1
|
Tu L, Fang X, Yang Y, Yu M, Liu H, Liu H, Yin N, Bean JC, Conde KM, Wang M, Li Y, Ginnard OZ, Liu Q, Shi Y, Han J, Zhu Y, Fukuda M, Tong Q, Arenkiel B, Xue M, He Y, Wang C, Xu Y. Vestibular neurons link motion sickness, behavioural thermoregulation and metabolic balance in mice. Nat Metab 2025; 7:742-758. [PMID: 40119169 DOI: 10.1038/s42255-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2025] [Indexed: 03/24/2025]
Abstract
Motion sickness is associated with thermoregulation and metabolic control, but the underlying neural circuitry remains largely unknown. Here we show that neurons in the medial vestibular nuclei parvocellular part (MVePC) mediate the hypothermic responses induced by motion. Reactivation of motion-sensitive MVePC neurons recapitulates motion sickness in mice. We show that motion-activated neurons in the MVePC are glutamatergic (MVePCGlu), and that optogenetic stimulation of MVePCGlu neurons mimics motion-induced hypothermia by signalling to the lateral parabrachial nucleus (LPBN). Acute inhibition of MVePC-LPBN circuitry abrogates motion-induced hypothermia. Finally, we show that chronic inhibition of MVePCGlu neurons prevents diet-induced obesity and improves glucose homeostasis without suppressing food intake. Overall, these findings highlight MVePCGlu neurons as a potential target for motion-sickness treatment and obesity control.
Collapse
Affiliation(s)
- Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Xing Fang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuhan Shi
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mingshan Xue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Vestibular nucleus mediation of motion sickness has implications for obesity control. Nat Metab 2025; 7:643-644. [PMID: 40119170 DOI: 10.1038/s42255-025-01238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
3
|
Lorincz D, Drury HR, Lim R, Brichta AM. Immunohistochemical Identification of Sensory Neuropeptides Calcitonin Gene-Related Peptide, Substance P, and Pituitary Adenylate Cyclase-Activating Polypeptide in Efferent Vestibular Nucleus Neurons. Neuroendocrinology 2024; 115:269-282. [PMID: 39662068 PMCID: PMC11991750 DOI: 10.1159/000542984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION The efferent vestibular system (EVS) originates in brainstem efferent vestibular nuclei (EVN) and modifies afferent vestibular signals at their source, in peripheral vestibular organs. Recent evidence suggests that EVS is also involved in the development of motion sickness symptoms, including vertigo and nausea, but the underlying mechanism is unknown. One possible link between EVN and motion sickness symptoms is through the neuropeptide calcitonin gene-related peptide (CGRP). CGRP often co-exists with substance P and pituitary adenylate cyclase-activating polypeptide (PACAP), two neuropeptides with similar vasodilatory effects. Collectively, these sensory neuropeptides have been associated with vestibular migraine pathophysiology and motion sickness. While CGRP and the fast EVS neurotransmitter, acetylcholine (ACh), have previously been identified in EVN neurons and their peripheral terminals, the presence of substance P and PACAP in the EVN has not yet been described. METHODS We used fluorescent immunohistochemistry combined with confocal microscopy to examine the distribution of these three neuropeptides in the mouse EVN. In transgenic choline acetyltransferase (ChAT)-gCaMP6f mice, EVN neurons were positively identified using the fluorescent expression of gCaMP6f. In wild-type C57/BL6 mice, EVN neurons were confirmed using ChAT immunolabelling. RESULTS Consistent with previous studies, CGRP was labelled in a subset of cholinergic EVN neurons. Additionally, we also show evidence for substance P and PACAP expression in EVN of transgenic and wild-type mice. CONCLUSION The presence of CGRP, substance P, and PACAP in EVN neurons suggests a complex peptidergic modulation of cholinergic signalling, whose release into local blood vessels may contribute to motion sickness symptoms.
