1
|
Akinola LS, Buzzi B, Kalck E, Le K, Klein S, Vaughn J, Basir J, Poklis J, Whiteaker P, Shelton KL, Damaj MI. Characterization of a novel oronasal-restricted nicotine vaping self-administration model in mice. Neuropharmacology 2025; 268:110315. [PMID: 39832529 PMCID: PMC11984223 DOI: 10.1016/j.neuropharm.2025.110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Nicotine use remains one of the leading causes of preventable deaths in the United States and, while the prevalence of combustible cigarette use has declined over the past few years, the popularity of electronic nicotine delivery systems continues to rise. Vaping is not without risks, and its long-term effects, particularly in vulnerable populations, remain largely unknown. This study introduces a novel, oronasal-restricted, nicotine vapor self-administration mouse model to investigate the impact of nicotine concentration, genotype, sex, and age on self-administration and behavioral response to nicotine. Our studies show that male and female young adult mice respond to nicotine, demonstrating notable sex-related differences in intake, locomotor sensitization, and somatic withdrawal signs. In addition, we characterized intake in adolescent mice, showing sex differences as well. Finally, we showed genotype-related differences when using β2 knock-out mice, emphasizing the role of the β2 nAChR in nicotine reward and nicotine intake. This new model offers a more targeted approach to studying the potential risks of nicotine vaping in a more relevant and face-valid model compared to traditional whole-body nicotine vapor exposure in rodents.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Erin Kalck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimmie Le
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sarah Klein
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julian Vaughn
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jamil Basir
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Paul Whiteaker
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Souza TP, Rodríguez-Vega A, Dutra-Tavares AC, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nucleus Accumbens Proteome Disbalance in an Adolescent Mouse Model of Schizophrenia and Nicotine Misuse Comorbidity. Biomedicines 2025; 13:901. [PMID: 40299488 PMCID: PMC12025060 DOI: 10.3390/biomedicines13040901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Schizophrenia and nicotine misuse are a comorbid condition that frequently develops during adolescence. Considering the role of the nucleus accumbens (NAcc) as a common neurobiological substrate for these psychiatric disorders, label-free proteomics was employed to identify NAcc deregulated proteins in male and female mouse models of schizophrenia with a history of adolescent nicotine exposure. Methods: Phencyclidine was used to model schizophrenia, and minipump infusions were used to model nicotine misuse. Results: Enrichment Reactome pathway and protein-protein interaction analyses showed that the cytoskeleton and associated synaptic plasticity mechanisms, energy metabolism, and nervous system development were affected in both sexes. In particular, Ncam1 (Neural cell adhesion molecule 1) could be of interest as a candidate marker of synaptic plasticity disbalance. Its deregulation in the NAcc of both sexes suggests that it lies at the core of the comorbidity pathophysiology. When considering sex-selective effects, Cs (Citrate synthase) and Mapk3 (Mitogen-activated protein kinase 3) were identified as exclusively deregulated in female and male mice, respectively. Since both proteins were previously shown to be exclusively deregulated in the medial prefrontal cortex of co-modeled mice, a common mesocortical and mesolimbic system effect can be inferred, supporting the role of aberrant energy metabolism and synaptic plasticity in the comorbidity model. Conclusions: The current data provide insights into the NAcc proteome disbalance in an adolescent preclinical model of combined schizophrenia and nicotine misuse, pointing to relevant pathways and early markers of the comorbidity.
Collapse
Affiliation(s)
- Thainá Pereira Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Cabo Frio 28905-320, RJ, Brazil;
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio Carneiro Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro (UERJ), São Gonçalo 24435-005, RJ, Brazil;
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 Andar—Vila Isabel, Rio de Janeiro 20550-170, RJ, Brazil; (T.P.S.); (A.R.-V.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
3
|
Tetteh-Quarshie S, Morrison KM, Olszewski NA, Young LE, Mensah EN, Sword MK, Henderson BJ. The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice. Physiol Behav 2025; 292:114823. [PMID: 39870287 PMCID: PMC11874065 DOI: 10.1016/j.physbeh.2025.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/05/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors. Here, mice were assigned standard diet (SD) or HFD for 6 weeks and then trained to self-administer nicotine using an e-vape® self-administration (EVSA) assay. After the last session, changes in glucose, insulin, and leptin were assessed with ELISA. HFD-assigned mice displayed a decrease in intrinsic excitability of VTA dopamine neurons; but an increase in intrinsic excitability of layer VI prelimbic mPFC neurons. SD-assigned female mice demonstrated enhanced nicotine EVSA during fixed-ratio 3 relative to SD males. HFD-assigned male and female mice displayed increased nicotine EVSA during FR1. However, only HFD-assigned male mice exhibited enhanced nicotine EVSA during FR3. Finally, HFD-assigned male and female mice displayed increased leptin levels. However, we only observed a direct correlation between leptin levels and EVSA responding during FR1 in HFD-fed male mice. These results suggest that high-fat diet alter nicotine intake in a sex-specific manner, and this may be due to diet-induced changes in neuronal excitability and circulating leptin levels.
Collapse
Affiliation(s)
- Samuel Tetteh-Quarshie
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Karli M Morrison
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Nathan A Olszewski
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Lauren E Young
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Esther N Mensah
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Mason K Sword
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA
| | - Brandon J Henderson
- Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3rd Avenue, Huntington, WV 25703, USA.
| |
Collapse
|
4
|
Barrett ST, McNealy KR, Ramirez H, Flynn AT, Bevins RA. Pavlovian conditioning with the internal stimulus effects of intravenous nicotine heightens later nicotine taking with variation by dose and sex. Sci Rep 2025; 15:5500. [PMID: 39952959 PMCID: PMC11829035 DOI: 10.1038/s41598-024-84145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
We have previously demonstrated that the interoceptive stimulus effects of intravenous nicotine (0.03 mg/kg/inf) can acquire conditioned reinforcing value through appetitive Pavlovian conditioning. In this report, we replicate and extend that work by examining the dose- and sex-generality of this effect. 240 male and female Sprague-Dawley rats were divided into groups defined by infusion dose (0, 0.003, 0.01, or 0.03 mg/kg nicotine). These were further divided into rats who received Paired or Unpaired appetitive conditioning between infusions and sucrose presentations. Interoceptive conditioning took place over 24 daily sessions. The Paired group received 10 trials of response-independent infusions of their assigned nicotine dose followed 30 s afterwards by 4-s access to sucrose. The Unpaired group also received 10 infusions and 10 deliveries of sucrose but spaced 4-8 min apart. Thereafter, the chambers were refitted with nosepokes and all groups could self-administer infusions of their assigned solution according to a progressive ratio schedule. Paired conditioning history enhanced the later self-administration of 0.01 and 0.03 mg/kg/inf nicotine in females. Males self-administered 0.03 mg/kg/inf nicotine-regardless of conditioning history. These data demonstrate that appetitive learning involving the stimulus effects of nicotine can substantially alter the reinforcing effects of nicotine in later self-administration, which effect is both dose- and sex-dependent.
Collapse
Affiliation(s)
- Scott T Barrett
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| | - Kathleen R McNealy
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Hayley Ramirez
- School of Medicine, University of Pittsburgh, Pittsburg, PA, 15219, USA
| | - Allissa T Flynn
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| |
Collapse
|
5
|
Honeycutt SC, Lichte DD, Gilles-Thomas EA, Mukherjee A, Loney GC. Acute nicotine administration reduces the efficacy of punishment in curbing remifentanil consumption in a seeking-taking chain schedule of reinforcement. Psychopharmacology (Berl) 2024; 241:2003-2014. [PMID: 38775944 DOI: 10.1007/s00213-024-06613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/12/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Nicotine dependence is highly comorbid with opioid use disorders (OUDs). The use of nicotine-containing products increases the propensity to misuse prescription opioids and addressing both nicotine and opioid use simultaneously is more efficacious for treatment of OUDs than treating opioid use alone. OBJECTIVES Given this extreme comorbidity, further elucidation of the effects of nicotine as a factor in promoting vulnerability to development of OUDs is needed. Here, we sought to further explore the effects of nicotine administration on operant self-administration of remifentanil (RMF), a fast-acting synthetic µ-opioid receptor agonist, using a heterogenous seeking-taking chain schedule of reinforcement in unpunished and punished conditions. METHODS Male and female rats received nicotine (0.4 mg/kg) or saline prior to operant self-administration sessions. These sessions consisted of pressing a 'seeking' lever to gain access to a 'taking' lever that could be pressed for delivery of 3.2 µg/kg RMF. After acquisition, continued drug seeking/taking was punished through contingent delivery of foot-shock. RESULTS Nicotine, relative to saline, increased RMF consumption. Furthermore, nicotine treatment resulted in significantly higher seeking responses and cycles completed, and this effect became more pronounced during punished sessions as nicotine-treated rats suppressed RMF seeking significantly less than controls. Nicotine treatment functionally reduced the efficacy of foot-shock punishment as a deterrent of opioid-seeking. CONCLUSIONS Nicotine administration enhanced both appetitive and consummatory responding for RMF and engendered a punishment-insensitive phenotype for RMF that was less impacted by contingent administration of foot-shock punishment. These findings provide further support for the hypothesis that nicotine augments vulnerability for addiction-like behaviors for opioids.
Collapse
Affiliation(s)
- Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, 204 Park Hall, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Giner P, Ortegon S, Bagdas D, O'Dell LE. The influence of ovarian hormones on the putative mechanisms that promote female nicotine use. Curr Opin Neurobiol 2024; 88:102900. [PMID: 39153250 PMCID: PMC11560049 DOI: 10.1016/j.conb.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Nicotine use is driven by pleasurable effects, but following chronic exposure, nicotine use becomes largely driven by the desire need to avoid withdrawal symptoms. Current cessation strategies focusing on alleviating withdrawal, but current cessation interventions are less effective for women than men. Also, hormone fluctuations across the menstrual cycle appear to impact use patterns, withdrawal severity, and treatment efficacy. This raises important questions regarding optimal quit dates and the application of hormone interventions to alleviate withdrawal in women. This review surveys the existing literature assessing the impact of ovarian hormones on nicotine withdrawal severity. This is an important issue because women seeking cessation treatments may be using hormone-based contraceptives or hormone replacement post-menopause. Hormone interventions may also offer a novel treatment avenue that is more effective than current cessation approaches. Future work in this area is important for reducing health disparities produced by excessive nicotine use in women.
