raised by C dams. As adults, mice raised by HR dams continued to have reduced body masses. As expected, adult HR mice ran approximately 3-fold more than their C counterparts and females ran more than males. However, cross-fostering did not statistically affect any aspect of wheel-running behavior (distance, duration, speed). Similarly, with body mass as a covariate, HR mice had higher VO2max than C mice, and males had higher VO2max than females, but cross-fostering had no effect. With body mass as a covariate, cross-fostering had variable effects on adult organ masses in a sex-specific manner. Overall, our results indicate that development of the adult High Runner phenotype does not require rearing by an HR dam, suggesting that high adult activity in humans may be independent of high maternal activity.
Collapse
Affiliation(s)
- Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Nicole E Schwartz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Alberto A Castro
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - David A Hillis
- Genetics, Genomics, and Bioinformatics Graduate Program, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Quintanilha ACS, Benfato ID, Santos RLO, Antunes HKM, de Oliveira CAM. Effects of acute exercise on spontaneous physical activity in mice at different ages. BMC Sports Sci Med Rehabil 2021; 13:78. [PMID: 34315514 PMCID: PMC8317422 DOI: 10.1186/s13102-021-00311-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/10/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Exercise is often used to obtain a negative energy balance. However, its effects on body weight reduction are usually below expectations. One possible explanation is a reduction in spontaneous physical activity (SPA) after exercise since the increase in energy expenditure caused by the exercise session would be offset by the decrease in SPA and its associated energy cost. Thus, we evaluated the effects of a single bout of moderate exercise at individualized intensity on spontaneous physical activity. The impact of the single bout of exercise was determined in early adulthood and at the transition to middle age. METHODS Male C57bl/6j (n = 10) mice were evaluated at 4 (4 M) and 9 (9 M) months of age. One week after a treadmill Maximal Exercise Capacity Test (MECT), mice performed a 30-min single bout of exercise at 50 % of the maximal speed reached at MECT. An infrared-based system was used to determine locomotor parameters (SPA and average speed of displacement, ASD) before (basal) and immediately after the single bout of exercise for 48 h (D1, 0-24 h; D2, 24-48 h). Food intake was measured simultaneously. Data were analyzed by GEE and statistical significance was set at p < 0.05. RESULTS Basal SPA declined from 4 M to 9 M (p = 0.01), but maximal exercise capacity was similar. At both ages, SPA and ASD decreased significantly (p < 0.0001) on day 1 after exercise. On D2, SPA returned to basal levels but ASD remained lower than basal (p < 0.001). The magnitude (% of basal) of change in SPA and ASD on D1 and D2 was similar at 4 M and 9 M. Food intake did not change at 4 M but decreased on D2 at 9 M. CONCLUSIONS A single bout of moderate exercise decreases physical activity in the first 24 h and average speed of locomotion in the 48 h following exercise. This compensation is similar from early adulthood to the transition to middle age. The decrease in both the amount and intensity (speed) of SPA may compensate for the increase in energy expenditure induced by exercise, helping to understand the below-than-expected effect of exercise interventions to cause a negative energy balance.
Collapse
Affiliation(s)
- Ana Carolina Silvares Quintanilha
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, sala 325, St. Silva Jardim 136 - Vila Mathias, SP, CEP 11015-020, Santos, Brazil
| | - Izabelle Dias Benfato
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, sala 325, St. Silva Jardim 136 - Vila Mathias, SP, CEP 11015-020, Santos, Brazil
| | - Robson Luiz Oliveira Santos
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, sala 325, St. Silva Jardim 136 - Vila Mathias, SP, CEP 11015-020, Santos, Brazil
| | - Hanna Karen Moreira Antunes
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, sala 325, St. Silva Jardim 136 - Vila Mathias, SP, CEP 11015-020, Santos, Brazil
| | - Camila Aparecida Machado de Oliveira
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, sala 325, St. Silva Jardim 136 - Vila Mathias, SP, CEP 11015-020, Santos, Brazil.