Collapse
Affiliation(s)
- David Lorincz
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Children’s Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- UNSW Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Hannah Rose Drury
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Alan Martin Brichta
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Li Y, Pan L, Liu M, Shao Z, Xue M, Liao J, Zhao H, Wu M, Yu S, Wu X. Quantitative study on objective indicators for assessing motion sickness susceptibility based on Vestibulo-Ocular Reflex experiments. Sci Rep 2024; 14:28782. [PMID: 39567728 PMCID: PMC11579332 DOI: 10.1038/s41598-024-80233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024] Open
Abstract
Motion sickness (MS) is a common physiological response that often occurs when individuals are exposed to environments with repeated acceleration stimuli. MS results from a mismatch between the vestibular system and visual and proprioceptive inputs. As a crucial organ for sensing acceleration stimuli, the vestibular system is closely related to the onset of MS. However, the complex pathogenesis of MS has led to its diagnosis primarily relying on subjective questionnaires, with a lack of objective indicators for evaluation. To identify objective indicators for evaluating MS, we conducted rotating chair stop experiments based on the principle of vestibulo-ocular reflex with 65 volunteers, obtaining their nystagmus slow-phase velocity and related time constants. Additionally, we conducted detailed MS questionnaires with these volunteers to assess their MS susceptibility. Through correlation analysis, we explored whether the nystagmus slow-phase velocity and related time constants significantly correlated with the MS questionnaire scores. The results showed significant positive correlations between the maximal nystagmus slow-phase velocity, cupula time constant, velocity storage time constant, and the nystagmus duration with the MS questionnaire scores in the 65 volunteers. These results indicated that these nystagmus parameters could serve as objective indicators for assessing MS susceptibility. Using K-Means clustering analysis, we classified MS susceptibility into categories I, II, III, and IV, and conducted K-Means clustering analysis on the corresponding nystagmus slow-phase velocity, cupula time constant, velocity storage time constant, and nystagmus duration. The magnitude and range of these indicators at different levels was quantified, offering objective and quantitative indicators for the clinical diagnosis of MS.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liwen Pan
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Muchen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhimeng Shao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Menghan Xue
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiawei Liao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huanyu Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Mingnan Wu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shen Yu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China.
| | - Xiang Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
5
|
Rahman SM, Buchholz DW, Imbiakha B, Jager MC, Leach J, Osborn RM, Birmingham AO, Dewhurst S, Aguilar HC, Luebke AE. Migraine inhibitor olcegepant reduces weight loss and IL-6 release in SARS-CoV-2-infected older mice with neurological signs. J Virol 2024; 98:e0006624. [PMID: 38814068 PMCID: PMC11265435 DOI: 10.1128/jvi.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
COVID-19 can cause neurological symptoms such as fever, dizziness, and nausea. However, such neurological symptoms of SARS-CoV-2 infection have been hardly assessed in mouse models. In this study, we infected two commonly used wild-type mouse lines (C57BL/6J and 129/SvEv) and a 129S calcitonin gene-related peptide (αCGRP) null-line with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including fever, dizziness, and nausea. We then evaluated whether a CGRP receptor antagonist, olcegepant, a "gepant" antagonist used in migraine treatment, could mitigate acute neuroinflammatory and neurological signs of SARS-COV-2 infection. First, we determined whether CGRP receptor antagonism provided protection from permanent weight loss in older (>18 m) C57BL/6J and 129/SvEv mice. We also observed acute fever, dizziness, and nausea in all older mice, regardless of treatment. In both wild-type mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP receptor signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic or endemic coronavirus outbreaks.IMPORTANCECoronavirus disease (COVID-19) can cause neurological symptoms such as fever, headache, dizziness, and nausea. However, such neurological symptoms of severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infection have been hardly assessed in mouse models. In this study, we first infected two commonly used wild-type mouse lines (C57BL/6J and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological symptoms including fever and nausea. Furthermore, we showed that the migraine treatment drug olcegepant could reduce long-term weight loss and IL-6 release associated with SARS-CoV-2 infection. These findings suggest that a migraine blocker can be protective for at least some acute SARS-CoV-2 infection signs and raise the possibility that it may also impact long-term outcomes.
Collapse
Affiliation(s)
- Shafaqat M. Rahman
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mason C. Jager
- Department of Population Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin Leach
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ann O. Birmingham
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephen Dewhurst
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anne E. Luebke
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Rahman SM, Buchholz DW, Imbiakha B, Jaeger MC, Leach J, Osborn RM, Birmingham AO, Dewhurst S, Aguilar HC, Luebke AE. Migraine inhibitor olcegepant reduces weight loss and IL-6 release in SARS-CoV-2 infected older mice with neurological signs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563669. [PMID: 37965203 PMCID: PMC10634772 DOI: 10.1101/2023.10.23.563669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
COVID-19 can result in neurological symptoms such as fever, headache, dizziness, and nausea. However, neurological signs of SARS-CoV-2 infection have been hardly assessed in mouse models. Here, we infected two commonly used wildtype mice lines (C57BL/6 and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including motion-related dizziness. We then evaluated whether the Calcitonin Gene-Related Peptide (CGRP) receptor antagonist, olcegepant, used in migraine treatment could mitigate acute neuroinflammatory and neurological responses to SARS-COV-2 infection. We infected wildtype C57BL/6J and 129/SvEv mice, and a 129 αCGRP-null mouse line with a mouse-adapted SARS-CoV-2 virus, and evaluated the effect of CGRP receptor antagonism on the outcome of that infection. First, we determined that CGRP receptor antagonism provided protection from permanent weight loss in older (>12 m) C57BL/6J and 129 SvEv mice. We also observed acute fever and motion-induced dizziness in all older mice, regardless of treatment. However, in both wildtype mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels by half, with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic and/or endemic coronaviruses.