Collapse
Affiliation(s)
- Priscilla Giner
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79902, USA
| | - Sebastian Ortegon
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79902, USA
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA; Yale Tobacco Center of Regulatory Science, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79902, USA.
| |
Collapse
|
7
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Sex differences in nicotine intake and relapse behavior in nicotine-dependent adult wistar rats. Front Pharmacol 2024; 15:1415219. [PMID: 39391691 PMCID: PMC11464435 DOI: 10.3389/fphar.2024.1415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tobacco use is highly addictive and the leading cause of premature mortality in the world. Long-access nicotine self-administration procedures in rats closely model human smoking behavior. However, significant gaps remain in our understanding of sex differences in the development of dependence and relapse in adult rats. Methods In the present study, we investigated operant responding for both nicotine and saline and the development of dependence in adult rats of both sexes. The rats had daily access to nicotine or saline for 6 h per day, 7 days per week. Dependence was assessed by evaluating precipitated and spontaneous somatic withdrawal signs, measuring locomotor activity in the small open field test, and assessing anxiety-like behavior in the large open field and elevated plus maze test. The sucrose preference test was used to determine if cessation of nicotine intake leads to anhedonia. It was also investigated if a period of forced abstinence affects nicotine-seeking behavior. Results This study showed that nicotine intake is higher in females than in males when given daily long access to nicotine. Daily nicotine self-administration led to more precipitated and spontaneous somatic withdrawal signs compared to saline self-administration, with no sex differences observed. In addition, cessation of nicotine intake led to a similar increase in activity in both males and females in the small open field test. However, cessation of nicotine intake did not increase anxiety-like behavior or cause anhedonia in either males or females. A time course analysis revealed that the nicotinic acetylcholine receptor antagonist mecamylamine affected nicotine intake differently in males and females, increasing intake in males and decreasing intake in females. Three weeks of forced abstinence led to an increase in nicotine and saline-seeking behavior. The rats exhibited more nicotine than saline seeking, and the females displayed more nicotine seeking than the males. Discussion The present findings demonstrate that females self-administer more nicotine and display more nicotine-seeking behavior than males. Furthermore, there were no sex differences in somatic withdrawal signs or activity during abstinence from nicotine. This work underscores the importance of considering sex differences across various aspects of addiction, including intake and relapse, when developing novel treatments for tobacco use disorder.
Collapse
|
8
|
Tan X, Neslund EM, Fentis K, Ding ZM. Fluorocitrate inhibition of astrocytes reduces nicotine self-administration and alters extracellular levels of glutamate and dopamine within the nucleus accumbens in male wistar rats. Neuropharmacology 2024; 255:110001. [PMID: 38750804 PMCID: PMC11156530 DOI: 10.1016/j.neuropharm.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Khawla Fentis
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
9
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Smethells JR, S W, P M, MG L, AP H. The role of β-Nicotyrine in E-Cigarette abuse liability I: Drug Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603310. [PMID: 39071347 PMCID: PMC11275838 DOI: 10.1101/2024.07.12.603310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background β-Nicotyrine (β-Nic) is a unique minor alkaloid constituent in electronic nicotine delivery systems (ENDS) that is derived from nicotine (Nic) degradation and can reach 25% of Nic concentrations in ENDS aerosol. β-Nic slows Nic metabolism and prolongs systemic Nic exposure, which may alter the discriminability of Nic. The present study sought to examine β-Nic has interoceptive effects itself, and if it alters the subjective effects ENDS products within a drug-discrimination paradigm. Methods The pharmacodynamics of β-Nic were examined in vitro, and a nicotine discrimination paradigm was used to determine if β-Nic (0 - 5.0 mg/kg) shares discriminative stimulus properties with Nic (0.2 mg/kg) in male (n = 13) and female (n = 14) rats after 10- & 60-min β-Nic pretreatment delays. A second group of rats was trained to discriminate β-Nic and Nornicotine (Nornic) from saline to determine if β-Nic alone has interoceptive properties and whether they are similar to Nornic. Results β-Nic had similar binding affinity and efficacy at the α4β2 nicotinic receptor subtype as Nornic, ~50% of Nic efficacy. However, β-Nic only weakly substituted for Nic during substitution testing in female rats, but not males, whereas Nornic fully substituted for Nic. Combination testing at the 10 and 60-min pretreatment intervals showed that β-Nic dose-dependently increased the duration of nicotine's discriminative stimulus effects, especially at the 60-min delay. Drug naïve rats could reliably discriminate Nornic, but not β-Nic, from Sal. Conclusion β-Nic increased and prolonged the interoceptive stimulus properties of Nic, suggesting it may alter to the abuse liability of ENDS through its ability to slow Nic metabolism.
Collapse
Affiliation(s)
- JR Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Wilde S
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Muelken P
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - LeSage MG
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Harris AP
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Gutierrez A, Nguyen JD, Creehan KM, Grant Y, Taffe MA. Adult Consequences of Repeated Nicotine Vapor Inhalation in Adolescent Rats. Nicotine Tob Res 2024; 26:715-723. [PMID: 37946372 PMCID: PMC11109496 DOI: 10.1093/ntr/ntad211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION There has been a resurgence in nicotine inhalation in adolescents due to the popularity and availability of Electronic Nicotine Delivery Systems (ENDS). Almost five times as many US high-school seniors inhale nicotine vapor daily compared with those who smoke tobacco. This study was conducted to determine the impact of repeated adolescent vapor inhalation of nicotine on behavior in adulthood. METHODS Male and female Sprague-Dawley rats were exposed to 30-minute sessions of ENDS vapor inhalation, twice daily, from post-natal day (PND) 31-40. Conditions included vapor from the propylene glycol (PG) vehicle or nicotine (30 mg/mL in the PG). Animals were assessed for effects of nicotine on open field (PND 74-105) and wheel activity (PND 126-180) and for volitional exposure to nicotine vapor (PND 285-395). Plasma nicotine and cotinine were assessed in separate groups of male and female Wistar and Sprague-Dawley rats after a single nicotine inhalation session. RESULTS Group mean plasma nicotine ranged from 39 to 59 ng/mL post-session with minimal strain differences detected. Adolescent nicotine exposure enhanced sensitivity to the locomotor stimulating effects of nicotine (0.1-0.8 mg/kg, s.c.) in an open field in female rats, but didn't change the effects of nicotine on wheel activity. Female rats exposed to nicotine (30 mg/mL) vapor as adolescents responded more vigorously than PG-exposed females to nicotine vapor in a fixed ratio 5 challenge. CONCLUSIONS Repeated adolescent nicotine vapor inhalation leads to enhanced liability for volitional exposure to nicotine vapor in adulthood in female rats, but minimal change in spontaneous locomotor behavior. IMPLICATIONS These results show that adolescent vaping of nicotine can lead to lasting sensitization to the effects of nicotine in adulthood, including volitional responding for nicotine vapor. Demonstration of this in a controlled animal model establishes causality in a manner not possible from longitudinal evidence in human populations. These findings further highlight the importance of decreasing adolescent nicotine exposure to e-cigarettes to reduce consumption in adulthood.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Jacques D Nguyen
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
- Department of Psychology and Neuroscience, Baylor University;Waco, TX, USA
| | - Kevin M Creehan
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Yanabel Grant
- Department of Neuroscience; The Scripps Research Institute;La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Michael A Taffe
- Department of Neuroscience; The Scripps Research Institute; La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
12
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Neuronal Excitability in the Medial Habenula and Ventral Tegmental Area Is Differentially Modulated by Nicotine Dosage and Menthol in a Sex-Specific Manner. eNeuro 2024; 11:ENEURO.0380-23.2024. [PMID: 38233142 PMCID: PMC10863631 DOI: 10.1523/eneuro.0380-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
The medial habenula (MHb) has been identified as the limiting factor for nicotine intake and facilitating nicotine withdrawal. However, few studies have assessed MHb neuronal excitability in response to nicotine, and, currently, a gap in knowledge is present for finding behavioral correlates to neuronal excitability in the region. Moreover, no study to date has evaluated sex or nicotine dosage as factors of excitability in the MHb. Here, we utilized an e-vape self-administration (EVSA) model to determine differences between sexes with different nicotine dosages ± menthol. Following this paradigm, we employed patch-clamp electrophysiology to assess key metrics of MHb neuronal excitability in relation to behavioral endpoints. We observed female mice self-administered significantly more than males, regardless of dosage. We also observed a direct correlation between self-administration behavior and MHb excitability with low-dose nicotine + menthol in males. Conversely, a high dose of nicotine ± menthol yields an inverse correlation between excitability and self-administration behavior in males only. In addition, intrinsic excitability in the ventral tegmental area (VTA) does not track with the amount of nicotine self-administered. Rather, they correlate to the active/inactive discrimination of mice. Using fast-scan cyclic voltammetry, we also observed that dopamine release dynamics are linked to reinforcement-related behavior in males and motivation-related behaviors in females. These results point to a sex-specific difference in the activity of the MHb and VTA leading to distinct differences in self-administration behavior. His could lend evidence to clinical observations of smoking and nicotine-use behavior differing between males and females.
Collapse
Affiliation(s)
- Nathan A Olszewski
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Samuel Tetteh-Quarshie
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| | - Brandon J Henderson
- Department of Biomedical Science and Research, Joan C. Edwards School of Medicine, Marshall University, Huntington 25703-1104, West Virginia
| |
Collapse
|
14
|
Nolder KA, Anderson KG. Effects of acute and chronic nicotine administration on probability discounting. Behav Pharmacol 2023; 34:468-476. [PMID: 37668161 DOI: 10.1097/fbp.0000000000000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nicotine use is a continuing public health concern. Smokers are more likely to make risky or maladaptive decisions compared to nonsmokers, so the relation between nicotine and risky choice warrants further investigation. Risky choice can be operationally defined as the choice for a larger, uncertain reinforcer over a smaller, certain reinforcer and can be assessed through a probability-discounting procedure. Acute nicotine administration has been shown to alter risky choice, but because the everyday smoker uses nicotine repeatedly, more research on chronic administration is needed and would allow for assessment of tolerance or sensitization of any effects. The present study examined effects of acute and repeated nicotine administration on probability discounting. Sprague-Dawley rats were used as subjects and the probability-discounting task involved discrete-trial choices between a small, certain reinforcer and a larger, uncertain reinforcer. The probability of larger-reinforcer delivery decreased across blocks within each session. Acute nicotine (0.1-1.0 mg/kg) administration dose-dependently increased risky choice, increased lose-stay ratios (a measure of response perseveration), and decreased reinforcement frequency. Tolerance to nicotine's effects on larger-reinforcer choice was observed after repeated 1.0 mg/kg nicotine administration. The results of the present study add to the existing literature that acute nicotine administration increases risky choice and demonstrates that tolerance to this effect develops after chronic exposure to the drug. Possible behavioral mechanisms behind this effect are discussed, as are suggestions for future research on nicotine and risky choice.