| |
Collapse
|
22
|
Cadney MD, Hiramatsu L, Thompson Z, Zhao M, Kay JC, Singleton JM, Albuquerque RLD, Schmill MP, Saltzman W, Garland T. Effects of early-life exposure to Western diet and voluntary exercise on adult activity levels, exercise physiology, and associated traits in selectively bred High Runner mice. Physiol Behav 2021; 234:113389. [PMID: 33741375 PMCID: PMC8106885 DOI: 10.1016/j.physbeh.2021.113389] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/13/2021] [Indexed: 01/08/2023]
Abstract
Exercise behavior is under partial genetic control, but it is also affected by numerous environmental factors, potentially including early-life experiences whose effects persist into adulthood. We studied genetic and early-life environmental effects on wheel-running behavior in a mouse model that includes four replicate high runner (HR) lines selectively bred for increased voluntary wheel running as young adults and four non-selected control (C) lines. In a full factorial design, mice from each line were granted wheel access or not and administered either standard or Western diet (WD) from weaning (3 weeks old) to 6 weeks of age (sexual maturity). In addition to acute effects, after a washout period of 8 weeks (∼6 human years) in which all mice had standard diet and no wheel access, we found both beneficial and detrimental effects of these early-life exposures. During the first week of treatments, WD increased distance run by 29% in C mice and 48% in HR mice (significant Diet × Linetype interaction), but diet effects disappeared by the third week. Across the three weeks of juvenile treatment, WD significantly increased fat mass (with lean mass as a covariate). Tested as adults, early-life exercise increased wheel running of C mice but not HR mice in the first week. Early-life exercise also reduced adult anxiety-like behavior and increased adult fasted blood glucose levels, triceps surae mass, subdermal fat pad mass, and brain mass, but decreased heart ventricle mass. Using fat mass as a covariate, early-life exercise treatment increased adult leptin concentration. In contrast, early-life WD increased adult wheel running of HR mice but not C mice. Early-life WD also increased adult lean mass and adult preference for Western diet in all groups. Surprisingly, early-life treatment had no significant effect on adult body fat or maximal aerobic capacity (VO2max). No previous study has tested for combined or interactive effects of early-life WD and exercise. Our results demonstrate that both factors can have long-lasting effects on adult voluntary exercise and related phenotypes, and that these effects are modulated by genetic background. Overall, the long-lasting effects of early-life exercise were more pervasive than those of WD, suggesting critical opportunities for health intervention in childhood habits, as well as possible threats from modern challenges. These results may be relevant for understanding potential effects of activity reductions and dietary changes associated with the obesity epidemic and COVID-19 pandemic.
Collapse
Affiliation(s)
- Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
McNamara MP, Singleton JM, Cadney MD, Ruegger PM, Borneman J, Garland T. Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. J Exp Biol 2021; 224:jeb239699. [PMID: 33431595 PMCID: PMC7929929 DOI: 10.1242/jeb.239699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Alterations to the gut microbiome caused by changes in diet, consumption of antibiotics, etc., can affect host function. Moreover, perturbation of the microbiome during critical developmental periods potentially has long-lasting impacts on hosts. Using four selectively bred high runner and four non-selected control lines of mice, we examined the effects of early-life diet and exercise manipulations on the adult microbiome by sequencing the hypervariable internal transcribed spacer region of the bacterial gut community. Mice from high runner lines run ∼3-fold more on wheels than do controls, and have several other phenotypic differences (e.g. higher food consumption and body temperature) that could alter the microbiome, either acutely or in terms of coevolution. Males from generation 76 were given wheels and/or a Western diet from weaning until sexual maturity at 6 weeks of age, then housed individually without wheels on standard diet until 14 weeks of age, when fecal samples were taken. Juvenile Western diet reduced bacterial richness and diversity after the 8-week washout period (equivalent to ∼6 human years). We also found interactive effects of genetic line type, juvenile diet and/or juvenile exercise on microbiome composition and diversity. Microbial community structure clustered significantly in relation to both line type and diet. Western diet also reduced the relative abundance of Muribaculum intestinale These results constitute one of the first reports of juvenile diet having long-lasting effects on the adult microbiome after a substantial washout period. Moreover, we found interactive effects of diet with early-life exercise exposure, and a dependence of these effects on genetic background.
Collapse
Affiliation(s)
- Monica P McNamara
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Jennifer M Singleton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 91521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 91521, USA
| |
Collapse
|
24
|
Downs CJ, Brown JL, Wone BWM, Donovan ER, Hayes JP. Effects of Selection for Mass-Independent Maximal Metabolic Rate on Food Consumption. Physiol Biochem Zool 2019; 93:23-36. [PMID: 31671012 DOI: 10.1086/706206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic rates potentially regulate the pace of important physiological and life-history traits. Natural selection has shaped the evolution of metabolic rates and the physiology that supports them, including digestibility and the rate of food consumption. Understanding the relationship between metabolic rates and energy internalization is central to understanding how resources are allocated among competing physiological functions. We investigated how artificial selection on mass-independent basal metabolic rate (BMR) and mass-independent aerobic maximal metabolic rate (MMR) affected food consumption and apparent digestibility in mice. Evolved changes in mass-corrected BMR-but not mass-corrected MMR-corresponded with changes in food consumption. This result is consistent with previous work showing that BMR constitutes a large portion of an animal's daily energy budget and thus that BMR might provide a better indicator of daily food requirements than MMR. In contrast, digestive efficiencies did not differ among selection treatments and did not evolve in these mice. This study provides insights into how evolution of metabolic rates may affect food consumption and overall energy use.