Collapse
|
7
|
Rahman SM, Luebke AE. Calcitonin gene-related peptide receptor antagonism reduces motion sickness indicators in mouse migraine models. Cephalalgia 2024; 44:3331024231223971. [PMID: 38215227 DOI: 10.1177/03331024231223971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND Migraine and vestibular migraine are disorders associated with a heightened motion sensitivity that provoke symptoms of motion-induced nausea and motion sickness. VM affects ∼3% of adults in the USA and affects three-fold more women than men. Triptans (selective serotonin receptor agonists) relieve migraine pain but lack efficacy for vertigo. Murine models of photophobia and allodynia have used injections of calcitonin gene-related peptide (CGRP) or other migraine triggers, such as sodium nitroprusside (SNP), to induce migraine sensitivities in mice to touch and light. Yet, there is limited research on whether these triggers affect motion-induced nausea in mice, and whether migraine blockers can reduce these migraine symptoms. We hypothesized that systemic delivery of CGRP or SNP will increase motion sickness susceptibility and motion-induced nausea in mouse models, and that migraine blockers can block these changes induced by systemically delivered CGRP or SNP. METHODS We investigated two measures of motion sickness assessment [motion sickness index (MSI) scoring and motion-induced thermoregulation] after intraperitoneal injections of either CGRP or SNP in C57BL/6J mice. The drugs olcegepant, sumatriptan and rizatriptan were used to assess the efficacy of migraine blockers. RESULTS MSI measures were confounded by CGRP's effect on gastric distress. However, analysis of tail vasodilatations as a surrogate for motion-induced nausea was robust for both migraine triggers. Only olcegepant treatment rescued tail vasodilatations. CONCLUSIONS These preclinical findings support the use of small molecule CGRP receptor antagonists for the treatment of motion-induced nausea of migraine, and show that triptan therapeutics are ineffective against motion-induced nausea of migraine.Trial Registration: Not Applicable.
Collapse
Affiliation(s)
- Shafaqat M Rahman
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
| | - Anne E Luebke
- University of Rochester, Department of Biomedical Engineering, Rochester, NY, USA
- University of Rochester Medical Center, Department of Neuroscience, Del Monte Institute of Neuroscience, Rochester, NY, USA
| |
Collapse
|
8
|
Chang T, Zhang M, Zhu J, Wang H, Li CC, Wu K, Zhang ZR, Jiang YH, Wang F, Wang HT, Wang XC, Liu Y. Simulated vestibular spatial disorientation mouse model under coupled rotation revealing potential involvement of Slc17a6. iScience 2023; 26:108498. [PMID: 38162025 PMCID: PMC10757040 DOI: 10.1016/j.isci.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spatial disorientation (SD) is the main contributor to flight safety risks, but research progress in animals has been limited, impeding a deeper understanding of the underlying mechanisms of SD. This study proposed a method for constructing and evaluating a vestibular SD mouse model, which adopted coupled rotational stimulation with visual occlusion. Physiological parameters were measured alongside behavioral indices to assess the model, and neuronal changes were observed through immunofluorescent staining. The evaluation of the model involved observing decreased colonic temperature and increased arterial blood pressure in mice exposed to SD, along with notable impairments in motor and cognitive function. Our investigation unveiled that vestibular SD stimulation elicited neuronal activation in spatially associated cerebral areas, such as the hippocampus. Furthermore, transcriptomic sequencing and bioinformatics analysis revealed the potential involvement of Slc17a6 in the mechanism of SD. These findings lay a foundation for further investigation into the molecular mechanisms underlying SD.
