1
|
Richard SA. Pathological Mechanisms of Irradiation-Induced Neurological Deficits in the Developing Brain. Eur J Neurosci 2025; 61:e70070. [PMID: 40098303 DOI: 10.1111/ejn.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cranial irradiation or radiotherapy (CRT) is one of the essential therapeutic modalities for central nervous system (CNS) tumors, and its efficacy is well known. Nevertheless, CRT is also associated with brain damages such as focal cerebral necrosis, neuroinflammation, cerebral microvascular anomalies, neurocognitive dysfunction, and hormone deficiencies in children. Children's brains are much more sensitive to CRT compared to the adult's brains. Thus, children's brains are also more likely to develop long-term CRT complication, which severely lessens their long-term quality of life after treatment. CRT to the juvenile rat led to a retardation of growth of the cerebellum; both the gray and white matter and neurogenic regions like the subventricular zone and the dentate gyrus in the hippocampus were predominantly vulnerable to CRT. Also, CRT-induced cognitive changes typically manifested as deficits in hippocampal-related functions of learning as well as memory, such as spatial information processing. Fractionated CRT-stimulated cognitive decline and hormone deficiencies were precisely associated with augmented neuronal cell death, blockade of neurogenesis, and stimulation of astrocytes and microglia. Thus, the aim of this review is to highlight the pathological mechanism of CRT-induced neurological deficits in the developing brain.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ma L, Qiao N, Zou Y, Wang H, Wang Y, Zhi W, Zhao X, Xu X, Zhang M, Lin Z, Hu X, Wang L. Impact of Microwave Exposure on Cynomolgus Monkeys: EEG and ECG Analysis. Bioelectromagnetics 2025; 46:e70000. [PMID: 39912376 DOI: 10.1002/bem.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The annual increase of microwave exposure in human environments continues to fuel debates regarding its potential health impacts. This study monitored the EEG and ECG responses of three Cynomolgus monkeys before and at 0, 3, 7, 14, and 30 days after exposure to 50 mW/cm² microwave radiation for 15 min. The findings revealed no significant differences in the power spectral densities (PSDs) of the whole brain, frontal, and temporal lobes across various frequency bands (δ, θ, α, β, low-γ, and high-γ) immediately and up to 30 days postexposure. Notable alterations were observed primarily at 14 days in the PSDs of the parietal lobe, prefrontal cortex, central zone, and occipital lobe, particularly in the θ and α bands. By Day 30, these values returned to normal ranges. ECG alterations were characterized by changes in T-wave shape and amplitude. One monkey exhibited bidirectional spikes at 7 and 14 days that normalized by Day 30. Another showed similar patterns with reduced amplitude, and a third monkey displayed a towering forward wave at 14 days that persisted at 30 days. In conclusion, the administration of L-band microwave radiation at the specified dose did not result in immediate alterations to EEG and ECG, but it induced transient modifications in brain electrical activity and normalized after 30 days, which contributed to evaluate the health implications of microwave exposure in humans.
Collapse
Affiliation(s)
- Lizhen Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Nan Qiao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuchen Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Zhongwu Lin
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
3
|
Xin Y, Guan ST, Ren K, Wang H, Dong J, Wang HY, Zhang J, Xu XP, Yao BW, Zhao L, Shi CX, Peng RY. Microwave Radiation Caused Dynamic Metabolic Fluctuations in the Mammalian Hippocampus. Metabolites 2024; 14:354. [PMID: 39057677 PMCID: PMC11278544 DOI: 10.3390/metabo14070354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
To investigate the dynamic changes in hippocampal metabolism after microwave radiation using liquid chromatography in tandem with mass spectrometry/mass spectrometry (LC-MS/MS) and to identify potential biomarkers. Wistar rats were randomly assigned to a sham group and a microwave radiation group. The rats in the microwave radiation group were exposed to 2.856 GHz for 15 min for three times, with 5 min intervals. The rats in the sham group were not exposed. Transmission electron microscope revealed blurring of the synaptic cleft and postsynaptic dense thickening in hippocampal neurons after microwave radiation. Metabolomic analysis revealed 38, 24, and 39 differentially abundant metabolites at 3, 7, and 14 days after radiation, respectively, and the abundance of 9 metabolites, such as argininosuccinic acid, was continuously decreased. After microwave radiation, the abundance of metabolites such as argininosuccinic acid was successively decreased, indicating that these metabolites could be potential biomarkers for hippocampal tissue injury.