Collapse
|
25
|
Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:1-9. [DOI: 10.1016/j.cbpa.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
|
26
|
Rodent Activity Detector (RAD), an Open Source Device for Measuring Activity in Rodent Home Cages. eNeuro 2019; 6:ENEURO.0160-19.2019. [PMID: 31235468 PMCID: PMC6620392 DOI: 10.1523/eneuro.0160-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 01/10/2023] Open
Abstract
Physical activity is a critical behavioral variable in many research studies and is, therefore, important to quantify. However, existing methods for measuring physical activity have limitations which include high expense, specialized caging or equipment, and high computational overhead. To address these limitations, we present an open-source, cost-effective, device for measuring rodent activity. Our device is battery powered and designed to be placed in vivarium home cages to enable high-throughput, long-term operation with minimal investigator intervention. The primary aim of this study was to assess the feasibility of using passive infrared (PIR) sensors and microcontroller-based dataloggers in a rodent home cages to collect physical activity records. To this end, we developed an open-source PIR based data-logging device called the rodent activity detector (RAD). We publish the design files and code so others can readily build the RAD in their own labs. To demonstrate its utility, we used the RAD to collect physical activity data from 40 individually housed mice for up to 10 weeks. This dataset demonstrates the ability of the RAD to (1) operate in a high-throughput installation, (2) detect high-fat diet (HFD)-induced changes in physical activity, and (3) quantify circadian rhythms in individual animals. We further validated the data output of the RAD with simultaneous video tracking of mice in multiple caging configurations, to determine the features of physical activity that it detects. The RAD is easy to build, economical, and fits in vivarium caging. The scalability of such devices will enable high-throughput studies of physical activity in research studies.
Collapse
|
27
|
Lewton KL, Ritzman T, Copes LE, Garland T, Capellini TD. Exercise‐induced loading increases ilium cortical area in a selectively bred mouse model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:543-551. [DOI: 10.1002/ajpa.23770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Kristi L. Lewton
- Department of Integrative Anatomical Sciences Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biological Sciences Human & Evolutionary Biology Section, University of Southern California, Los Angeles, CA
- Department of Human Evolutionary Biology Harvard University, Cambridge, MA
| | - Terrence Ritzman
- Department of Neuroscience Washington University School of Medicine, St. Louis, MO
- Department of Anthropology Washington University St. Louis, MO
- Human Evolution Research Institute University of Cape Town, Cape Town, South Africa
| | - Lynn E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of Medicine Quinnipiac University, Hamden, CT
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside, Riverside, CA
| | | |
Collapse
|
28
|
Singleton JM, Garland T. Influence of corticosterone on growth, home-cage activity, wheel running, and aerobic capacity in house mice selectively bred for high voluntary wheel-running behavior. Physiol Behav 2019; 198:27-41. [DOI: 10.1016/j.physbeh.2018.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
29
|
Byrne NM, Hills AP. How much exercise should be promoted to raise total daily energy expenditure and improve health? Obes Rev 2018; 19 Suppl 1:14-23. [PMID: 30511509 DOI: 10.1111/obr.12788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
Despite longstanding recognition of the benefits of a physically active lifestyle, there remains ambiguity regarding exactly how much exercise should be promoted to raise total energy expenditure (TEE) and improve health. This review provides a brief summary of the dose-response relationship between physical activity and relative risk of morbidity and mortality; mechanisms through which exercise drives an increase in TEE; the highest reported levels of TEE measured via doubly labelled water; and the potential impact of non-compliance and confounders in moderating the contribution of exercise to increase TEE. Cohort studies provide a compelling argument that 'more is better' regarding the exercise dose for increasing TEE, that increasing TEE is protective for health, and that this is mediated through increased cardiorespiratory fitness. However, growing evidence shows that ever increasing volumes of weekly physical activity may reverse the cost-benefit seen with more modest doses. Animal and human studies show that the elevation in TEE associated with increasing exercise volume is commonly less than expected, due to physiological confounders. Further, there is considerable evidence of behavioural non-compliance to planned exercise in all but the most highly motivated athletes. Therefore, inbuilt defence mechanisms may safeguard against TEE being elevated to maximum levels.