Collapse
Affiliation(s)
- Tong Chang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Jing Zhu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Han Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Cong-cong Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Kan Wu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhuo-ru Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Yi-hong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Fei Wang
- School of Basic Medicine, Air Force Medical University, Xi’an 710032, China
| | - Hao-tian Wang
- School of Basic Medicine, Air Force Medical University, Xi’an 710032, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
- Department of Aviation Medicine, The First Affiliated Hospital, Air Force Medical University, Xi’an 710032, China
| | - Yong Liu
- School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
9
|
Sinha AK, Lee C, Holt JC. Elucidating the role of muscarinic acetylcholine receptor (mAChR) signaling in efferent mediated responses of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549902. [PMID: 37577578 PMCID: PMC10418111 DOI: 10.1101/2023.07.31.549902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The peripheral vestibular system detects head position and movement through activation of vestibular hair cells (HCs) in vestibular end organs. HCs transmit this information to the CNS by way of primary vestibular afferent neurons. The CNS, in turn, modulates HCs and afferents via the efferent vestibular system (EVS) through activation of cholinergic signaling mechanisms. In mice, we previously demonstrated that activation of muscarinic acetylcholine receptors (mAChRs), during EVS stimulation, gives rise to a slow excitation that takes seconds to peak and tens of seconds to decay back to baseline. This slow excitation is mimicked by muscarine and ablated by the non-selective mAChR blockers scopolamine, atropine, and glycopyrrolate. While five distinct mAChRs (M1-M5) exist, the subtype(s) driving EVS-mediated slow excitation remain unidentified and details on how these mAChRs alter vestibular function is not well understood. The objective of this study is to characterize which mAChR subtypes drive the EVS-mediated slow excitation, and how their activation impacts vestibular physiology and behavior. In C57Bl/6J mice, M3mAChR antagonists were more potent at blocking slow excitation than M1mAChR antagonists, while M2/M4 blockers were ineffective. While unchanged in M2/M4mAChR double KO mice, EVS-mediated slow excitation in M3 mAChR-KO animals were reduced or absent in irregular afferents but appeared unchanged in regular afferents. In agreement, vestibular sensory-evoked potentials (VsEP), known to be predominantly generated from irregular afferents, were significantly less enhanced by mAChR activation in M3mAChR-KO mice compared to controls. Finally, M3mAChR-KO mice display distinct behavioral phenotypes in open field activity, and thermal profiles, and balance beam and forced swim test. M3mAChRs mediate efferent-mediated slow excitation in irregular afferents, while M1mAChRs may drive the same process in regular afferents.
Collapse
|
10
|
Lorincz D, Drury HR, Smith DW, Lim R, Brichta AM. Aged mice are less susceptible to motion sickness and show decreased efferent vestibular activity compared to young adults. Brain Behav 2023; 13:e3064. [PMID: 37401009 PMCID: PMC10454360 DOI: 10.1002/brb3.3064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION The efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx-bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c-Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs. METHODS c-Fos is an immediate early gene product expressed in stimulated neurons and is a well-established marker of neuronal activation. To study the effects of PM, young adult C57/BL6 wild-type (WT), aged WT, and young adult transgenic Chat-gCaMP6f mice were exposed to PM, and tail temperature (Ttail ) was monitored using infrared imaging. After PM, we used immunohistochemistry to label EVN neurons to determine any changes in c-Fos expression. All tissue was imaged using laser scanning confocal microscopy. RESULTS Infrared recording of Ttail during PM indicated that young adult WT and transgenic mice displayed a typical motion sickness response (tail warming), but not in aged WT mice. Similarly, brainstem EVN neurons showed increased expression of c-Fos protein after PM in young adult WT and transgenic mice but not in aged cohorts. CONCLUSION We present evidence that motion sickness symptoms and increased activation of EVN neurons occur in young adult WT and transgenic mice in response to PM. In contrast, aged WT mice showed no signs of motion sickness and no change in c-Fos expression when exposed to the same provocative stimulus.
Collapse
Affiliation(s)
- David Lorincz
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Hannah R. Drury
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Doug W. Smith
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Rebecca Lim
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - Alan M. Brichta
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
11
|
Abe C, Katayama C, Horii K, Ogawa B, Ohbayashi K, Iwasaki Y, Nin F, Morita H. Hypergravity load-induced hyperglycemia occurs due to hypothermia and increased plasma corticosterone level in mice. J Physiol Sci 2022; 72:18. [PMID: 35915429 PMCID: PMC10717132 DOI: 10.1186/s12576-022-00844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022]
Abstract
Hypothermia has been observed during hypergravity load in mice and rats. This response is beneficial for maintaining blood glucose level, although food intake decreases. However, saving glucose is not enough to maintain blood glucose level during hypergravity load. In this study, we examined the contribution of humoral factors related to glycolysis in maintaining blood glucose level in a 2 G environment. Increased plasma corticosterone levels were observed in mice with intact peripheral vestibular organs, but not in mice with vestibular lesions. Plasma glucagon levels did not change, and decrease in plasma adrenaline levels was observed in mice with intact peripheral vestibular organs. Accordingly, it is possible that increase in plasma corticosterone level and hypothermia contribute to prevent hypoglycemia in a 2 G environment.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Chikako Katayama
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Horii
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Bakushi Ogawa
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Fumiaki Nin
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
12
|
Chang HHV, Morley BJ, Cullen KE. Loss of α-9 Nicotinic Acetylcholine Receptor Subunit Predominantly Results in Impaired Postural Stability Rather Than Gaze Stability. Front Cell Neurosci 2022; 15:799752. [PMID: 35095424 PMCID: PMC8792779 DOI: 10.3389/fncel.2021.799752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The functional role of the mammalian efferent vestibular system (EVS) is not fully understood. One proposal is that the mammalian EVS plays a role in the long-term calibration of central vestibular pathways, for example during development. Here to test this possibility, we studied vestibular function in mice lacking a functional α9 subunit of the nicotinic acetylcholine receptor (nAChR) gene family, which mediates efferent activation of the vestibular periphery. We focused on an α9 (−/−) model with a deletion in exons 1 and 2. First, we quantified gaze stability by testing vestibulo-ocular reflex (VOR, 0.2–3 Hz) responses of both α9 (−/−) mouse models in dark and light conditions. VOR gains and phases were comparable for both α9 (−/−) mutants and wild-type controls. Second, we confirmed the lack of an effect from the α9 (−/−) mutation on central visuo-motor pathways/eye movement pathways via analyses of the optokinetic reflex (OKR) and quick phases of the VOR. We found no differences between α9 (−/−) mutants and wild-type controls. Third and finally, we investigated postural abilities during instrumented rotarod and balance beam tasks. Head movements were quantified using a 6D microelectromechanical systems (MEMS) module fixed to the mouse’s head. Compared to wild-type controls, we found head movements were strikingly altered in α9 (−/−) mice, most notably in the pitch axis. We confirmed these later results in another α9 (−/−) model, with a deletion in the exon 4 region. Overall, we conclude that the absence of the α9 subunit of nAChRs predominately results in an impairment of posture rather than gaze.