Collapse
Affiliation(s)
- Katya A Nolder
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | | |
Collapse
|
15
|
Martínez M, Espinoza VE, Garcia V, Uribe KP, Negishi K, Estevao IL, Carcoba LM, O'Dell LE, Khan AM, Mendez IA. Withdrawal from repeated nicotine vapor exposure increases somatic signs of physical dependence, anxiety-like behavior, and brain reward thresholds in adult male rats. Neuropharmacology 2023; 240:109681. [PMID: 37611823 PMCID: PMC11253717 DOI: 10.1016/j.neuropharm.2023.109681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Nicotine vapor consumption via electronic nicotine delivery systems has increased over the last decade. While prior work has shed light on the health effects of nicotine vapor inhalation, its unique effects on the brain and behavior have not been thoroughly explored. In this study we assessed markers of withdrawal following 14 days of nicotine vapor exposure. For Experiment 1, 21 adult male rats were exposed to ambient air or 6, 12, or 24 mg/mL nicotine vapor for 14 consecutive days. Following exposure on day 14, rats were injected with the nicotinic receptor antagonist mecamylamine (3.0 mg/mL) and assessed for somatic withdrawal signs and anxiety-like behavior in the elevated plus maze. For Experiment 2, 12 adult male rats were tested for intracranial self-stimulation (ICSS) immediately following exposure to vehicle vapor (50%/50%, vegetable glycerin/propylene glycol) or 24 mg/mL nicotine vapor, for 14 consecutive days. ICSS behavior was assessed for an additional 14 days, following cessation of repeated vapor exposure. Results reveal that rats with repeated nicotine vapor exposure display an increase in behavioral indicators of withdrawal following injection of mecamylamine (precipitated withdrawal). Additionally, increases in ICSS stimulation thresholds, indicative of reduced brain reward sensitivity, persist following cessation of repeated nicotine vapor exposure (spontaneous withdrawal). These data suggest that repeated e-cigarette use leads to nicotine dependence and withdrawal that affects behavior and brain reward function. Further characterization of the health effects of nicotine vapor is necessary to improve treatment strategies for nicotine use disorder and public health policies related to novel nicotine delivery systems.
Collapse
Affiliation(s)
- Michelle Martínez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Veronika E Espinoza
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Valeria Garcia
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kevin P Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kenichiro Negishi
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Igor L Estevao
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Luis M Carcoba
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Arshad M Khan
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Ian A Mendez
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA; Interdisciplinary Group for Neuroscience Investigation, Training and Education (IGNITE), The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
16
|
Han P, Jing X, Han S, Wang X, Li Q, Zhang Y, Yu P, Liu XA, Wu P, Chen H, Hou H, Hu Q. Pharmacokinetic differences in nicotine and nicotine salts mediate reinforcement-related behavior: an animal model study. Front Neurosci 2023; 17:1288102. [PMID: 38033549 PMCID: PMC10687399 DOI: 10.3389/fnins.2023.1288102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Since their introduction in the United States and Europe in 2007, electronic cigarettes (E-Cigs) have become increasingly popular among smokers. Nicotine, a key component in both tobacco and e-cigarettes, can exist in two forms: nicotine-freebase (FBN) and nicotine salts (NS). While nicotine salt is becoming more popular in e-cigarettes, the effect of nicotine salts on reinforcement-related behaviors remains poorly understood. This study aimed to compare the reinforcing effects of nicotine and nicotine salts in animal models of drug self-administration and explore potential mechanisms that may contribute to these differences. The results demonstrated that three nicotine salts (nicotine benzoate, nicotine lactate, and nicotine tartrate) resulted in greater reinforcement-related behaviors in rats compared to nicotine-freebase. Moreover, withdrawal-induced anxiety symptoms were lower in the three nicotine salt groups than in the nicotine-freebase group. The study suggested that differences in the pharmacokinetics of nicotine-freebase and nicotine salts in vivo may explain the observed behavioral differences. Overall, this study provides valuable insights into the reinforcing effects of nicotine as well as potential differences between nicotine-freebase and nicotine salts.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xiaoyuan Jing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xinsheng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Qiannan Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yuan Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengpeng Yu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xin-an Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Beijing, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| |
Collapse
|
17
|
Kuebler IRK, Liu Y, Bueno Álvarez BS, Huber NM, Jolton JA, Dasari R, Wakabayashi KT. Melanin-concentrating hormone receptor antagonism differentially attenuates nicotine experience-dependent locomotor behavior in female and male rats. Pharmacol Biochem Behav 2023; 232:173649. [PMID: 37793486 PMCID: PMC10985048 DOI: 10.1016/j.pbb.2023.173649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Nicotine is a significant public health concern because it is the primary pharmacological agent in tobacco use disorder. One neural system that has been implicated in the symptoms of several substance use disorders is the melanin-concentrating hormone (MCH) system. MCH regulates various motivated behaviors depending on sex, yet little is known of how this interaction affects experience with drugs of abuse, particularly nicotine. The goal of this study was to determine the effect of MCH receptor antagonism on experience-dependent nicotine-induced locomotion after chronic exposure, particularly on the expression of locomotor sensitization. Adult female and male Wistar rats were given saline then cumulative doses of nicotine (0.1, 0.32, 0.56, and 1.0 mg/kg) intraperitoneally to determine the acute effects of nicotine (day 1). Next, rats were treated with 1.0 mg/kg nicotine for 6 days, given an identical series of cumulative doses (day 8), and then kept in a drug-free state for 6 days. On day 15, rats were pretreated with vehicle or the MCH receptor antagonist GW803430 (10 or 30 mg/kg) before another series of cumulative doses to assess response to chronic nicotine. After vehicle, male rats increased nicotine locomotor activation from day 1 to day 15, and both sexes showed a sensitized response when normalized to saline. The lower dose of GW803430 decreased locomotion compared to vehicle in females, while the higher dose decreased locomotion in males. Both sexes showed nicotine dose-dependent effects of GW803430, strongest at lower doses of nicotine. Controlling for sex-based locomotor differences revealed that females are more sensitive to GW803430. The high dose of GW803430 also decreased saline locomotion in males. Together, the results of our study suggest that MCH is involved in the expression of nicotine locomotor sensitization, and that MCH regulates these nicotine behavioral symptoms differently across sex.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Youxi Liu
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Bárbara S Bueno Álvarez
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Noah M Huber
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Raaga Dasari
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, 1220 T St., Lincoln, NE 68588, United States of America; Rural Drug Addiction Research Center, University of Nebraska-Lincoln, 660 N 12th St., Lincoln, NE 68588, United States of America.
| |
Collapse
|
18
|
Medrano MC, Darlot F, Cador M, Caille S. Poor inhibitory control predicts sex-specific vulnerability to nicotine rewarding properties in mice. Psychopharmacology (Berl) 2023; 240:1973-1986. [PMID: 37439799 DOI: 10.1007/s00213-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
RATIONALE The risk of becoming addicted to tobacco varies greatly from individual to individual, raising the possibility of behavioural biomarkers capable of predicting sensitivity to nicotine reward, a crucial step in the development of nicotine addiction. Amongst all of nicotine's pharmacological properties, one of central importance is the enhancement of cognitive performances, which depend on the balance between attentional processes and inhibitory control. However, whether the cognitive enhancement effects of nicotine are predictive of sensitivity to its rewarding properties is still unknown. OBJECTIVE Using male and female mice, we investigated whether the effects of nicotine on cognitive performances are predictive of sensitivity to the rewarding properties of nicotine and, if so, whether this relationship is sex dependent. METHODS Naïve male and female mice were first assessed for their performances in both baseline conditions and following nicotine injection (0.15 and 0.30 mg/kg) in a cued-Fixed Consecutive Number task (FCNcue) measuring both optimal (attention) and premature (inhibitory control) responding. Next, all mice underwent nicotine-induced conditioned place preference (CPP) in order to evaluate inter-individual differences in response to nicotine reward (0.30 mg/kg). RESULTS Results showed that males and females benefited from the effect of nicotine as a cognitive enhancer in the FCNcue task. However, only those males displaying poor inhibitory control, namely high-impulsive animals, subsequently displayed sensitivity to nicotine reward. In females, sensitivity to nicotine reward was independent of FCNcue performances, in both basal and nicotine conditions. CONCLUSION Thus, our study suggests that poor inhibitory control and its modulation by nicotine may be a behavioural biomarker for sensitivity to nicotine reward and consequent vulnerability to nicotine addiction in males but not females.
Collapse
Affiliation(s)
| | - Florence Darlot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Martine Cador
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Stephanie Caille
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| |
Collapse
|
19
|
Maher EE, Strzelecki AM, Weafer JJ, Gipson CD. The importance of translationally evaluating steroid hormone contributions to substance use. Front Neuroendocrinol 2023; 69:101059. [PMID: 36758769 PMCID: PMC10182261 DOI: 10.1016/j.yfrne.2023.101059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Clinically, women appear to be more susceptible to certain aspects of substance use disorders (SUDs). The steroid hormones 17β-estradiol (E2) and progesterone (Pg) have been linked to women-specific drug behaviors. Here, we review clinical and preclinical studies investigating how cycling ovarian hormones affect nicotine-, cocaine-, and opioid-related behaviors. We also highlight gaps in the literature regarding how synthetic steroid hormone use may influence drug-related behaviors. In addition, we explore how E2 and Pg are known to interact in brain reward pathways and provide evidence of how these interactions may influence drug-related behaviors. The synthesis of this review demonstrates the critical need to study women-specific factors that may influence aspects of SUDs, which may play important roles in addiction processes in a sex-specific fashion. It is important to understand factors that impact women's health and may be key to moving the field forward toward more efficacious and individualized treatment strategies.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ashley M Strzelecki
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Jessica J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
20
|
Sved AF, Caggiula AR, Donny EC. Elucidating the reinforcing effects of nicotine: a tribute to Nadia Chaudhri. Psychopharmacology (Berl) 2023; 240:417-430. [PMID: 36329195 PMCID: PMC11188050 DOI: 10.1007/s00213-022-06266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Nadia Chaudhri worked with us as a graduate student in the Center for Neuroscience at the University of Pittsburgh from 1999 until she earned her PhD in 2005, a time that coincided with the discovery in our lab of the dual reinforcing actions of nicotine, a concept that she played an important role in shaping. The research that was described in her doctoral thesis is among the foundational pillars of the now well-accepted notion that nicotine acts as both a primary reinforcer and an amplifier of other reinforcer stimuli. This reinforcement-enhancing action of nicotine is robust and likely to be a powerful driver of nicotine use. Below, we discuss the evidence that these two actions of nicotine - primary reinforcement and reinforcement enhancement - are distinct and dissociable, a finding that Nadia was closely associated with. We go on to address two other topics that greatly interested Nadia during that time, the generalizability of the reinforcement-enhancing action of nicotine to multiple classes of reinforcing stimuli and potential sex differences in the dual reinforcing actions of nicotine. The research has greatly expanded since Nadia's involvement, but the core ideas that she helped to develop remain central to the concept of the dual reinforcing actions of nicotine and its importance for understanding the drivers of nicotine use.
Collapse
Affiliation(s)
- Alan F Sved
- Departments of Neuroscience, Psychiatry and Psychology and the Center for Neuroscience, University of Pittsburgh, 210 Langley Hall, Pittsburgh, PA, 15260, USA.
| | - Anthony R Caggiula
- Departments of Psychology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric C Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
21
|
Cotinine as a Sentinel of Canine Exposure to Tobacco Smoke. Animals (Basel) 2023; 13:ani13040693. [PMID: 36830480 PMCID: PMC9952721 DOI: 10.3390/ani13040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The adverse health effects of both active and passive tobacco smoke have been well-known in humans for a long time. It is presumable that even pets, which intimately share the owner's lifestyle, may be exposed to the same risks. This study aimed to detect and quantify cotinine (a metabolite of nicotine) in the serum and hair of dogs using a specific commercial ELISA immunoassay kit. A total of 32 dogs, 16 exposed and 16 unexposed to the owner's smoke, were enrolled. The cotinine concentration was higher in the exposed than the unexposed group in both matrices (p < 0.001), with greater values in serum than in hair (p < 0.001). Exposed bitches had higher hair cotinine than male dogs (p < 0.001). Conversely, serum and fur cotinine concentrations were lower in female than male dogs of the unexposed group (p < 0.01). The exposure intensity, age, and weight of the dogs did not affect cotinine concentrations. A cut-off value of 2.78 ng/mL and 1.13 ng/mL cotinine concentration in serum and fur, respectively, was estimated to distinguish between the exposed and unexposed dogs. Cotinine was confirmed as a valuable marker of passive smoking also in dogs. Although owners do not perceive secondhand smoke as a risk for their dogs, greater awareness should be advisable, especially in pregnant animals.