Collapse
Affiliation(s)
- N M Byrne
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - A P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
30
|
Schwartz NL, Patel BA, Garland T, Horner AM. Effects of selective breeding for high voluntary wheel-running behavior on femoral nutrient canal size and abundance in house mice. J Anat 2018; 233:193-203. [PMID: 29851089 DOI: 10.1111/joa.12830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal-metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50-70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non-invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel-running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non-selected control (C) lines in both locomotor and metabolic activity, with HR mice having increased voluntary wheel-running behavior and maximal aerobic capacity (VO2 max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT-scanned and three-dimensional virtual reconstructions of nutrient canals were measured for minimum cross-sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e. HR vs. C lines). Canals adopted non-linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from both HR and C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice from HR lines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross-section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies.
Collapse
Affiliation(s)
- Nicolas L Schwartz
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Biren A Patel
- Department of Integrative Anatomical Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Angela M Horner
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA
| |
Collapse
|
31
|
Janik D, Frey J. Changes in phase-angle under light-dark cycles influenced by nonphotic stimulation. Chronobiol Int 2018; 35:1236-1247. [PMID: 29842813 DOI: 10.1080/07420528.2018.1469508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Most work looking at nonphotic effects on circadian rhythms is conducted when animals are held under freerunning conditions, usually constant darkness. However, for nonphotic effects to be functionally significant, they should be demonstrable under conditions in which most animals live, i.e., a 24-hr light-dark cycle (LD). Syrian hamsters held in LD 6:18 were administered nonphotic stimulation in the form of a 3-hr confinement to a novel wheel starting about 6 hr before the start of their normal nightly activity bout. This resulted in a 2.5-hr advance of their activity rhythm on the next day that gradually receded to about 1.5 hr over the next 10 days. When hamsters held in LD 6:18 were given five novel wheel confinements over 13 days their nightly activity onset advanced 3 hr and remained at that phase for at least 2 weeks. Home cage wheel deprivation experiments indicated that high levels of home cage activity are necessary to maintain the advanced phase. These results show that nonphotic stimulation can have large, long-lasting effects on daily rhythms in LD and suggest a possible mechanism whereby nocturnal rodents might achieve phase flexibility in response to seasonal changes.
Collapse
Affiliation(s)
- Daniel Janik
- a Biology Department , University of Wisconsin-Eau Claire , Eau Claire , WI , USA
| | - Justin Frey
- a Biology Department , University of Wisconsin-Eau Claire , Eau Claire , WI , USA
| |
Collapse
|
32
|
Kay JC, Ramirez J, Contreras E, Garland T. Reduced non-bicarbonate skeletal muscle buffering capacity in mice with the mini-muscle phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.172478. [PMID: 29650754 DOI: 10.1242/jeb.172478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022]
Abstract
Muscle pH decreases during exercise, which may impair function. Endurance training typically reduces muscle buffering capacity as a result of changes in fiber-type composition, but existing comparisons of species that vary in activity level are ambiguous. We hypothesized that high-runner (HR) lines of mice from an experiment that breeds mice for voluntary wheel running would have altered muscle buffering capacity as compared with their non-selected control counterparts. We also expected that 6 days of wheel access, as used in the selection protocol, would reduce buffering capacity, especially for HR mice. Finally, we expected a subset of HR mice with the 'mini-muscle' phenotype to have relatively low buffering capacity as a result of fewer type IIb fibers. We tested non-bicarbonate buffering capacity of thigh muscles. Only HR mice expressing the mini-muscle phenotype had significantly reduced buffering capacity, females had lower buffering capacity than males, and wheel access had no significant effect.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jocelyn Ramirez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Erick Contreras
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
33
|
Lark DS, Kwan JR, McClatchey PM, James MN, James FD, Lighton JRB, Lantier L, Wasserman DH. Reduced Nonexercise Activity Attenuates Negative Energy Balance in Mice Engaged in Voluntary Exercise. Diabetes 2018; 67:831-840. [PMID: 29511026 PMCID: PMC5909996 DOI: 10.2337/db17-1293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 01/09/2023]
Abstract
Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered energy balance in chow-fed C57BL/6J mice (n = 12). Energy expenditure (EE), energy intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative energy balance but also decreased OWA, which was predicted to mitigate the expected change in energy balance by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity.