Collapse
Affiliation(s)
- Yu Xin
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Shu-Ting Guan
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ke Ren
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hui Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Ji Dong
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Hao-Yu Wang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Jing Zhang
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Xin-Ping Xu
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Bin-Wei Yao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Li Zhao
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| | - Chang-Xiu Shi
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
| | - Rui-Yun Peng
- School of Education, Hebei University, Baoding 071002, China; (Y.X.); (K.R.)
- Institute of Radiation Medicine, Beijing 100850, China; (S.-T.G.); (H.W.); (J.D.); (H.-Y.W.); (J.Z.); (X.-P.X.); (B.-W.Y.)
| |
Collapse
|
4
|
Lai Y, Wang H, Xu X, Dong J, Song Y, Zhao H, Wu Y, Zhao L, Wang H, Zhang J, Yao B, Zou Y, Zhou H, Peng R. Hippocampal ferroptosis is involved in learning and memory impairment in rats induced by microwave and electromagnetic pulse combined exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83717-83727. [PMID: 37349489 PMCID: PMC10359380 DOI: 10.1007/s11356-023-28280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Microwave (MW) and electromagnetic pulse (EMP) are considered environmental pollutants, both of which can induce learning and memory impairments. However, the bioeffects of combined exposure to MW and EMP have never been explored. This paper aimed to investigate the effects of combined exposure to MW and EMP on the learning and memory of rats as well as its association with ferroptosis in the hippocampus. In this study, rats were exposed to EMP, MW, or EMP and MW combined radiation. After exposure, impairment of learning and memory, alterations in brain electrophysiological activity, and damage to hippocampal neurons were observed in rats. Moreover, we also found alterations in ferroptosis hallmarks, including increased levels of iron, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, as well as downregulation of glutathione peroxidase 4 (GPX4) protein in the rat hippocampus after exposure. Our results suggested that either single or combined exposure to MW and EMP radiation could impair learning and memory and damage hippocampal neurons in rats. Moreover, the adverse effects caused by the combined exposure were more severe than the single exposures, which might be due to cumulative effects rather than synergistic effects. Furthermore, ferroptosis in the hippocampus might be a common underlying mechanism of learning and memory impairment induced by both single and combined MW and EMP exposure.
Collapse
Affiliation(s)
- Yunfei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiwei Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haixia Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - You Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
5
|
Hao Y, Liu W, Liu Y, Liu Y, Xu Z, Ye Y, Zhou H, Deng H, Zuo H, Yang H, Li Y. Effects of Nonthermal Radiofrequency Stimulation on Neuronal Activity and Neural Circuit in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205988. [PMID: 36755196 PMCID: PMC10104648 DOI: 10.1002/advs.202205988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Whether the nonthermal effects of radiofrequency radiation (RFR) exist and how nonthermal RFR acts on the nervous system are unknown. An animal model of spatial memory impairment is established by exposing mice to 2856-MHz RFR in the range of thermal noise (≤1 °C). Glutamate release in the dorsal hippocampus (dHPC) CA1 region is not significantly changed after radiofrequency exposure, whereas dopamine release is reduced. Importantly, RFR enhances glutamatergic CA1 pyramidal neuron calcium activity by nonthermal mechanisms, which recover to the basal level with RFR termination. Furthermore, suppressed dHPC dopamine release induced by radiofrequency exposure is due to decreased density of dopaminergic projections from the locus coeruleus to dHPC, and artificial activation of dopamine axon terminals or D1 receptors in dHPC CA1 improve memory damage in mice exposed to RFR. These findings indicate that nonthermal radiofrequency stimulation modulates ongoing neuronal activity and affects nervous system function at the neural circuit level.