Collapse
|
22
|
Vargas-Medrano J, Carcoba LM, Vidal Martinez G, Mulla ZD, Diaz V, Ruiz-Velasco A, Alvarez-Primo F, Colina G, Iñiguez SD, Thompson PM, O’Dell LE, Gadad BS. Sex and diet-dependent gene alterations in human and rat brains with a history of nicotine exposure. Front Psychiatry 2023; 14:1104563. [PMID: 36846236 PMCID: PMC9950561 DOI: 10.3389/fpsyt.2023.1104563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Chronic nicotine exposure induces changes in the expression of key regulatory genes associated with metabolic function and neuronal alterations in the brain. Many bioregulatory genes have been associated with exposure to nicotine, but the modulating effects of sex and diet on gene expression in nicotine-exposed brains have been largely unexplored. Both humans and rodents display motivation for nicotine use and the emergence of withdrawal symptoms during abstinence. Research comparing pre-clinical models with human subjects provides an important opportunity to understand common biomarkers of the harmful effects of nicotine as well as information that may help guide the development of more effective interventions for nicotine cessation. Methods Human postmortem dorsolateral prefrontal cortex (dLPFC) tissue BA9 was collected from female and male subjects, smokers and non-smokers (N = 12 per group). Rat frontal lobes were collected from female and male rats that received a regular diet (RD) or a high-fat diet (HFD) (N = 12 per group) for 14 days following implantation of a osmotic mini-pump (Alzet) that delivered nicotine continuously. Controls (control-s) received a sham surgical procedure. RNA was extracted from tissue from human and rat samples and reversed-transcribed to cDNA. Gene expression of CHRNA10 (Cholinergic receptor nicotinic alpha 10), CERKL (Ceramide Kinase-Like), SMYD1 (SET and MYD Domin Containing 1), and FA2H (Fatty Acid 2-Hydrolase) in humans was compared to rats in each subset of groups and quantified by qPCR methods. Additionally, protein expression of FA2H was analyzed by immunohistochemistry (IHC) in human dLPFC. Results Humans with a history of smoking displayed decreased CHRNA10 (p = 0.0005), CERKL (p ≤ 0.0001), and SMYD1 (p = 0.0005) expression and increased FA2H (p = 0.0097) expression compared to non-smokers (p < 0.05). Similar patterns of results were observed in nicotine exposed vs. control rats. Interestingly, sex-related differences in gene expression for CERKL and FA2H were observed. In addition, ANCOVA analysis showed a significant effect of nicotine in a sex-different manner, including an increase in CERKL in male and female rats with RD or HFD. In rats exposed to an HFD, FA2H gene expression was lower in nicotine-treated rats compared to RD rats treated with nicotine. Protein expression of FA2H (p = 0.001) by IHC was significantly higher in smokers compared to non-smokers. Conclusion These results suggest that a history of long-term nicotine exposure in humans alters the expression of sphingolipid metabolism-related (CERKL, SMYD1, and FA2H) and neuronal (CHRNA10) marker genes similarly as compared to rats. Sex- and diet-dependent differences appear in nicotine-exposed rats, critical in regulating sphingolipid metabolism and nicotinic acetylcholine receptors. This research enhances the construct validity of rat models of nicotine usage by showing a similar pattern of changes in gene expression in human subjects with a smoking history.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Luis M. Carcoba
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Guadalupe Vidal Martinez
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Zuber D. Mulla
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Victoria Diaz
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Alejandra Ruiz-Velasco
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Fabian Alvarez-Primo
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Gabriela Colina
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Peter M. Thompson
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, United States
| | - Bharathi S. Gadad
- Department of Psychiatry, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Southwest Brain Bank, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| |
Collapse
|
23
|
McGriff SA, Chojnacki MR, Thorndike EB, Rice KC, Baumann MH, Schindler CW. Reinforcing effects of phenethylamine analogs found in dietary supplements. Psychopharmacology (Berl) 2022; 239:3723-3730. [PMID: 36190536 PMCID: PMC9590234 DOI: 10.1007/s00213-022-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/17/2022] [Indexed: 10/10/2022]
Abstract
RATIONALE Synthetic phenethylamine (PEA) analogs, such as β-methylphenethylamine (BMPEA) and N,α-diethylphenethylamine (DEPEA), are often found in dietary supplements, despite regulations prohibiting their sale. PEA analogs are structurally related to amphetamine, and we have shown that BMPEA and DEPEA produce cardiovascular stimulation mimicking the effects of amphetamine. However, few studies have examined behavioral effects of BMPEA, DEPEA, and other PEA analogs. OBJECTIVES Here, we examined the reinforcing effects of α-ethylphenethylamine (AEPEA, 1 mg/kg/injection), DEPEA (1 mg/kg/injection), and BMPEA (3 mg/kg/injection) as compared to amphetamine (0.1 mg/kg/injection) using a fixed-ratio 1 self-administration paradigm in male rats. METHODS Male rats were trained in self-administration chambers containing 2 nose-poke holes. A nose-poke response in the active hole delivered drug or saline, whereas a nose-poke response in the inactive hole had no programmed consequence. Four groups of rats were initially trained for 10 days with the doses noted above. Upon acquisition of drug self-administration, a dose-effect function was determined by training rats on 3 additional doses for 3 days each. A separate group of rats was trained with saline. RESULTS Male rats self-administered each PEA analog and amphetamine, as shown by significant increases in active responses versus inactive responses. Subsequent dose-response testing showed clear differences in potency of the compounds. Amphetamine showed a typical inverted U-shaped dose-effect function, peaking at 0.1 mg/kg/injection. AEPEA and DEPEA also showed inverted dose-effect functions, with each peaking at 0.3 mg/kg/injection. BMPEA did not show an inverted U-shaped dose-effect function, but active responding slowly increased up to a dose of 6 mg/kg/injection. CONCLUSIONS Taken together, our findings indicate that dietary supplements containing PEA analogs may have significant abuse liability when used recreationally.
Collapse
Affiliation(s)
- Shelby A McGriff
- Designer Drug Research Unit, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Michael R Chojnacki
- Designer Drug Research Unit, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Eric B Thorndike
- Preclinical Pharmacology Section, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute On Drug Abuse and National Institute of Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, MD, USA
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Charles W Schindler
- Designer Drug Research Unit, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA.
- Preclinical Pharmacology Section, National Institute On Drug Abuse Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
24
|
Abstract
Relapse is a defining feature of smoking and a significant challenge in cessation management. Elucidation of novel factors underlying relapse may inform future treatments. Cotinine, the major metabolite of nicotine, has been shown to support intravenous self-administration in rats, implicating it as one potential factor contributing to nicotine reinforcement. However, it remains unknown whether cotinine would induce relapse-like behaviors. The current study investigated relapse to cotinine seeking in two relapse models, the reinstatement of drug seeking and incubation of drug craving models. In the reinstatement model, rats were trained to self-administer cotinine, underwent extinction of cotinine-associated responses, and were tested for cue-, drug-, or stress-induced reinstatement. Conditioned cues associated with cotinine self-administration, cotinine (1-2 mg/kg), or the pharmacological stressor yohimbine (1.25-2.5 mg/kg) induced reinstatement of cotinine seeking. Female rats displayed more pronounced cue-induced, but not drug- or stress-induced reinstatement than male rats. In the incubation of the craving model, rats were trained to self-administer cotinine and underwent forced withdrawal in home cages. Rats were tested for cue-induced cotinine-seeking on both withdrawal day 1 and withdrawal day 18. Rats exhibited greater cue-induced cotinine-seeking on withdrawal day 18 compared to withdrawal day 1, with no difference between male and female rats. These findings indicate that cotinine induces sex-specific relapse to drug seeking in rats, suggesting that cotinine may contribute to relapse.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
25
|
Morella I, Pohořalá V, Calpe-López C, Brambilla R, Spanagel R, Bernardi RE. Nicotine self-administration and ERK signaling are altered in RasGRF2 knockout mice. Front Pharmacol 2022; 13:986566. [PMID: 36120353 PMCID: PMC9479000 DOI: 10.3389/fphar.2022.986566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been demonstrated to play a role in the effects of drugs of abuse such as cocaine and alcohol, but has not been extensively examined in nicotine-related reward behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2), an upstream mediator of the Ras-ERK signaling pathway, on nicotine self-administration (SA) in RasGRF2 KO and WT mice. We first demonstrated that acute nicotine exposure (0.4 mg/kg) resulted in an increase in phosphorylated ERK1/2 (pERK1/2) in the striatum, consistent with previous reports. We also demonstrated that increases in pERK1/2 resulting from acute (0.4 mg/kg) and repeated (0.4 mg/kg, 10 daily injections) exposure to nicotine in WT mice were not present in RasGRF2 KO mice, confirming that RasGRF2 at least partly regulates the activity of the Ras-ERK signaling pathway following nicotine exposure. We then performed intravenous nicotine SA (0.03 mg/kg/infusion for 10 days) in RasGRF2 KO and WT mice. Consistent with a previous report using cocaine SA, RasGRF2 KO mice demonstrated an increase in nicotine SA relative to WT controls. These findings suggest a role for RasGRF2 in the reinforcing effects of nicotine, and implicate the Ras-ERK signaling pathway as a common mediator of the response to drugs of abuse.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Veronika Pohořalá
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Claudia Calpe-López
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rick E. Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
26
|
Chellian R, Behnood-Rod A, Wilson R, Lin K, King GWY, Ruppert-Gomez M, Teter AN, Febo M, Bruijnzeel AW. Dopamine D1-like receptor blockade and stimulation decreases operant responding for nicotine and food in male and female rats. Sci Rep 2022; 12:14131. [PMID: 35986048 PMCID: PMC9388990 DOI: 10.1038/s41598-022-18081-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine has been implicated in the reinforcing effects of smoking. However, there remains a need for a better understanding of the effects of dopamine D1-like receptor agonists on nicotine intake and the role of sex differences in the effects of dopaminergic drugs on behavior. This work studied the effects of D1-like receptor stimulation and blockade on operant responding for nicotine and food and locomotor activity in male and female rats. The effects of the D1-like receptor antagonist SCH 23390 (0.003, 0.01, 0.03 mg/kg) and the D1-like receptor agonist A77636 (0.1, 0.3, 1 mg/kg) on responding for nicotine and food, and locomotor activity were investigated. The effects of SCH 23390 were investigated 15 min and 24 h after treatment, and the effects of the long-acting drug A77636 were investigated 15 min, 24 h, and 48 h after treatment. Operant responding for nicotine and food and locomotor activity were decreased immediately after treatment with SCH 23390. Treatment with SCH 23390 did not have any long-term effects. Operant responding for nicotine was still decreased 48 h after treatment with A77636, and food responding was decreased up to 24 h after treatment. Treatment with A77636 only decreased locomotor activity at the 48 h time point. There were no sex differences in the effects of SCH 23390 or A77636. In conclusion, the D1-like receptor antagonist SCH 23390 reduces nicotine intake and causes sedation in rats. Stimulation of D1-like receptors with A77636 decreases nicotine intake at time points that the drug does not cause sedation.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Karen Lin
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Grace Wing-Yan King
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcella Ruppert-Gomez
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Alexandria Nicole Teter
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, 1149 Newell Dr., Gainesville, FL, 32611, USA.