Collapse
Affiliation(s)
- Daniel S Lark
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Jamie R Kwan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - P Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Freyja D James
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN
| | | | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN
| |
Collapse
|
34
|
Poffé C, Dalle S, Kainz H, Berardi E, Hespel P. A noninterfering system to measure in-cage spontaneous physical activity in mice. J Appl Physiol (1985) 2018; 125:263-270. [PMID: 29698110 DOI: 10.1152/japplphysiol.00058.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Due to lack of low-cost and convenient measurement procedures, uncontrolled changes in spontaneous physical activity (SPA) level often are insufficiently considered as a confounding factor in rodent studies. Nonetheless, alterations in SPA can significantly impact on a wide range of physiological measurements. Therefore, we developed an accurate, low-cost video tracking procedure to allow routine assessment of SPA in the home cage of experimental animals (i.e., mice) and in the absence of any distress that might cause alterations in SPA. SPA parameters acquired (movement distance, movement time, and movement speed) with the novel tracking system were identical to those simultaneously obtained with a high-end and well-validated movement-tracking device (mean error = 0.15 ± 0.07%, r = 0.99, P < 0.001). To further validate the setup, we also demonstrated caffeine-induced stimulation of SPA (195% more activity compared with vehicle, P < 0.01), we adequately reproduced typical SPA fluctuations inherent to day/night cycles (146 and 702% more active during nocturnal compared with diurnal cycle for Balb/c and C57BL/6J mice, respectively, P < 0.001), and we confirmed previously documented SPA differences between animal strains (24% less activity in C57BL/6J mice compared with Balb/c mice, P < 0.05). Taken together, we provide data to prove that this novel low-cost methodology can be conveniently used in any mouse experiment where uncontrolled changes in SPA due to experimental interventions might confound data interpretation. By analogy, the system can be used to document a beneficial impact of therapeutic interventions on SPA in any disease mouse model. NEW & NOTEWORTHY We developed a low-cost procedure to routinely measure SPA in mice. The procedure maintains normal SPA because the animals continue to stay in their home cage in the absence of any external manipulation by the investigators and under habitual dark/light ambient conditions. This novel methodology can be conveniently used in any mouse experiment to quantify experimentally induced alterations in SPA or to assess natural variations in SPA that might confound data interpretation.
Collapse
Affiliation(s)
- Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven , Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven , Belgium
| | - Hans Kainz
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven , Belgium
| | - Emanuele Berardi
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven , Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven , Belgium
| |
Collapse
|
35
|
Hiramatsu L, Garland T. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise. Physiol Behav 2018; 194:1-8. [PMID: 29680707 DOI: 10.1016/j.physbeh.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
36
|
Castro AA, Garland T. Evolution of hindlimb bone dimensions and muscle masses in house mice selectively bred for high voluntary wheel-running behavior. J Morphol 2018. [DOI: 10.1002/jmor.20809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alberto A. Castro
- Department of Evolution, Ecology, and Organismal Biology; University of California, Riverside; Riverside California 92521
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology; University of California, Riverside; Riverside California 92521
| |
Collapse
|
37
|
Central and peripheral effects of physical exercise without weight reduction in obese and lean mice. Biosci Rep 2018; 38:BSR20171033. [PMID: 29371411 PMCID: PMC5835714 DOI: 10.1042/bsr20171033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022] Open
Abstract
To investigate the central (hypothalamic) and peripheral effects of exercise without body weight change in diet-induced obesity (DIO). Twelve-week-old male C57Bl/6 mice received a control (C) or a high-fat diet (H). Half of them had free access to running wheels for 5 days/week for 10 weeks (CE) and HE, respectively). Hypothalamic expression of genes related to energy homeostasis, and leptin (Stat3 and p-Stat3) and insulin (Akt and p-Akt) signaling were evaluated. Glucose and leptin tolerance, peripheral insulin sensitivity, and plasma insulin, leptin and adiponectin were determined. Perigonadal and retroperitoneal fat depots were increased by diet but reduced by exercise despite lack of effect of exercise on body weight. Blood glucose during intraperitoneal glucose tolerance test (ipGTT) was higher and glucose decay during intraperitoneal insulin tolerance test (ipITT) was lower in H and HE compared with C and CE. Exercise increased liver p-Akt expression and reduced fast glycemia. High-fat diet increased plasma insulin and leptin. Exercise had no effect on insulin but decreased leptin and increased adiponectin. Leptin inhibited food intake in all groups. Hypothalamic total and p-Stat3 and Akt were similar amongst the groups despite higher plasma levels of leptin and insulin in H and HE mice. High-fat diet modulated gene expression favoring a positive energy balance. Exercise only marginally changed the gene expression. Exercise induced positive changes (decreased fast glycemia and fat depots; increased liver insulin signaling and adiponectin concentration) without weight loss. Thus, despite reducing body weight could bring additional benefits, the effects of exercise must not be overlooked when weight reduction is not achieved.