Collapse
Affiliation(s)
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kathleen E. Cullen,
| |
Collapse
|
13
|
Lee C, Sinha AK, Henry K, Walbaum AW, Crooks PA, Holt JC. Characterizing the Access of Cholinergic Antagonists to Efferent Synapses in the Inner Ear. Front Neurosci 2022; 15:754585. [PMID: 34970112 PMCID: PMC8712681 DOI: 10.3389/fnins.2021.754585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4β2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Anjali K Sinha
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Kenneth Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Anqi W Walbaum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Tu L, Liu JYH, Lu Z, Cui D, Ngan MP, Du P, Rudd JA. Insights Into Acute and Delayed Cisplatin-Induced Emesis From a Microelectrode Array, Radiotelemetry and Whole-Body Plethysmography Study of Suncus murinus (House Musk Shrew). Front Pharmacol 2021; 12:746053. [PMID: 34925008 PMCID: PMC8678571 DOI: 10.3389/fphar.2021.746053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: Cancer patients receiving cisplatin therapy often experience side-effects such as nausea and emesis, but current anti-emetic regimens are suboptimal. Thus, to enable the development of efficacious anti-emetic treatments, the mechanisms of cisplatin-induced emesis must be determined. We therefore investigated these mechanisms in Suncus murinus, an insectivore that is capable of vomiting. Methods: We used a microelectrode array system to examine the effect of cisplatin on the spatiotemporal properties of slow waves in stomach antrum, duodenum, ileum and colon tissues isolated from S. murinus. In addition, we used a multi-wire radiotelemetry system to record conscious animals’ gastric myoelectric activity, core body temperature, blood pressure (BP) and heart rate viability over 96-h periods. Furthermore, we used whole-body plethysmography to simultaneously monitor animals’ respiratory activity. At the end of in vivo experiments, the stomach antrum was collected and immunohistochemistry was performed to identify c-Kit and cluster of differentiation 45 (CD45)-positive cells. Results: Our acute in vitro studies revealed that cisplatin (1–10 μM) treatment had acute region-dependent effects on pacemaking activity along the gastrointestinal tract, such that the stomach and colon responded oppositely to the duodenum and ileum. S. murinus treated with cisplatin for 90 min had a significantly lower dominant frequency (DF) in the ileum and a longer waveform period in the ileum and colon. Our 96-h recordings showed that cisplatin inhibited food and water intake and caused weight loss during the early and delayed phases. Moreover, cisplatin decreased the DF, increased the percentage power of bradygastria, and evoked a hypothermic response during the acute and delayed phases. Reductions in BP and respiratory rate were also observed. Finally, we demonstrated that treatment with cisplatin caused inflammation in the antrum of the stomach and reduced the density of the interstitial cells of Cajal (ICC). Conclusion: These studies indicate that cisplatin treatment of S. murinus disrupted ICC networking and viability and also affected general homeostatic mechanisms of the cardiovascular system and gastrointestinal tract. The effect on the gastrointestinal tract appeared to be region-specific. Further investigations are required to comprehensively understand these mechanistic effects of cisplatin and their relationship to emesis.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dexuan Cui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Man P Ngan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
The mammalian efferent vestibular system utilizes cholinergic mechanisms to excite primary vestibular afferents. Sci Rep 2021; 11:1231. [PMID: 33441862 PMCID: PMC7806594 DOI: 10.1038/s41598-020-80367-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of the mammalian efferent vestibular system (EVS) predominantly excites primary vestibular afferents along two distinct time scales. Although roles for acetylcholine (ACh) have been demonstrated in other vertebrates, synaptic mechanisms underlying mammalian EVS actions are not well-characterized. To determine if activation of ACh receptors account for efferent-mediated afferent excitation in mammals, we recorded afferent activity from the superior vestibular nerve of anesthetized C57BL/6 mice while stimulating EVS neurons in the brainstem, before and after administration of cholinergic antagonists. Using a normalized coefficient of variation (CV*), we broadly classified vestibular afferents as regularly- (CV* < 0.1) or irregularly-discharging (CV* > 0.1) and characterized their responses to midline or ipsilateral EVS stimulation. Afferent responses to efferent stimulation were predominantly excitatory, grew in amplitude with increasing CV*, and consisted of fast and slow components that could be identified by differences in rise time and post-stimulus duration. Both efferent-mediated excitatory components were larger in irregular afferents with ipsilateral EVS stimulation. Our pharmacological data show, for the first time in mammals, that muscarinic AChR antagonists block efferent-mediated slow excitation whereas the nicotinic AChR antagonist DHβE selectively blocks efferent-mediated fast excitation, while leaving the efferent-mediated slow component intact. These data confirm that mammalian EVS actions are predominantly cholinergic.