| |
Collapse
|
27
|
Valles G, Huebschman JL, Chow E, Kelly C, Guo Y, Smith LN. Jugular Vein Catheter Design and Cocaine Self-Administration Using Mice: A Comprehensive Method. Front Behav Neurosci 2022; 16:880845. [PMID: 35783231 PMCID: PMC9242005 DOI: 10.3389/fnbeh.2022.880845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Intravenous self-administration (IVSA) is a behavioral method of voluntary drug intake in animal models which is used to study the reinforcing effects of drugs of abuse. It is considered to have greater face validity in the study of substance use and abuse than other assays, and thus, allows for valuable insight into the neurobiological basis of addiction, and the development of substance abuse disorders. The technique typically involves surgically inserting a catheter into the jugular vein, which enables the infusion of drug solution after the performance of a desired operant behavior. Two nose- poke ports or levers are offered as manipulanda and are randomly assigned as active (reinforced) or inactive (non-reinforced) to allow for the examination of discrimination in the assessment of learning. Here, we describe our methodological approach to this assay in a mouse model, including construction and surgical implantation of a jugular vein catheter, set up of operant chambers, and considerations during each phase of the operant task.
Collapse
Affiliation(s)
- Gia Valles
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jessica L. Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Elsbeth Chow
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Corinne Kelly
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Laura N. Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- *Correspondence: Laura N. Smith
| |
Collapse
|
28
|
Lunerti V, Li H, Benvenuti F, Shen Q, Domi A, Soverchia L, Concetta Di Martino RM, Bottegoni G, Haass-Koffler CL, Cannella N. The multitarget FAAH inhibitor/D3 partial agonist ARN15381 decreases nicotine self-administration in male rats. Eur J Pharmacol 2022; 928:175088. [PMID: 35690082 DOI: 10.1016/j.ejphar.2022.175088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Tobacco use disorder is a worldwide health problem for which available medications show limited efficacy. Nicotine is the psychoactive component of tobacco responsible for its addictive liability. Similar to other addictive drugs, nicotine enhances mesolimbic dopamine transmission. Inhibition of the fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), reduces nicotine-enhanced dopamine transmission and acquisition of nicotine self-administration in rats. Down-regulation of dopamine transmission by antagonists or partial agonists of the dopamine D3 receptor (DRD3) also reduced nicotine self-administration and conditioned place preference. Based on these premises, we evaluated the effect of ARN15381, a multitarget compound showing FAAH inhibition and DRD3 partial agonist activity in the low nanomolar range, on nicotine self-administration in rats. Pretreatment with ARN15381 dose dependently decreased self-administration of a nicotine dose at the top of the nicotine dose/response (D/R) curve, while it did not affect self-administration of a nicotine dose laying on the descending limb of the D/R curve. Conversely, pretreatment with the selective FAAH inhibitor URB597 and the DRD3 partial agonist CJB090 failed to modify nicotine self-administration independent of the nicotine dose self-administered. Our data indicates that the concomitant FAAH inhibition and DRD3 partial agonism produced by ARN15381 is key to the observed reduction of nicotine self-administration, demonstrating that a multitarget approach may hold clinical importance for the treatment of tobacco use disorder.
Collapse
Affiliation(s)
- Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy; School of Chemical Engineering, Changchun University of Changchung, 130012, China
| | | | - Qianwei Shen
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | | | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom; Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Department of Behavioral and Social Sciences, School of Public Health, Carney Institute for Brain Science, Brown University, USA
| | | |
Collapse
|
29
|
Espinoza VE, Giner P, Liano I, Mendez IA, O'Dell LE. Sex and age differences in approach behavior toward a port that delivers nicotine vapor. J Exp Anal Behav 2022; 117:532-542. [PMID: 35338651 DOI: 10.1002/jeab.756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The goal of our laboratory is to study the mechanisms that promote nicotine use, particularly in vulnerable populations. To more closely mimic human use patterns, the present study employed nicotine vapor methods involving passive exposure for 14 days in adolescent and adult female and male rats. Age and sex differences in approach behavior (nosepokes) were assessed in a port that delivered nicotine plumes on Day 1 and 14 of our exposure regimen. Controls received ambient air in exposure chambers. After the final session, rats received a nicotinic receptor antagonist to precipitate withdrawal. Then, physical signs, anxiety-like behavior, and plasma levels of cotinine (a nicotine metabolite) were assessed. Over time, females displayed a larger increase in approach behavior to the nicotine port than males, an effect that was larger in adolescents. Nosepoke responses in adolescent females were correlated with anxiety-like behavior, but not physical signs of withdrawal. Adolescents gained more weight than adults regardless of treatment, and the weight gain was larger in male adolescents. Female adolescents also displayed the highest levels of cotinine than all other groups. These findings suggest that nicotine vapor produces greater motivational effects in adolescent females as compared to their adult and male counterparts.
Collapse
Affiliation(s)
| | - Priscilla Giner
- Department of Psychology, The University of Texas at El Paso
| | - Isabella Liano
- Department of Psychology, The University of Texas at El Paso
| | - Ian A Mendez
- Department of Pharmaceutical Sciences, The University of Texas at El Paso
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso
| |
Collapse
|
30
|
Carstens E, Carstens MI. Sensory Effects of Nicotine and Tobacco. Nicotine Tob Res 2022; 24:306-315. [PMID: 33955474 PMCID: PMC8842437 DOI: 10.1093/ntr/ntab086] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Ingestion of nicotine by smoking, vaping, or other means elicits various effects including reward, antinociception, and aversion due to irritation, bitter taste, and unpleasant side effects such as nausea and dizziness. AIMS AND METHODS Here we review the sensory effects of nicotine and the underlying neurobiological processes. RESULTS AND CONCLUSIONS Nicotine elicits oral irritation and pain via the activation of neuronal nicotinic acetylcholine receptors (nAChRs) expressed by trigeminal nociceptors. These nociceptors excite neurons in the trigeminal subnucleus caudalis (Vc) and other brainstem regions in a manner that is significantly reduced by the nAChR antagonist mecamylamine. Vc neurons are excited by lingual application of nicotine and exhibit a progressive decline in firing to subsequent applications, consistent with desensitization of peripheral sensory neurons and progressively declining ratings of oral irritation in human psychophysical experiments. Nicotine also elicits a nAChR-mediated bitter taste via excitation of gustatory afferents. Nicotine solutions are avoided even when sweeteners are added. Studies employing oral self-administration have yielded mixed results: Some studies show avoidance of nicotine while others report increased nicotine intake over time, particularly in adolescents and females. Nicotine is consistently reported to increase human pain threshold and tolerance levels. In animal studies, nicotine is antinociceptive when delivered by inhalation of tobacco smoke or systemic infusion, intrathecally, and by intracranial microinjection in the pedunculopontine tegmentum, ventrolateral periaqueductal gray, and rostral ventromedial medulla. The antinociception is thought to be mediated by descending inhibition of spinal nociceptive transmission. Menthol cross-desensitizes nicotine-evoked oral irritation, reducing harshness that may account for its popularity as a flavor additive to tobacco products. IMPLICATIONS Nicotine activates brain systems underlying reward and antinociception, but at the same time elicits aversive sensory effects including oral irritation and pain, bitter taste, and other unpleasant side effects mediated largely by nicotinic acetylcholine receptors (nAChRs). This review discusses the competing aversive and antinociceptive effects of nicotine and exposure to tobacco smoke, and the underlying neurobiology. An improved understanding of the interacting effects of nicotine will hopefully inform novel approaches to mitigate nicotine and tobacco use.
Collapse
Affiliation(s)
- Earl Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| |
Collapse
|
31
|
Giner P, Maynez-Anchondo L, Liley AE, Uribe KP, Frietze GA, Simon NW, Mendez IA. Increased Risky Choice and Reduced CHRNB2 Expression in Adult Male Rats Exposed to Nicotine Vapor. Int J Mol Sci 2022; 23:1231. [PMID: 35163155 PMCID: PMC8835719 DOI: 10.3390/ijms23031231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
While the cognitive enhancing effects of nicotine use have been well documented, it has also been shown to impair decision making. The goal of this study was to determine if exposure to nicotine vapor increases risky decision making. The study also aims to investigate possible long-term effects of nicotine vapor exposure on the expression of genes coding for cholinergic and dopaminergic receptors in brain. Thirty-two adult male Sprague Dawley rats were exposed to 24 mg/mL nicotine vapor or vehicle control, immediately followed by testing in the probability discounting task for 10 consecutive days. Fifty-four days after the 10-day vapor exposure, animals were sacrificed and expression of genes coding for the α4 and β2 cholinergic receptor subunits, and dopamine D1 and D2 receptors, were analyzed using RT-PCR. Exposure to nicotine vapor caused an immediate and transient increase in risky choice. Analyses of gene expression identified significant reductions in CHRNB2 and DRD1 in the nucleus accumbens core and CHRNB2 and DRD2 in the medial prefrontal cortex of rats previously exposed to nicotine vapor, relative to vehicle controls. Results provide data on the negative cognitive effects of nicotine vapor exposure and identify cholinergic and dopaminergic mechanisms that may affected with repeated use.