Collapse
Affiliation(s)
- Yanhui Hao
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Weiqi Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yujie Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Ying Liu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhengtao Xu
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yumeng Ye
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hongmei Zhou
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hua Deng
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Hongyan Zuo
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Yang
- Life Science DepartmentFoshan UniversityFoshan528231China
| | - Yang Li
- Department of Experimental PathologyBeijing Institute of Radiation MedicineBeijing100850China
- Academy of Life ScienceAnhui Medical UniversityHefei230032China
- Department of PathologyChengde Medical CollegeChengde067000China
| |
Collapse
|
6
|
Yao C, Dong J, Ren K, Sun L, Wang H, Zhang J, Wang H, Xu X, Yao B, Zhou H, Zhao L, Peng R. Accumulative Effects of Multifrequency Microwave Exposure with 1.5 GHz and 2.8 GHz on the Structures and Functions of the Immune System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4988. [PMID: 36981897 PMCID: PMC10049199 DOI: 10.3390/ijerph20064988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Microwave ablation can produce immune activation due to thermal effects. However, the nonthermal effects of microwaves on the immune system are still largely unexplored. In this study, we sequentially exposed rats to 1.5 GHz microwave for 6 min and 2.8 GHz microwave for 6 min at an average power density of 5, 10, and 30 mW/cm2. The structure of the thymus, spleen, and mesenteric lymph node were observed, and we showed that multifrequency microwave exposure caused tissue injuries, such as congestion and nuclear fragmentation in lymphocytes. Ultrastructural injuries, including mitochondrial swelling, mitochondrial cristae rupture, and mitochondrial cavitation, were observed, especially in the 30 mW/cm2 microwave-exposed group. Generally, multifrequency microwaves decreased white blood cells, as well as lymphocytes, monocytes, and neutrophils, in peripheral blood, from 7 d to 28 d after exposure. Microwaves with an average density of 30 mW/cm2 produced much more significant inhibitory effects on immune cells. Moreover, multifrequency microwaves at 10 and 30 mW/cm2, but not 5 mW/cm2, reduced the serum levels of several cytokines, such as interleukin-1 alpha (IL-1α), IL-1β, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), at 7 d and 14 d after exposure. We also found similar alterations in immunoglobulins (Igs), IgG, and IgM in serum. However, no obvious changes in complement proteins were detected. In conclusion, multifrequency microwave exposure of 1.5 GHz and 2.8 GHz caused both structural injuries of immune tissues and functional impairment in immune cells. Therefore, it will be necessary to develop an effective strategy to protect people from multifrequency microwave-induced immune suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Zhao
- Correspondence: (L.Z.); (R.P.)
| | | |
Collapse
|
7
|
Wang H, Song L, Zhao L, Wang H, Xu X, Dong J, Zhang J, Yao B, Zhao X, Peng R. The dose-dependent effect of 1.5-GHz microwave exposure on spatial memory and the NMDAR pathway in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37427-37439. [PMID: 36574118 PMCID: PMC9792922 DOI: 10.1007/s11356-022-24850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A certain power of microwave radiation could cause changes in the nervous, cardiovascular, and other systems of the body, and the brain was a sensitive target organ of microwave radiation injury. Studies have shown that microwaves can impair cognitive functions in humans and animals, such as learning and memory, attention, and orientation. The dose-dependent effect of microwave radiation is still unclear. Our study aimed to investigate the effects of 1.5-GHz microwaves with different average power densities on locative learning and memory abilities, hippocampal structure, and related N-methyl D-aspartate receptor (NMDAR) signalling pathway proteins in rats. A total number of 140 male Wistar rats were randomly divided into four groups: S group (sham exposure), L5 group (1.5-GHz microwaves with average power density = 5 mW/cm2), L30 group (1.5-GHz microwaves with average power density = 30 mW/cm2), and L50 group (1.5-GHz microwaves with average power density = 50 mW/cm2). Changes in spatial learning and memory, EEG activity, hippocampal structure, and NMDAR signalling pathway molecules were detected from 6 h to 28 d after microwave exposure. After exposure to 1.5-GHz microwaves, rats in the L30 and L50 groups showed impaired spatial memory, inhibited EEG activity, pyknosis and hyperchromatism of neuron nucleus, and changes in NMDAR subunits and downstream signalling molecules. In conclusion, 1.5-GHz microwaves with an average power density of 5, 30, and 50 mW/cm2 could induce spatial memory dysfunction, hippocampal structure changes, and changes in protein levels in rats, and there was a defined dose-dependent effect.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Lequan Song