Collapse
|
16
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Yokota S, Yamanaka A, Morita H. VGLUT2-expressing neurons in the vestibular nuclear complex mediate gravitational stress-induced hypothermia in mice. Commun Biol 2020; 3:227. [PMID: 32385401 PMCID: PMC7210111 DOI: 10.1038/s42003-020-0950-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
The vestibular system, which is essential for maintaining balance, contributes to the sympathetic response. Although this response is involved in hypergravity load-induced hypothermia in mice, the underlying mechanism remains unknown. This study showed that hypergravity (2g) decreased plasma catecholamines, which resulted in hypoactivity of the interscapular brown adipose tissue (iBAT). Hypothermia induced by 2g load was significantly suppressed by administration of beta-adrenergic receptor agonists, suggesting the involvement of decrease in iBAT activity through sympathoinhibition. Bilateral chemogenetic activation of vesicular glutamate transporter 2 (VGLUT2)-expressing neurons in the vestibular nuclear complex (VNC) induced hypothermia. The VGLUT2-expressing neurons contributed to 2g load-induced hypothermia, since their deletion suppressed hypothermia. Although activation of vesicular gamma-aminobutyric acid transporter-expressing neurons in the VNC induced slight hypothermia instead of hyperthermia, their deletion did not affect 2g load-induced hypothermia. Thus, we concluded that 2g load-induced hypothermia resulted from sympathoinhibition via the activation of VGLUT2-expressing neurons in the VNC. Chikara Abe, Yusuke Yamaoka et al. show that chemogenetic activation of VGLUT2-expressing neurons in the vestibular nuclear complex induces hypothermia, while their deletion suppresses hypergravity load-induced hypothermia in mice. These findings suggest an important role for these glutamatergic neurons in thermoregulation.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
17
|
Morita H, Kaji H, Ueta Y, Abe C. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment. J Physiol Sci 2020; 70:17. [PMID: 32169037 PMCID: PMC7069930 DOI: 10.1186/s12576-020-00744-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
The peripheral vestibular organs are sensors for linear acceleration (gravity and head tilt) and rotation. Further, they regulate various body functions, including body stability, ocular movement, autonomic nerve activity, arterial pressure, body temperature, and muscle and bone metabolism. The gravitational environment influences these functions given the highly plastic responsiveness of the vestibular system. This review demonstrates that hypergravity or microgravity induces changes in vestibular-related physiological functions, including arterial pressure, muscle and bone metabolism, feeding behavior, and body temperature. Hopefully, this review contributes to understanding how human beings can adapt to a new gravitational environment, including the moon and Mars, in future.
Collapse
Affiliation(s)
- Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, 589-8511, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
18
|
Poppi LA, Holt JC, Lim R, Brichta AM. A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J Neurophysiol 2019; 123:608-629. [PMID: 31800345 DOI: 10.1152/jn.00053.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.