Collapse
Affiliation(s)
- Priscilla Giner
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.G.); (L.M.-A.); (K.P.U.)
| | - Liliana Maynez-Anchondo
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.G.); (L.M.-A.); (K.P.U.)
| | - Anna E. Liley
- Department of Psychology, The University of Memphis, Memphis, TN 38111, USA; (A.E.L.); (N.W.S.)
| | - Kevin P. Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968, USA; (P.G.); (L.M.-A.); (K.P.U.)
| | - Gabriel A. Frietze
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Nicholas W. Simon
- Department of Psychology, The University of Memphis, Memphis, TN 38111, USA; (A.E.L.); (N.W.S.)
| | - Ian A. Mendez
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
32
|
McNealy KR, Houser SD, Barrett ST, Bevins RA. Investigating sex differences and the effect of drug exposure order in the sensory reward-enhancing effects of nicotine and d-amphetamine alone and in combination. Neuropharmacology 2022; 202:108845. [PMID: 34678376 PMCID: PMC8627442 DOI: 10.1016/j.neuropharm.2021.108845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Nicotine enhances the rewarding effects of other environmental stimuli; this reward-enhancement encourages and maintains nicotine consumption. Nicotine use precedes other psychostimulant use, but receiving a stimulant prescription also predicts future smoking. Previously, no study has investigated effects of drug exposure order in reward-enhancement, nor with nicotine and d-amphetamine. Thus, we aimed to investigate how drug exposure order impacted the reward-enhancing effects of nicotine and d-amphetamine, alone and in combination. We used 20 male and 20 female Sprague-Dawley rats. Enhancement was investigated within-subjects by examining responding maintained by a visual stimulus reinforcer following a pre-session injection of either d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) or nicotine (Sal, 0.03, 0.06, 0.1, 0.3 mg/kg). Twenty rats (10 M, 10 F) completed enhancement testing with nicotine before d-amphetamine. The other 20 rats (10 M, 10 F) completed testing with d-amphetamine before nicotine. Following these phases, rats were then given two pre-session injections: one of d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) and another of nicotine (Sal, 0.03, 0.06, 0.1, or 0.3 mg/kg). Experiencing amphetamine before nicotine increased reward-enhancing effects of nicotine. Females exhibited greater effects of d-amphetamine on reward-enhancement, with no effect of exposure order. During the interaction phase, receiving nicotine before amphetamine enhanced the interaction between nicotine and d-amphetamine for females whereas amphetamine before nicotine heightened this interaction for males. From this, prior and current amphetamine use, in addition to sex, should be considered when treating nicotine dependency and when examining factors driving poly-substance use involving nicotine and d-amphetamine. Keywords: Adderall, ADHD, Dexedrine, operant, smoking, polysubstance use.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Sydney D Houser
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Scott T Barrett
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Rick A Bevins
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| |
Collapse
|
33
|
The emergence of insulin resistance following a chronic high-fat diet regimen coincides with an increase in the reinforcing effects of nicotine in a sex-dependent manner. Neuropharmacology 2021; 200:108787. [PMID: 34571112 DOI: 10.1016/j.neuropharm.2021.108787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
The present study assessed the sex-dependent effects of insulin resistance on the reinforcing effects of nicotine. Female and male rats received a chronic high-fat diet (HFD) or regular diet (RD) for 8 weeks. A subset of rats then received vehicle or a dose of streptozotocin (STZ; 25 mg/kg) that induces insulin resistance. To assess insulin resistance, glucose levels were measured 15, 30, 60, 120, and 180 min after an insulin injection (0.75 U/kg). Nine days later, the rats were given extended access to intravenous self-administration (IVSA) of nicotine (0.015, 0.03, 0.06 mg/kg) in an operant box where they consumed their respective diet ad libitum and performed responses for water deliveries. Each nicotine dose was delivered for 4 days with 3 intermittent days of abstinence in their home cage. The day after the last IVSA session, physical signs were compared following administration of mecamylamine (3.0 mg/kg) to precipitate nicotine withdrawal. The results revealed that there were no changes in insulin resistance or nicotine intake in HFD alone rats regardless of sex. Insulin resistance was observed in HFD-fed rats that received STZ, and the magnitude of this effect was greater in males versus females. Our major finding was that nicotine intake was greater among HFD + STZ female rats as compared to males. Lastly, the physical signs of withdrawal were similar across all groups. Our results suggest that females diagnosed with disorders that disrupt insulin signaling, such as diabetes may be at risk of greater vulnerability to nicotine use due to enhanced reinforcing effects of this drug.
Collapse
|
34
|
Bagdas D, Rupprecht LE, Nunes EJ, Schillinger E, Immanuel JJ, Addy NA. Evaluation of Flavor Effects on Oral Nicotine Liking and/or Disliking Using the Taste Reactivity Test in Rats. Nicotine Tob Res 2021; 24:753-760. [PMID: 34918123 DOI: 10.1093/ntr/ntab241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Tobacco product flavors may change the sensory properties of nicotine, such as taste and olfactory cues, which may alter nicotine reward and aversion and nicotine taking behavior. The hedonic or aversive value of a taste stimulus can be evaluated by examining affective orofacial movements in rodents. AIMS AND METHODS We characterized taste responses to various oral nicotine concentrations using the taste reactivity test in rats. We also evaluated the impact of menthol and benzaldehyde (cherry, almond) flavorants on both ingestive and aversive responses to oral nicotine. Adult Sprague-Dawley rats (n = 5-10 per sex per group) were implanted with intraoral catheters and received 20 infusions (200 µl/ea). Nicotine (1-100 µg/mL) was evaluated in taste reactivity test to determine taste responses to nicotine. Later, the effects of menthol (50 µg/mL) and benzaldehyde (100 µg/mL) on the taste responses to nicotine were determined. RESULTS Nicotine at low concentrations (3 µg/mL in males, 1 µg/mL in females) elicited significantly greater ingestive responses compared with water, whereas higher nicotine concentrations (≥30 µg/mL in males, ≥10 µg/mL in females) elicited significant aversive reactions. Thus, intraoral nicotine induced both hedonic and aversive responses in a concentration- and sex-dependent manner. Females were more sensitive to nicotine's concentration. The addition of menthol or benzaldehyde significantly increased the hedonic responses to nicotine, and significantly decreased the aversive nicotine responses. CONCLUSIONS Oral nicotine induces both hedonic and aversive taste responses, which may represent liking and disliking. Menthol and benzaldehyde can alter the orosensory experience of nicotine, which may influence nicotine's abuse liability. IMPLICATIONS Our work represents a model to study impact of flavors on oral nicotine liking and disliking responses in rats. Moreover, our findings show that menthol and benzaldehyde alter the orosensory experience of nicotine, suggesting that both could influence nicotine's abuse liability.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eric J Nunes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Emma Schillinger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Judah J Immanuel
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Yale Tobacco Center of Regulatory Science, Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
35
|
Lallai V, Chen YC, Roybal MM, Kotha ER, Fowler JP, Staben A, Cortez A, Fowler CD. Nicotine e-cigarette vapor inhalation and self-administration in a rodent model: Sex- and nicotine delivery-specific effects on metabolism and behavior. Addict Biol 2021; 26:e13024. [PMID: 33624410 PMCID: PMC8380743 DOI: 10.1111/adb.13024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
E-cigarettes, which deliver vaporized nicotine, have dramatically risen in popularity in recent years, despite many unanswered questions about safety, efficacy in reducing dependence, and overall impact on public health. Other factors, such as sex, also play an important role in determining behavioral and neurochemical responses to drugs of abuse. In these studies, we sought to develop a protocol for vaporized e-cigarette nicotine self-administration in rats, as a foundation to better understand the differing effects of nicotine exposure routes on behavior and physiological function. We report a novel method that elicits robust nicotine vapor self-administration in male and female rats. Our findings indicate that 5-mg/ml nicotine vape solution provides a high level of consistency in lever-pressing behavior for both males and females. Moreover, in male rats, we find that such e-cigarette nicotine vapor induces similar blood levels of nicotine's main metabolite, cotinine, as that found with intravenous nicotine self-administration. Therefore, the breathing pattern during vapor exposure in males leads to similar levels of titrated nicotine intake as with intravenous nicotine self-administration. Interestingly, a differential effect was found in the females, in which the same conditions of vapor exposure led to decreased cotinine levels with vapor compared to intravenous self-administration. Finally, differences in nicotine-mediated locomotion provide further support of the physiological effects of e-cigarette vapor inhalation. Taken together, our findings reveal important sex differences in nicotine intake based on the route of exposure, and we further establish a protocol for nicotine vapor self-administration in rats.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Mikayla M Roybal
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Eashan R Kotha
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - James P Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Andres Staben
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Angelique Cortez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA
| |
Collapse
|
36
|
Levin ED, Wells C, Pace C, Abass G, Hawkey A, Holloway Z, Rezvani AH, Rose JE. Self-administration by female rats of low doses of nicotine alone vs. nicotine in tobacco smoke extract. Drug Alcohol Depend 2021; 228:109073. [PMID: 34600263 DOI: 10.1016/j.drugalcdep.2021.109073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nicotine has reinforcing effects, but there are thousands of other compounds in tobacco, some of which might interact with nicotine reinforcement. AIMS This rat study was conducted to determine if nicotine self-administration is altered by co-administration of the complex mixture of compounds in tobacco smoke extract (TSE). METHODS Female Sprague-Dawley rats were tested for self-administration of low doses of nicotine (3 or 10 µg/kg/infusion) at three different rates of reinforcement (FR1, FR3 and FR5) over three weeks either alone or together with the complex mixture of tobacco smoke extract (TSE). RESULTS Rats self-administering 3 µg/kg/infusion of nicotine alone showed a rapid initiation on an FR1 schedule, but declined with FR5. Rats self-administering nicotine in TSE acquired self-administration more slowly, but increased responding over the course of the study. With 10 µg/kg/infusion rats self-administered significantly more nicotine alone than rats self-administering the same nicotine dose in TSE. Rats self-administering nicotine alone took significantly more infusions with the 10 than the 3 µg/kg/infusion dose, whereas rats self-administering nicotine in TSE did not. Nicotine in TSE led to a significantly greater locomotor hyperactivity at a dose of 0.1 mg/kg compared to rats that received nicotine alone. Rats self-administering nicotine alone had significantly more responding on the active vs. inactive lever, but rats self-administering the same nicotine doses in TSE did not. CONCLUSIONS Self-administration of nicotine in a purer form appears to be more clearly discriminated and dose-related than nicotine self-administered in the complex mixture of TSE.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Corinne Wells
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Pace
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Grant Abass
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jed E Rose
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
37
|
Moen JK, Lee AM. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front Neurosci 2021; 15:745783. [PMID: 34621155 PMCID: PMC8490611 DOI: 10.3389/fnins.2021.745783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.
Collapse
Affiliation(s)
- Janna K Moen
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Anna M Lee
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States.,Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
38
|
Kozlova A, Butler RR, Zhang S, Ujas T, Zhang H, Steidl S, Sanders AR, Pang ZP, Vezina P, Duan J. Sex-specific nicotine sensitization and imprinting of self-administration in rats inform GWAS findings on human addiction phenotypes. Neuropsychopharmacology 2021; 46:1746-1756. [PMID: 34007041 PMCID: PMC8358005 DOI: 10.1038/s41386-021-01027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023]
Abstract
Repeated nicotine exposure leads to sensitization (SST) and enhances self-administration (SA) in rodents. However, the molecular basis of nicotine SST and SA and their biological relevance to the mounting genome-wide association study (GWAS) loci of human addictive behaviors are poorly understood. Considering a gateway drug role of nicotine, we modeled nicotine SST and SA in F1 progeny of inbred rats (F344/BN) and conducted integrative genomics analyses. We unexpectedly observed male-specific nicotine SST and a parental effect of SA only present in paternal F344 crosses. Transcriptional profiling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) core and shell further revealed sex- and brain region-specific transcriptomic signatures of SST and SA. We found that genes associated with SST and SA were enriched for those related to synaptic processes, myelin sheath, and tobacco use disorder or chemdependency. Interestingly, SST-associated genes were often downregulated in male VTA but upregulated in female VTA, and strongly enriched for smoking GWAS risk variants, possibly explaining the male-specific SST. For SA, we found widespread region-specific allelic imbalance of expression (AIE), of which genes showing AIE bias toward paternal F344 alleles in NAc core were strongly enriched for SA-associated genes and for GWAS risk variants of smoking initiation, likely contributing to the parental effect of SA. Our study suggests a mechanistic link between transcriptional changes underlying the NIC SST and SA and human nicotine addiction, providing a resource for understanding the neurobiology basis of the GWAS findings on human smoking and other addictive phenotypes.