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
9
|
Microwave radiation induces neuronal autophagy through miR-30a-5p/AMPKα2 signal pathway. Biosci Rep 2022; 42:231072. [PMID: 35322852 PMCID: PMC9069443 DOI: 10.1042/bsr20212584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/09/2022] Open
Abstract
The potential health hazards of microwaves have attracted much more attention. Our previous study found that 2856 MHz microwave radiation damaged synaptic plasticity and activated autophagy in neurons. However, the mechanisms underlying microwave-induced autophagy were still unclear. In the present study, we established neuronal damage models by exposing rat hippocampal neurons and rat adrenal pheochromocytoma (PC12) cell-derived neuron-like cells to 30 mW/cm2 microwaves, which resulted in miR-30a-5p (‘miR-30a’ for short) down-regulation and autophagy activation in vivo and in vitro. Bioinformatics analysis was conducted, and Beclin1, Prkaa2, Irs1, Pik3r2, Rras2, Ddit4, Gabarapl2 and autophagy-related gene 12 (Atg12) were identified as potential downstream genes of miR-30a involved in regulating autophagy. Based on our previous findings that microwave radiation could lead to abnormal energy metabolism in neurons, Prkaa2, encoding adenosine 5′-monophosphate-activated protein kinase (AMPK) α2 (AMPKα2, an important catalytic subunit of energy sensor AMPK), was selected for further analysis. Dual-luciferase reporter assay results showed that Prkaa2 was a downstream gene of miR-30a. Moreover, microwave radiation increased the expression of AMPKα2 and the phosphorylation of AMPKα (Thr172) both in vivo and in vitro. The transfection of PC12 cells with miR-30a mimics increased miR-30a levels, reduced AMPKα2 expression, suppressed AMPKα (Thr172) phosphorylation, and inhibited autophagy occurrence in neuron-like cells. Importantly, miR-30a overexpression abolished microwave-activated autophagy and inhibited microwave-induced AMPKα2 up-regulation and AMPKα (Thr172) phosphorylation. In conclusion, microwave radiation promoted the occurrence of autophagy in neurons through the miR-30a/AMPKα2 signal pathway.
Collapse
|
10
|
Deficient Autophagy in Microglia Aggravates Repeated Social Defeat Stress-Induced Social Avoidance. Neural Plast 2022; 2022:7503553. [PMID: 35222638 PMCID: PMC8866015 DOI: 10.1155/2022/7503553] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/12/2023] Open
Abstract
Major depressive disorder (MDD) is associated with repeated exposure to environmental stress. Autophagy is activated under various stress conditions that are associated with several diseases in the brain. This study was aimed at elucidating the autophagy signaling changes in the prefrontal cortex (PFC) under repeated social defeat (RSD) to investigate the involvement of microglial autophagy in RSD-induced behavioral changes. We found that RSD stress, an animal model of MDD, significantly induced initial autophagic signals followed by increased transcription of autophagy-related genes (Atg6, Atg7, and Atg12) in the PFC. Similarly, significantly increased transcripts of ATGs (Atg6, Atg7, Atg12, and Atg5) were confirmed in the postmortem PFC of patients with MDD. The protein levels of the prefrontal cortical LC3B were significantly increased, whereas p62 was significantly decreased in the resilient but not in susceptible mice and patients with MDD. This indicates that enhanced autophagic flux may alleviate stress-induced depression. Furthermore, we identified that FKBP5, an early-stage autophagy regulator, was significantly increased in the PFC of resilient mice at the transcript and protein levels. In addition, the resilient mice exhibited enhanced autophagic flux in the prefrontal cortical microglia, and the autophagic deficiency in microglia aggravated RSD-induced social avoidance, indicating that microglial autophagy involves stress-induced behavioral changes.