Collapse
|
38
|
Copes LE, Schutz H, Dlugsoz EM, Judex S, Garland T. Locomotor activity, growth hormones, and systemic robusticity: An investigation of cranial vault thickness in mouse lines bred for high endurance running. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:442-458. [DOI: 10.1002/ajpa.23446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. E. Copes
- Department of Medical Sciences, Frank H. Netter MD School of MedicineQuinnipiac UniversityHamden Connecticut06518
| | - H. Schutz
- Department of BiologyPacific Lutheran UniversityTacoma Washington, DC98447
| | - E. M. Dlugsoz
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| | - S. Judex
- Department of Biomedical EngineeringStony Brook UniversityStony Brook New York11794
| | - T. Garland
- Department of BiologyUniversity of CaliforniaRiverside, Riverside California92521
| |
Collapse
|
39
|
Zhao M, Garland T, Chappell MA, Andrew JR, Harris BN, Saltzman W. Effects of a physical and energetic challenge on male California mice ( Peromyscus californicus): modulation by reproductive condition. J Exp Biol 2018; 221:jeb168559. [PMID: 29170256 PMCID: PMC5818025 DOI: 10.1242/jeb.168559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Reproduction strongly influences metabolism, morphology and behavior in female mammals. In species in which males provide parental care, reproduction might have similar effects on fathers. We examined effects of an environmental challenge on metabolically important physiological, morphological and behavioral measures, and determined whether these effects differed between reproductive and non-reproductive males in the biparental California mouse (Peromyscus californicus). Males were paired with an ovary-intact female, an ovariectomized female treated with estrogen and progesterone to induce estrus, or an untreated ovariectomized female. Within each group, half of the animals were housed under standard laboratory conditions and half in cages requiring them to climb wire towers to obtain food and water; these latter animals were also fasted for 24 h every third day. We predicted that few differences would be observed between fathers and non-reproductive males under standard conditions, but that fathers would be in poorer condition than non-reproductive males under challenging conditions. Body and fat mass showed a housing condition×reproductive group interaction: the challenge condition increased body and fat mass in both groups of non-reproductive males, but breeding males were unaffected. Males housed under the physical and energetic challenge had higher blood lipid content, lower maximal aerobic capacity and related traits (hematocrit and relative triceps surae mass), increased pain sensitivity and increased number of fecal boli excreted during tail-suspension tests (a measure of anxiety), compared with controls. Thus, our physical and energetic challenge paradigm altered metabolism, morphology and behavior, but these effects were largely unaffected by reproductive condition.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Mark A Chappell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jacob R Andrew
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Spontaneous physical activity (SPA) is a physical activity not motivated by a rewarding goal, such as that associated with food-seeking or wheel-running behavior. SPA is often thought of as only "fidgeting," but that is a mischaracterization, since fidgety behavior can be linked to stereotypies in neurodegenerative disease and other movement disorders. Instead, SPA should be thought of as all physical activity behavior that emanates from an unconscious drive for movement. RECENT FINDINGS An example of this may be restless behavior, which can include fidgeting and gesticulating, frequent sit-to-stand movement, and more time spent standing and moving. All physical activity burns calories, and as such, SPA could be manipulated as a means to burn calories, and defend against weight gain and reduce excess adiposity. In this review, we discuss human and animal literature on the use of SPA in reducing weight gain, the neuromodulators that could be targeted to this end, and future directions in this field.
Collapse
Affiliation(s)
- Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
- GRECC, Minneapolis VA Health Care System, GRECC, One Veterans Drive, Minneapolis, MN, 55417, USA.
| | | | - Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th street, Shantz 332, Tucson, AZ, 85721, USA
| | - Charles J Billington
- Department of Medicine, University of Minnesota, 420 Delaware St SE, Minneapolis, MN, 5545, USA
- Minneapolis VA Health Care System, One Veterans Drive, Minneapolis, MN, 55417, USA
| |
Collapse
|
41
|
Mitchell SE, Delville C, Konstantopedos P, Derous D, Green CL, Wang Y, Han JDJ, Promislow DEL, Douglas A, Chen L, Lusseau D, Speakman JR. The effects of graded levels of calorie restriction: V. Impact of short term calorie and protein restriction on physical activity in the C57BL/6 mouse. Oncotarget 2017; 7:19147-70. [PMID: 27007156 PMCID: PMC4991372 DOI: 10.18632/oncotarget.8158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/28/2016] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) delays the onset of age-related disease and extends lifespan in a number of species. When faced with reduced energy supply animals need to lower energy demands, which may be achieved in part by reducing physical activity (PA). We monitored changes in PA using implanted transmitters in male C57BL/6 mice in response to graded levels of CR (10 to 40%) or matched levels of graded protein restriction (PR) for 3 months. Mice were fed at lights out and ad libitum controls were limited to dark-phase feeding (12AL) or 24hr/day. Total daily PA declined in a non-linear manner over the first 30 days of CR or PR, remaining stable thereafter. Total daily PA was not related to the level of CR or PR. Total daily PA over the last 20 days of restriction was related to circulating leptin, insulin, tumor necrosis factor-α (TNF-α) and insulin-like growth factor (IGF)-1 levels, measured after 3 months. Mice under restriction showed a high level of activity in the 2hrs before feeding (food anticipatory activity: FAA). FAA followed a complex pattern, peaking around day 20, falling on ∼day 37 then increasing again. FAA was also positively related to the level of restriction and inversely to leptin, insulin, TNF-α and IGF-1. Non-FAA, in contrast, declined over the period of restriction, generally more so in mice under greater restriction, thereby offsetting to some extent the increase in FAA. Mice under PR displayed no changes in PA over time or in comparison to 12AL, and showed no increase in FAA.