Collapse
Affiliation(s)
- Alena Kozlova
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL USA ,grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Robert R. Butler
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL USA ,grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Siwei Zhang
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL USA ,grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Thomas Ujas
- grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Hanwen Zhang
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL USA
| | - Stephan Steidl
- grid.164971.c0000 0001 1089 6558Department of Psychology, Loyola University Chicago, Chicago, IL USA
| | - Alan R. Sanders
- grid.240372.00000 0004 0400 4439Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL USA ,grid.170205.10000 0004 1936 7822Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL USA
| | - Zhiping P. Pang
- grid.430387.b0000 0004 1936 8796Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ USA
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA.
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA. .,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Leyrer-Jackson JM, Overby PF, Bull A, Marusich JA, Gipson CD. Strain and sex matters: Differences in nicotine self-administration between outbred and recombinase-driver transgenic rat lines. Exp Clin Psychopharmacol 2021; 29:375-384. [PMID: 32297781 PMCID: PMC8375641 DOI: 10.1037/pha0000376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical studies of nicotine self-administration provide important value for the field as they are highly rigorous, controlled, can be conducted quickly, and are generalizable to humans. Given the translational value of the nicotine self-administration model, and the relatively new guidelines of the National Institutes of Health to include sex as a biological variable, strain and sex differences in nicotine acquisition were examined here in two outbred rat strains. Sprague-Dawley (SD) and Long-Evans (LE; wildtype and cholinergic acetyltransferase cre-recombinase transgenic) rats of each sex were implanted with indwelling intravenous jugular catheters. Rats were trained to self-administer nicotine (0.02 mg/kg per infusion, paired with contingent light + tone stimuli). Acquisition criteria were set at a minimum active:inactive response ratio of 2:1 and a minimum of 10 infusions per session, both of which had to be met for a minimum of 10 sessions. Across 10 sessions, male SD rats self-administered significantly more nicotine than female SD rats (p < .05), indicating a sex difference in this strain. LE females self-administered more nicotine than SD females indicative of a strain difference between females (p < .05). SD males increased nicotine infusions across sessions compared to LE males and SD females (p < .05). No strain or sex differences were observed in the number of sessions to reach criteria. No differences between wildtype and transgenic LE rats were observed. These results demonstrate sex and strain differences in nicotine self-administration between SD and LE rats and may lend insight into development of other nicotine self-administration models, where sex and strain may impact acquisition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Paula F. Overby
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Amanda Bull
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Julie A. Marusich
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina, USA
| | - Cassandra D. Gipson
- Department of Family and Community Medicine, University of Kentucky, Lexington Kentucky, USA
| |
Collapse
|
40
|
Lee AM, Mansuri MS, Wilson RS, Lam TT, Nairn AC, Picciotto MR. Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Front Mol Neurosci 2021; 14:657064. [PMID: 34335180 PMCID: PMC8317211 DOI: 10.3389/fnmol.2021.657064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Sex differences in behaviors relevant to nicotine addiction have been observed in rodent models and human subjects. Behavioral, imaging, and epidemiological studies also suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus accumbens (NAc) shell in male and female mice. Experimental groups included two mouse strains (C3H/HeJ and C57BL/6J) at baseline, a sub-chronic, rewarding regimen of nicotine in C3H/HeJ mice, and chronic nicotine administration and withdrawal in C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and tandem mass spectrometry were used to quantify changes in protein abundance. In C3H/HeJ mice, similar numbers of proteins were differentially regulated between sexes at baseline compared with within each sex after sub-chronic nicotine administration. In C57BL/6J mice, there were significantly greater numbers of proteins differentially regulated between sexes at baseline compared with within each sex after chronic nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1r1b) were repeatedly identified as significantly altered proteins, especially in the VTA. Further, network analyses showed sex- and nicotine-dependent regulation of a number of signaling pathways, including dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased proteins related to dopaminergic signaling in the NAc shell but decreased them in the VTA, whereas the opposite pattern was observed in male mice. In contrast, dopaminergic signaling pathways were similarly upregulated in both male and female VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex differences in the proteome of the mesolimbic system, at baseline and after nicotine reward or withdrawal, which may help explain differential trajectories and susceptibility to nicotine addiction in males and females.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale/NIDA Neuroproteomics Center, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| |
Collapse
|
41
|
Flores RJ, Alshbool FZ, Giner P, O'Dell LE, Mendez IA. Exposure to nicotine vapor produced by an electronic nicotine delivery system causes short-term increases in impulsive choice in adult male rats. Nicotine Tob Res 2021; 24:358-365. [PMID: 34232312 DOI: 10.1093/ntr/ntab141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Traditional cigarette use influences cost-benefit decision making by promoting impulsive choice. However, the impact of exposure via electronic nicotine delivery systems on impulsive choice remains unclear. Hence, the present study examined the short- and long-term effects of nicotine vapor on impulsive choice. METHODS Twenty-four adult male rats were trained in the delay discounting task, to choose between small, immediate food rewards or large, delayed food rewards. After 24 days of training in the task, rats were exposed to vapor containing either 0, 12, or 24 mg/mL of nicotine, for ten days. To validate inhalation of nicotine vapor, serum cotinine levels were analyzed on exposure days 1, 5, and 10 using enzyme-linked immunosorbent assay (ELISA). Following vapor exposure, rats were retrained in the discounting task until rats displayed stable responding, and the effects of nicotine vapor on choice preference were assessed. RESULTS Rats exposed to 12 and 24 mg/mL nicotine vapor displayed higher serum cotinine levels than control rats exposed to 0 mg/mL vapor. There were no differences in impulsive choice between any vapor exposure groups when tested 15 days after exposure, across 6 days of stable responding, suggesting that nicotine vapor does not have long lasting effects on impulsive choice. Interestingly, a subsequent nicotine vapor challenge revealed short-term increases in impulsive choice immediately following a single exposure to 24 mg/mL nicotine vapor, relative to choice preference immediately following exposure to 0 mg/mL vapor. CONCLUSIONS These results suggest that exposure to nicotine vapor causes immediate, short-term increases in impulsive choice. IMPLICATIONS E-cigarette use is increasing at an alarming rate, particularly among adolescents and young adults. This is concerning given the lack of research into the effects of nicotine vapor exposure on the brain and behavior. The present study describes a viable rodent model of human e-cigarette use and suggest that exposure to nicotine vapor produces short-term increases in impulsive choice.
Collapse
Affiliation(s)
- Rodolfo J Flores
- The University of Texas at El Paso, Department of Psychology, El Paso, Texas, USA
| | - Fatima Z Alshbool
- Texas A&M University, Irma Lerma Rangel College of Pharmacy, Department of Pharmacy Practice, Kingsville, Texas, USA
| | - Priscilla Giner
- The University of Texas at El Paso, School of Pharmacy, Department of Pharmaceutical Sciences, El Paso, Texas, USA
| | - Laura E O'Dell
- The University of Texas at El Paso, Department of Psychology, El Paso, Texas, USA
| | - Ian A Mendez
- The University of Texas at El Paso, School of Pharmacy, Department of Pharmaceutical Sciences, El Paso, Texas, USA
| |
Collapse
|
42
|
Humburg BA, Jordan CJ, Zhang H, Shen H, Han X, Bi G, Hempel B, Galaj E, Baumann MH, Xi Z. Optogenetic brain-stimulation reward: A new procedure to re-evaluate the rewarding versus aversive effects of cannabinoids in dopamine transporter-Cre mice. Addict Biol 2021; 26:e13005. [PMID: 33538103 DOI: 10.1111/adb.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/04/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Despite extensive research, the rewarding effects of cannabinoids are still debated. Here, we used a newly established animal procedure called optogenetic intracranial self-stimulation (ICSS) (oICSS) to re-examine the abuse potential of cannabinoids in mice. A specific adeno-associated viral vector carrying a channelrhodopsin gene was microinjected into the ventral tegmental area (VTA) to express light-sensitive channelrhodopsin in dopamine (DA) neurons of transgenic dopamine transporter (DAT)-Cre mice. Optogenetic stimulation of VTA DA neurons was highly reinforcing and produced a classical "sigmoidal"-shaped stimulation-response curve dependent upon the laser pulse frequency. Systemic administration of cocaine dose-dependently enhanced oICSS and shifted stimulation-response curves upward, in a way similar to previously observed effects of cocaine on electrical ICSS. In contrast, Δ9 -tetrahydrocannabinol (Δ9 -THC), but not cannabidiol, dose-dependently decreased oICSS responding and shifted oICSS curves downward. WIN55,212-2 and ACEA, two synthetic cannabinoids often used in laboratory settings, also produced dose-dependent reductions in oICSS. We then examined several new synthetic cannabinoids, which are used recreationally. XLR-11 produced a cocaine-like increase, AM-2201 produced a Δ9 -THC-like reduction, while 5F-AMB had no effect on oICSS responding. Immunohistochemistry and RNAscope in situ hybridization assays indicated that CB1 Rs are expressed mainly in VTA GABA and glutamate neurons, while CB2 Rs are expressed mainly in VTA DA neurons. Together, these findings suggest that most cannabinoids are not reward enhancing, but rather reward attenuating or aversive in mice. Activation of CB1 R and/or CB2 R in different populations of neurons in the brain may underlie the observed actions.
Collapse
Affiliation(s)
- Bree A. Humburg
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Chloe J. Jordan
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Hai‐Ying Zhang
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Hui Shen
- Synaptic Plasticity Section, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Xiao Han
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Guo‐Hua Bi
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Briana Hempel
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Michael H. Baumann
- Designer Drug Research Unit, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| | - Zheng‐Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery, Intramural Research Program National Institute on Drug Abuse Baltimore Maryland USA
| |
Collapse
|
43
|
Smethells JR, Burroughs D, Saykao A, Pentel PR, Rezvani AH, LeSage MG. The reinforcement threshold and elasticity of demand for nicotine in an adolescent rat model of depression. Drug Alcohol Depend 2021; 219:108433. [PMID: 33310485 PMCID: PMC7855441 DOI: 10.1016/j.drugalcdep.2020.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Food and Drug Administration (FDA) is considering setting a nicotine standard for tobacco products to reduce their addictiveness. Such a standard should account for the apparent greater vulnerability to nicotine addiction in some subpopulations, such as adolescents with depression. The present study examined whether the reinforcement threshold and elasticity of demand (i.e., reinforcing efficacy) for nicotine in a genetic inbred rat model of depression (Flinders Sensitive Line [FSL]) differs from an outbred control strain. METHODS Acquisition of nicotine self-administration (NSA) across a wide range of nicotine doses was measured in both FSL and Sprague-Dawley (SD) control adolescent rats. At the highest dose, elasticity of demand was also measured. Nicotine pharmacokinetics was examined to determine whether it might modulate NSA, as it does smoking in humans. RESULTS FSL rats acquired self-administration quicker and showed more inelastic demand (greater reinforcing efficacy) than SDs at the highest unit dose. However, there was no strain difference in the reinforcement threshold of nicotine. FSL rats exhibited faster nicotine clearance, larger volume of distribution, and lower plasma and brain nicotine concentrations. However, these differences were not consistently related to strain differences in NSA measures. CONCLUSION These findings are consistent with studies showing greater dependence and reinforcing efficacy of cigarettes in smokers with depression and those with relatively fast nicotine metabolism. However, these findings also suggest that a nicotine standard to reduce initiation of tobacco use should be similarly effective in both the general adolescent population and those with depression.