Collapse
|
11
|
Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, Xie C, Zhang X, Song J, Wang X, Zhu C. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol 2021; 59:1199-1213. [PMID: 34962635 PMCID: PMC8857090 DOI: 10.1007/s12035-021-02653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has an impact on subcortical white matter development in the juvenile mouse brain after irradiation. Ten-day-old selective neural Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6-Gy dose of whole-brain irradiation and evaluated at 5 days after irradiation. Neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell loss in the subcortical white matter, and Atg7 deficiency partly prevented this. There was no significant change between the KO and WT mice in the number of microglia and astrocytes in the subcortical white matter after irradiation. Transcriptome analysis showed that the GO mitochondrial gene expression pathway was significantly enriched in the differentially expressed genes between the KO and WT group after irradiation. Compared with WT mice, expression of the mitochondrial fusion protein OPA1 and phosphorylation of the mitochondrial fission protein DRP1 (P-DRP1) were dramatically decreased in KO mice under physiological conditions. The protein levels of OPA1and P-DRP1 showed no differences in WT mice between the non-irradiated group and the irradiated group but had remarkably increased levels in the KO mice after irradiation. These results indicate that inhibition of autophagy reduces irradiation-induced subcortical white matter injury not by reducing inflammation, but by increasing mitochondrial fusion and inhibiting mitochondrial fission.
Collapse
Affiliation(s)
- Yafeng Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Kai Zhou
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Tao Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated To Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden
| | - Cuicui Xie
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden.,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Göteborg, Sweden. .,Department of Women's and Children's Health, Karolinska Institute, 17176, Stockholm, Sweden.
| |
Collapse
|
12
|
The Role of NMDAR and BDNF in Cognitive Dysfunction Induced by Different Microwave Radiation Conditions in Rats. RADIATION 2021. [DOI: 10.3390/radiation1040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate the effects of different levels of microwave radiation on learning and memory in Wistar rats and explore the underlying mechanisms of N-methyl-D-aspartate receptor (NMDAR/NR) and Brain-derived neurotropic factor (BDNF); Methods: A total of 140 Wistar rats were exposed to microwave radiation levels of 0, 10, 30 or 50 mW/cm2 for 6 min. Morris Water Maze Test, high-performance liquid chromatography, Transmission Electron Microscope and Western blotting were used; Results: The 30 and 50 mW/cm2 groups exhibited longer average escape latencies and fewer platform crossings than the 0 mW/cm2 group from 6 h to 3 d after microwave radiation. Alterations in the amino acid neurotransmitters of the hippocampi were shown at 6 h, 3 d and 7 d after exposure to 10, 30 or 50 mW/cm2 microwave radiation. The length and width of the Postsynaptic density were increased. The expression of NR1, NR2A and NR2B increased from day 1 to day 7; Postsynaptic density protein-95 and cortactin expression increased from day 3 to day 7; BDNF and Tyrosine kinase receptor B (TrkB) expression increased between 6 h and 1 d after 30 mW/cm2 microwave radiation exposure, but they decreased after 50mW/cm2 exposure. Conclusions: Microwave exposure (30 or 50 mW/cm2, for 6 min) may cause abnormalities in neurotransmitter release and synaptic structures, resulting in impaired learning and memory; BDNF and NMDAR-related signaling molecules might contribute differently to these alterations.