Collapse
Affiliation(s)
- Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Camille Delville
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Penelope Konstantopedos
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington, Seattle, Washington, USA
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
42
|
Rosenfeld CS. Sex-dependent differences in voluntary physical activity. J Neurosci Res 2017; 95:279-290. [PMID: 27870424 DOI: 10.1002/jnr.23896] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Numbers of overweight and obese individuals are increasing in the United States and globally, and, correspondingly, the associated health care costs are rising dramatically. More than one-third of children are currently considered obese with a predisposition to type 2 diabetes, and it is likely that their metabolic conditions will worsen with age. Physical inactivity has also risen to be the leading cause of many chronic, noncommunicable diseases (NCD). Children are more physically inactive now than they were in past decades, which may be due to intrinsic and extrinsic factors. In rodents, the amount of time engaged in spontaneous activity within the home cage is a strong predictor of later adiposity and weight gain. Thus, it is important to understand primary motivators stimulating physical activity (PA). There are normal sex differences in PA levels in rodents and humans. The perinatal environment can induce sex-dependent differences in PA disturbances. This Review considers the current evidence for sex differences in PA in rodents and humans. The rodent studies showing that early exposure to environmental chemicals can shape later adult PA responses are discussed. Next, whether there are different motivators stimulating exercise in male vs. female humans are examined. Finally, the brain regions, genes, and pathways that modulate PA in rodents, and possibly by translation in humans, are described. A better understanding of why each sex remains physically active through the life span could open new avenues for preventing and treating obesity in children and adults. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Bond Life Sciences Center University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,Genetics Area Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
43
|
Rowland NE, Cervantez MR, Robertson KL. Temporal relationships between food acquisition and voluntary exercise in mice. Behav Processes 2017; 145:37-43. [PMID: 29017874 DOI: 10.1016/j.beproc.2017.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 01/13/2023]
Abstract
Patterns of operant food acquisition in a closed economy and bouts of either voluntary wheel running (WR) or spontaneous locomotor activity in a standard condition (SC) with no wheel were examined in young adult male and female C57BL/6 mice across a range of nose poke prices (FUP) per food pellet. Both sexes showed vigorous WR or locomotor activity. At each FUP, WR groups had higher food intake than SC groups. Despite substantially higher mean body weight of males compared with females, intakes and activity did not differ by sex in the SC groups and males lost weight more rapidly as FUP increased. In contrast, WR males ran ∼33% further per day than females, increased their food intake (above that of SC counterparts) more than females, and lost less body weight than SC males. By parsing the night in four 3h epochs it was found that food intake declined progressively through the night in both WR and SC mice and that the hyperphagia of WR relative to SC groups was most evident early in the night, coincident with highest activity. No large or systematic sex differences were revealed in these temporal analyses. Analysis of data at 60s resolution showed that pellet acquisition occurred in many small or short bouts, the timing of which was either intercalated or concurrent with either locomotor activity or WR. The results show that increased eating due to WR occurs concurrently with maximum running, and with no evidence of delayed compensation.
Collapse
Affiliation(s)
- Neil E Rowland
- University of Florida, Department of Psychology, Gainesville, United States.
| | | | | |
Collapse
|
44
|
Yang T, Xu WJ, York H, Liang NC. Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex. Physiol Behav 2017; 176:149-158. [DOI: 10.1016/j.physbeh.2017.02.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
|
45
|
Hiramatsu L, Kay JC, Thompson Z, Singleton JM, Claghorn GC, Albuquerque RL, Ho B, Ho B, Sanchez G, Garland T. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice. Physiol Behav 2017. [PMID: 28625550 DOI: 10.1016/j.physbeh.2017.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background.