Collapse
Affiliation(s)
- John R. Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | | | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, MN
| | - Paul R. Pentel
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN
| | - Amir H. Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, MN,Departments of Medicine and Pharmacology, University of Minnesota Medical School, Minneapolis, MN,Department of Psychology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
44
|
Chellian R, Wilson R, Polmann M, Knight P, Behnood-Rod A, Bruijnzeel AW. Evaluation of Sex Differences in the Elasticity of Demand for Nicotine and Food in Rats. Nicotine Tob Res 2020; 22:925-934. [PMID: 31603225 DOI: 10.1093/ntr/ntz171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Animal studies can inform policy regarding nicotine levels in tobacco products and e-cigarette solutions. Increasing the price of nicotine-containing products decreases their use, but it is unknown how the relationship between price and consumption is affected by both sex and nicotine dose. METHODS A behavioral economics procedure was used to determine the demand elasticity for nicotine in male and female rats. Demand elasticity describes the relationship between price and consumption. A high level of elasticity indicates that consumption is relatively sensitive to increases in price. The rats self-administered a low dose (0.01 mg/kg/inf) or a standard dose (0.03 mg/kg/inf) of nicotine for 9 days under a fixed-ratio (FR) 1 schedule. Then the price (FR schedule) of nicotine was increased, and a demand analysis was conducted. A similar study was conducted with palatable food pellets. RESULTS There were no sex differences in nicotine or food intake under the FR1 schedule. However, demand for 0.03 mg/kg/inf of nicotine was more elastic in females than males. Demand for 0.01 mg/kg/inf of nicotine and food was more elastic in males than females. CONCLUSIONS These findings indicate that there are no differences in nicotine and food intake between males and females when the price is low. When the price of nicotine or food is increased, males maintain their old level of intake longer than females when they have access to a standard dose of nicotine, and females maintain their intake longer when they have access to a low dose of nicotine or food. IMPLICATIONS This behavioral economics analysis indicates that there is no sex difference in nicotine intake when the price of nicotine is low. Increasing the price of nicotine decreases nicotine intake in a dose- and sex-specific manner. Males maintain their old level of intake longer when they have access to a standard dose of nicotine and females when they have access to a low dose. This has implications for tobacco regulatory policy. In a regulatory environment where only low nicotine-containing products are allowed, increasing the price of nicotine products may lead to a greater decrease in nicotine use in males than females.
Collapse
Affiliation(s)
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Michaela Polmann
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL.,Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
45
|
Parise LF, Sial OK, Warren BL, Sattler CR, Duperrouzel JC, Parise EM, Bolaños-Guzmán CA. Nicotine treatment buffers negative behavioral consequences induced by exposure to physical and emotional stress in adolescent male mice. Psychopharmacology (Berl) 2020; 237:3125-3137. [PMID: 32594187 PMCID: PMC7819755 DOI: 10.1007/s00213-020-05598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.
Collapse
Affiliation(s)
- Lyonna F Parise
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Omar K Sial
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Brandon L Warren
- Department of Pharmacodynamics, Department of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Carley R Sattler
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Jacqueline C Duperrouzel
- Department of Psychology, Florida International University, 11200 S.W. 8th St., Miami, FL, 33199, USA
| | - Eric M Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
46
|
Chellian R, Behnood-Rod A, Wilson R, Kamble SH, Sharma A, McCurdy CR, Bruijnzeel AW. Adolescent nicotine and tobacco smoke exposure enhances nicotine self-administration in female rats. Neuropharmacology 2020; 176:108243. [PMID: 32702403 DOI: 10.1016/j.neuropharm.2020.108243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Most people start experimenting with tobacco products or e-cigarettes in early adolescence and become habitual smokers in late adolescence or adulthood. These studies investigated if exposure to tobacco smoke or nicotine during early and mid-adolescence affects nicotine intake in late adolescence and early adulthood. Male and female rats were exposed to tobacco smoke from low- and high-nicotine SPECTRUM cigarettes or nicotine (0.3 mg/kg, twice a day) from postnatal day (P) 24-42. The self-administration sessions started at P55. The rats self-administered nicotine for 14-15 days under a fixed-ratio 1 schedule, and on the first day, the maximum number of infusions was twenty. Exposure to smoke from high, but not low, nicotine cigarettes during adolescence increased nicotine self-administration in female but not male rats. Adolescent treatment with nicotine facilitated nicotine self-administration. On the first day of nicotine self-administration, nicotine-treated rats reached the maximum number of infusions before the saline-treated control rats. Nicotine intake was also higher in the nicotine-treated female rats than in the saline-treated females. There was no sex difference in nicotine intake in controls when the data from the studies were combined. Smoke exposure led to a dose-dependent increase in plasma nicotine and cotinine levels in adolescent rats. Exposure to smoke from high-nicotine cigarettes and 0.3 mg/kg of nicotine led to plasma nicotine and cotinine levels that are similar to those in tobacco users. These findings indicate that in females, but not males, exposure to nicotine during adolescence may facilitate smoking and e-cigarette use later in life.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
47
|
Chellian R, Behnood-Rod A, Wilson R, Wilks I, Knight P, Febo M, Bruijnzeel AW. Exposure to smoke from high- but not low-nicotine cigarettes leads to signs of dependence in male rats and potentiates the effects of nicotine in female rats. Pharmacol Biochem Behav 2020; 196:172998. [PMID: 32681850 DOI: 10.1016/j.pbb.2020.172998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023]
Abstract
Nicotine is only mildly rewarding, but after becoming dependent, it is difficult to quit smoking. The goal of these studies was to determine if low-nicotine cigarettes are less likely to cause dependence and enhance the reinforcing effects of nicotine than regular high-nicotine cigarettes. Male and female rats were exposed to tobacco smoke with a low or high nicotine level for 35 days. It was investigated if smoke exposure affects the development of dependence, anxiety- and depressive-like behavior, and nicotine-induced behavioral sensitization. Smoke exposure did not affect locomotor activity in a small open field or sucrose preference. Mecamylamine precipitated somatic withdrawal signs in male rats exposed to smoke with a high level of nicotine, but not in male rats exposed to smoke with a low level of nicotine or in females. After cessation of smoke exposure, there was a small decrease in sucrose preference in the male rats, which was not observed in the females. Cessation of smoke exposure did not affect anxiety-like behavior in the large open field or the elevated plus maze test. Female rats displayed less anxiety-like behavior in both these tests. Repeated treatment with nicotine increased locomotor activity, rearing, and stereotypies. Prior exposure to smoke with a high level of nicotine increased nicotine-induced rearing in the females. These findings indicate that exposure to smoke with a low level of nicotine does not lead to dependence and does not potentiate the effects of nicotine. Exposure to smoke with a high level of nicotine differently affects males and females.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Isaac Wilks
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Parker Knight
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
48
|
Cepeda-Benito A. Nicotine Effects, Body Weight Concerns and Smoking: A Literature Review. Curr Pharm Des 2020; 26:2316-2326. [PMID: 32233995 DOI: 10.2174/1381612826666200401083040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
How people become addicted to cigarette smoking and remain addicted despite repeated attempts to quit requires piecing together a rather complex puzzle. The present review contextualizes the role of nicotine and smoking sensory stimulation on maintaining smoking, describes nicotine's effects on feeding behavior and body weight, and explores the impact of smoking outcome expectancies, including the belief that nicotine suppresses appetite and body weight, on the decision to smoke or vape (use of e-cigarettes). The analysis concludes with a review of rat models of human nicotine intake that attempt to isolate the effects of nicotine on appetite and weight gain. Animal research replicates with relative closeness phenomena observed in smokers, but the rat model falls short of replicating the long-term weight gain observed post-smoking cessation.
Collapse
Affiliation(s)
- Antonio Cepeda-Benito
- Department of Psychological Science, Department of Medicine, University of Vermont Cancer Center, University of Vermont, Vermont, United States
| |
Collapse
|
49
|
Bruijnzeel AW. Shifting Frontiers in Basic Research on Nicotine and Tobacco Products. Nicotine Tob Res 2020; 22:145-146. [PMID: 31566234 PMCID: PMC7004227 DOI: 10.1093/ntr/ntz190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 11/14/2022]
Affiliation(s)
- Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
50
|
Uribe KP, Correa VL, Pinales BE, Flores RJ, Cruz B, Shan Z, Bruijnzeel AW, Khan AM, O'Dell LE. Overexpression of corticotropin-releasing factor in the nucleus accumbens enhances the reinforcing effects of nicotine in intact female versus male and ovariectomized female rats. Neuropsychopharmacology 2020; 45:394-403. [PMID: 31614362 PMCID: PMC6901467 DOI: 10.1038/s41386-019-0543-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/18/2022]
Abstract
This study assessed the role of stress systems in the nucleus accumbens (NAc) in promoting sex differences in the reinforcing effects of nicotine. Intravenous self-administration (IVSA) of various doses of nicotine was compared following overexpression of corticotropin-releasing factor (CRF) in the NAc of female and male rats. Ovariectomized (OVX) females were also included to assess the role of ovarian hormones in promoting nicotine reinforcement. Rats received intra-NAc administration of an adeno-associated vector that overexpressed CRF (AAV2/5-CRF) or green fluorescent protein (AAV2/5-GFP). All rats were then given extended access (23 h/day) to an inactive and an active lever that delivered nicotine. Separate groups of rats received intra-NAc AAV2/5-CRF and saline IVSA. Rats were also allowed to nose-poke for food and water during IVSA testing. At the end of the study, the NAc was dissected and rt-qPCR methods were used to estimate CRF overexpression and changes in CRF receptors (CRFr1, CRFr2) and the CRF receptor internalizing protein, β-arrestin2 (Arrb2). Overexpression of CRF in the NAc increased nicotine IVSA to a larger extent in intact female versus male and OVX females. Food intake was increased to a larger extent in intact and OVX females as compared to males. The increase in CRF gene expression was similar across all groups; however, in females, overexpression of CRF resulted in a larger increase in CRFr1 and CRFr2 relative to males. In males, overexpression of CRF produced a larger increase in Arrb2 than females, suggesting greater CRF receptor internalization. Our results suggest that stress systems in the NAc promote the reinforcing effectiveness of nicotine in female rats in an ovarian hormone-dependent manner.
Collapse
Affiliation(s)
- Kevin P Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Victor L Correa
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Briana E Pinales
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rodolfo J Flores
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, 49931, USA
| | | | - Arshad M Khan
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|