Collapse
Affiliation(s)
- L A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - J C Holt
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - R Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology 2019; 146:252-263. [DOI: 10.1016/j.neuropharm.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
|
20
|
Xu P, Liu Y, Wang L, Wu Y, Zhou X, Xiao J, Zheng J, Xue M. Phencynonate S-isomer as a eutomer is a novel central anticholinergic drug for anti-motion sickness. Sci Rep 2019; 9:2000. [PMID: 30760797 PMCID: PMC6374516 DOI: 10.1038/s41598-018-38305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/21/2018] [Indexed: 12/04/2022] Open
Abstract
To compare and evaluate the differences of stereoselective activity, the binding affinity, metabolism, transport and molecular docking of phencynonate isomers to muscarinic acetylcholine receptor (mAChR) were investigated in this study. The rotation stimulation and locomotor experiments were used to evaluate anti-motion sickness effects. The competitive affinity with [3H]-QNB and molecular docking were used for studying the interactions between the two isomers and mAChR. The stereoselective mechanism of isomers was investigated by incubation with rat liver microsomes, a protein binding assay and membrane permeability assay across a Caco-2 cell monolayer using a chiral column HPLC method. The results indicated that S-isomer was more effective against motion sickness and had not anxiogenic action at therapeutic doses. S-isomer has the higher affinity and activity for mAChR in cerebral cortex and acted as a competitive mAChR antagonist. The stereoselective elimination of S-isomer was primarily affected by CYP1B1 and 17A1 enzymes, resulting in a higher metabolic stability and slower elimination. Phencynonate S isomer, as a eutomer and central anticholinergic chiral drug, is a novel anti-motion sickness drug with higher efficacy and lower central side effect. Our data assisted the development of a novel drug and eventual use of S-isomer in clinical practice.
Collapse
Affiliation(s)
- Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Nervous System Drugs, Beijing, 100053, China
| | - Ying Liu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Yanjing Medical College, Capital Medical University, Beijing, 101300, China
| | - Liyun Wang
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yi Wu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Junhai Xiao
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jianquan Zheng
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Beijing Engineering Research Center for Nervous System Drugs, Beijing, 100053, China.
| |
Collapse
|
21
|
Zhao Y, Peng W, Guo H, Chen B, Zhou Z, Xu J, Zhang D, Xu P. Population Genomics Reveals Genetic Divergence and Adaptive Differentiation of Chinese Sea Bass (Lateolabrax maculatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:45-59. [PMID: 29256104 DOI: 10.1007/s10126-017-9786-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing, Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Wenzhu Peng
- Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Huayang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Baohua Chen
- Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Zhixiong Zhou
- Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing, Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Dianchang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Peng Xu
- Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian, 352103, China.
| |
Collapse
|
22
|
Abstract
The major symptoms of motion sickness are well known and include facial pallor, nausea and vomiting, and sweating, but it is poorly recognized that they actually reflect severely perturbed thermoregulation. Thus, the purpose of this chapter is to present and discuss existing data related to this subject. While hypothermia during seasickness was first noted nearly 150 years ago, detailed studies of this phenomenon were conducted only during the last two decades. Our own research confirmed that motion sickness-induced hypothermia is quite broadly expressed phylogenetically as, besides humans, it could be provoked in several other animals (rats, musk shrews, and mice). Evidence from human and animal experiments indicates that the physiologic mechanisms responsible for the motion sickness-induced hypothermia include cutaneous vasodilation and sweating (leading to an increase of heat loss) and reduced thermogenesis. Together, these results suggest that motion sickness triggers a highly coordinated physiologic response aiming to reduce body temperature. The chapter is concluded by presenting hypotheses of how and why motion sickness evokes this hypothermic response.
Collapse
Affiliation(s)
- Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
23
|
Parks XX, Contini D, Jordan PM, Holt JC. Confirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista. Front Cell Neurosci 2017; 11:356. [PMID: 29200999 PMCID: PMC5696599 DOI: 10.3389/fncel.2017.00356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs) synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh) at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs) and small-conductance, calcium-dependent potassium channels (SK) in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near −90 mV to produce outward currents that typically peaked around −20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh-sensitive responses were reversibly blocked by the α9nAChR antagonists ICS, strychnine, and methyllycaconitine as well as the SK antagonists apamin and UCL1684. Intact efferent terminals in the split-epithelial preparation spontaneously released ACh that also activated α9*nAChRs/SK in type II hair cells. These release events were accelerated with high-potassium external solution and all events were blocked by strychnine, ICS, methyllycaconitine, and apamin. These findings provide direct evidence that activation of α9*nAChR/SK in turtle type II hair cells underlies efferent-mediated inhibition of bouton afferents.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Donatella Contini
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Paivi M Jordan
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
24
|
Jorratt P, Delano PH, Delgado C, Dagnino-Subiabre A, Terreros G. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice. Front Cell Neurosci 2017; 11:357. [PMID: 29163062 PMCID: PMC5676050 DOI: 10.3389/fncel.2017.00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.