Collapse
Affiliation(s)
- Layla Hiramatsu
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Jarren C Kay
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | | | - Gerald C Claghorn
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | - Brittany Ho
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Brett Ho
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Gabriela Sanchez
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
46
|
Sadowska J, Gębczyński AK, Konarzewski M. Selection for high aerobic capacity has no protective effect against obesity in laboratory mice. Physiol Behav 2017; 175:130-136. [PMID: 28363839 DOI: 10.1016/j.physbeh.2017.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Aerobic capacity (VO2max measured during intensive physical exercise) both trained and intrinsic (i.e. genetically determined) has recently been deemed a good predictor of cardiometabolic risks. However, the underlying mechanisms linking VO2max and health risk factors are not entirely clear, as it seems that not VO2max per se, but rather some correlated traits, like spontaneous physical activity (SPA) are responsible for sustaining the lean phenotype. Here we investigated the link between genetically determined aerobic capacity, SPA and resistance to diet-induced health risks using replicated lines of mice selected for high aerobic capacity during swimming in mid-cold water (25°C) and Randomly Bred control mice. After four months of consumption of the western type HFat and HCarb diets and no forced nor voluntary training, we found no evidence of protective effects of intrinsic high VO2max. The Selected mice displayed similar levels of blood glucose, cholesterol, triglycerides and body fat as the Random Bred control animals. Most notably we found no correlation between VO2max and SPA levels. Our results therefore call into question the ubiquity of VO2max as a predictor of metabolic health and leanness, at least in animal models.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Andrzej K Gębczyński
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Marek Konarzewski
- Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| |
Collapse
|
47
|
Kanda LL, Abdulhay A, Erickson C. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus). Behav Processes 2017; 138:82-90. [PMID: 28249731 DOI: 10.1016/j.beproc.2017.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
Abstract
Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels.
Collapse
Affiliation(s)
- L Leann Kanda
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA.
| | - Amir Abdulhay
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Caitlin Erickson
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| |
Collapse
|
48
|
Sadowska J, Gębczyński AK, Konarzewski M. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets. PLoS One 2017; 12:e0172892. [PMID: 28235091 PMCID: PMC5325576 DOI: 10.1371/journal.pone.0172892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.
Collapse
Affiliation(s)
- Julita Sadowska
- Institute of Biology, University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
49
|
O'Neal TJ, Friend DM, Guo J, Hall KD, Kravitz AV. Increases in Physical Activity Result in Diminishing Increments in Daily Energy Expenditure in Mice. Curr Biol 2017; 27:423-430. [PMID: 28111149 DOI: 10.1016/j.cub.2016.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023]
Abstract
Exercise is a common component of weight loss strategies, yet exercise programs are associated with surprisingly small changes in body weight [1-4]. This may be due in part to compensatory adaptations, in which calories expended during exercise are counteracted by decreases in other aspects of energy expenditure [1, 5-10]. Here we examined the relationship between a rodent model of voluntary exercise- wheel running- and total daily energy expenditure. Use of a running wheel for 3 to 7 days increased daily energy expenditure, resulting in a caloric deficit of ∼1 kcal/day; however, total daily energy expenditure remained stable after the first week of wheel access, despite further increases in wheel use. We hypothesized that compensatory mechanisms accounted for the lack of increase in daily energy expenditure after the first week. Supporting this idea, we observed a decrease in off-wheel ambulation when mice were using the wheels, indicating behavioral compensation. Finally, we asked whether individual variation in wheel use within a group of mice would be associated with different levels of daily energy expenditure. Despite a large variation in wheel running, we did not observe a significant relationship between the amount of daily wheel running and total daily energy expenditure or energy intake across mice. Together, our experiments support a model in which the transition from sedentary to light activity is associated with an increase in daily energy expenditure, but further increases in physical activity produce diminishingly small increments in daily energy expenditure.
Collapse
Affiliation(s)
- Timothy J O'Neal
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Danielle M Friend
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Juen Guo
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexxai V Kravitz
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
50
|
Yap KN, Kim OR, Harris KC, Williams TD. Physiological effects of increased foraging effort in a small passerine. J Exp Biol 2017; 220:4282-4291. [DOI: 10.1242/jeb.160812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/21/2017] [Indexed: 01/04/2023]
Abstract
Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provision offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches (Taeniopygia guttata) using the technique described by Koetsier and Verhulst (2011). Birds in the “high foraging effort” (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically-expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10min whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour we documented few short- or long-term effects of “training” (3 days and 90 days of “training” respectively) and some of these effects were sex-specific. There were no effects of treatment on BMR, hematocrit, hemoglobin, or plasma glycerol, triglyceride, glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared to controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total antioxidant capacity (OXY), birds in the HF treatment had higher oxidative stress.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Oh Run Kim
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Karilyn C. Harris
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|