Collapse
Affiliation(s)
- Pascal Jorratt
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratorio de Neurobiología del Stress, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
25
|
Morley BJ, Dolan DF, Ohlemiller KK, Simmons DD. Generation and Characterization of α9 and α10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background. Front Neurosci 2017; 11:516. [PMID: 28983232 PMCID: PMC5613126 DOI: 10.3389/fnins.2017.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
We generated constitutive knockout mouse models for the α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits by derivation from conditional knockouts by breeding with CRE deleter mice. We then backcrossed them onto a C57BL/6J genetic background. In this manuscript, we report the generation of the strains and an auditory phenotypic characterization of the constitutive α9 and α10 knockouts and a double α9α10 constitutive knockout. Although the α9 and α10 nAChR subunits are relevant to a number of physiological measures, we chose to characterize the mouse with auditory studies to compare them to existing but different α9 and α10 nAChR knockouts (KOs). Auditory brainstem response (ABR) measurements and distortion product otoacoustic emissions (DPOAEs) showed that all constitutive mouse strains had normal hearing. DPOAEs with contralateral noise (efferent adaptation measurements), however, showed that efferent strength was significantly reduced after deletion of both the α9 and α10 subunits, in comparison to wildtype controls. Animals tested were 3-8 weeks of age and efferent strength was not correlated with age. Confocal studies of single and double constitutive KOs showed that all KOs had abnormal efferent innervation of cochlear hair cells. The morphological results are similar to those obtained in other strains using constitutive deletion of exon 4 of α9 or α10 nAChR. The results of our physiological studies, however, differ from previous auditory studies using a α9 KO generated by deletion of the exon 4 region and backcrossed onto a mixed CBA/CaJ X 129Sv background.
Collapse
Affiliation(s)
- Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research HospitalOmaha, NE, United States
| | - David F. Dolan
- Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, United States
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington UniversitySt. Louis, MO, United States
| | | |
Collapse
|
26
|
Tu L, Lu Z, Dieser K, Schmitt C, Chan SW, Ngan MP, Andrews PLR, Nalivaiko E, Rudd JA. Brain Activation by H 1 Antihistamines Challenges Conventional View of Their Mechanism of Action in Motion Sickness: A Behavioral, c-Fos and Physiological Study in Suncus murinus (House Musk Shrew). Front Physiol 2017; 8:412. [PMID: 28659825 PMCID: PMC5470052 DOI: 10.3389/fphys.2017.00412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Motion sickness occurs under a variety of circumstances and is common in the general population. It is usually associated with changes in gastric motility, and hypothermia, which are argued to be surrogate markers for nausea; there are also reports that respiratory function is affected. As laboratory rodents are incapable of vomiting, Suncus murinus was used to model motion sickness and to investigate changes in gastric myoelectric activity (GMA) and temperature homeostasis using radiotelemetry, whilst also simultaneously investigating changes in respiratory function using whole body plethysmography. The anti-emetic potential of the highly selective histamine H1 receptor antagonists, mepyramine (brain penetrant), and cetirizine (non-brain penetrant), along with the muscarinic receptor antagonist, scopolamine, were investigated in the present study. On isolated ileal segments from Suncus murinus, both mepyramine and cetirizine non-competitively antagonized the contractile action of histamine with pK b values of 7.5 and 8.4, respectively; scopolamine competitively antagonized the contractile action of acetylcholine with pA2 of 9.5. In responding animals, motion (1 Hz, 4 cm horizontal displacement, 10 min) increased the percentage of the power of bradygastria, and decreased the percentage power of normogastria whilst also causing hypothermia. Animals also exhibited an increase in respiratory rate and a reduction in tidal volume. Mepyramine (50 mg/kg, i.p.) and scopolamine (10 mg/kg, i.p.), but not cetirizine (10 mg/kg, i.p.), significantly antagonized motion-induced emesis but did not reverse the motion-induced disruptions of GMA, or hypothermia, or effects on respiration. Burst analysis of plethysmographic-derived waveforms showed mepyramine also had increased the inter-retch+vomit frequency, and emetic episode duration. Immunohistochemistry demonstrated that motion alone did not induce c-fos expression in the brain. Paradoxically, mepyramine increased c-fos in brain areas regulating emesis control, and caused hypothermia; it also appeared to cause sedation and reduced the dominant frequency of slow waves. In conclusion, motion-induced emesis was associated with a disruption of GMA, respiration, and hypothermia. Mepyramine was a more efficacious anti-emetic than cetirizine, suggesting an important role of centrally-located H1 receptors. The ability of mepyramine to elevate c-fos provides a new perspective on how H1 receptors are involved in mechanisms of emesis control.
Collapse
Affiliation(s)
- Longlong Tu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Zengbing Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Karolina Dieser
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Christina Schmitt
- Department of Informatics and Microsystem Technology, University of Applied Sciences KaiserslauternZweibrücken, Germany
| | - Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher EducationHong Kong, China
| | - Man P Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Paul L R Andrews
- Division of Biomedical Sciences, St. George's University of LondonLondon, United Kingdom
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China.,Brain and Mind Institute, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|