Collapse
|
13
|
Xiao X, Bu H, Li Z, Li Z, Bai Q, Wang Z, Yan L, Liu D, Peng X, Jia X, Gao F. NADPH-Oxidase 2 Promotes Autophagy in Spinal Neurons During the Development of Morphine Tolerance. Neurochem Res 2021; 46:2089-2096. [PMID: 34008119 DOI: 10.1007/s11064-021-03347-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023]
Abstract
Repeated morphine administration results in analgesic tolerance. However, the underlying mechanism of morphine analgesic tolerance remains unclear. NADPH-oxidase 2 (NOX2) is the first discovered NADPH oxidase, which mainly functions to produce reactive oxygen species. Its specific role in morphine tolerance has not been fully investigated. In this work, we found that chronic morphine administration significantly increased the expression of NOX2 in spinal cord. Pretreatment of NOX2 inhibitor blocked the upregulation of NOX2 and autophagy markers, including LC3B and P62, and consequently the development of morphine tolerance. NOX2 and LC3B were both colocalized with NeuN in spinal dorsal horn in morphine-tolerant rats. Our results suggest that the increased autophagy activity in spinal neurons promoted by NOX2 activation contributes to the development of morphine tolerance. NOX2 may be considered as a new therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Xuyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilian Bu
- Department of Pain Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhitao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Gao S, Tang YY, Jiang L, Lan F, Li X, Zhang P, Zou W, Chen YJ, Tang XQ. H 2S Attenuates Sleep Deprivation-Induced Cognitive Impairment by Reducing Excessive Autophagy via Hippocampal Sirt-1 in WISTAR RATS. Neurochem Res 2021; 46:1941-1952. [PMID: 33914232 DOI: 10.1007/s11064-021-03314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.
Collapse
Affiliation(s)
- Shan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Fang Lan
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China.
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
15
|
Xia Z, Li M, Tian Y, Li Y, Li B, Zhang G, Lv J, Fu Q, Zhou H, Dong J. Lipidomics of Serum and Hippocampus Reveal the Protective Effects of Fermented Soybean Lipid on Rats of Microwave-Induced Cognitive Damage. ACS Chem Neurosci 2021; 12:2122-2132. [PMID: 34085811 DOI: 10.1021/acschemneuro.1c00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fermented soybean lipids (FSE-C) is an extract enriched in active lipid classes. To explore whether FSE-C can alleviate cognitive damage triggered by the exposure to microwave radiation through regulating lipid metabolism, we employed lipidomic profiling based on a UPLC-MS to investigate differential lipid metabolites in the serum and hippocampus of rats. The results showed that orally administered FSE-C could protect from cognitive damage in microwave-induced rats. Serum lipidomics indicated that FSE-C effectively facilitated the recovery of 43 differential lipid metabolites including 6 phosphatidylcholines (PCs), 5 phosphatidylethanolamines (PEs), 1 phosphatidylinositol, 3 lysophosphatidylcholines (LPCs), 6 lysophosphatidylethanolamines (LPEs), and 22 triglycerides (TGs), which was consistent with the analysis of serum TG levels. Moreover, FSE-C positively coordinated hexacosanoic acid, 2 PCs, 4 sphingomyelins (SMs), and 11 TGs, through the hippocampal lipidomics. Collectively, these findings suggested that phospholipid and TG metabolisms were significantly modified in microwave-exposed rats. TGs may be regarded as potential biomarkers to further investigate and evaluate the roles and functions of FSE-C on the attenuation of cognitive damage induced by microwave radiation.
Collapse
Affiliation(s)
- Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yongzhong Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jinpeng Lv
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qianyu Fu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Hongmei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| |
Collapse
|
16
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
17
|
Zhao L, Sun Y, Yu C, Chen J, Xu X, Zhang X, Wang H, Zhang J, Wang H, Dong J, Yao B, Zhou H, Liu S, Peng R. Astragaloside protects rat brain from microwave-induced functional injuries via restoring acetylcholine and normalizing electroencephalogram. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40787-40794. [PMID: 32677014 DOI: 10.1007/s11356-020-07915-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Studies from our group and others have reported that 30 mW/cm2 microwave could damage the structures of rat hippocampus, as well as impair the neuronal functions. The neuroprotective effects of astragaloside, purified from Astragalus membranaceus, have been demonstrated in animal models of neurodegenerative diseases. In this study, we found that 30 mW/cm2 microwave impaired spatial learning and memory ability in rats, while astragaloside could significantly alleviate the injuries. The pathological analysis also showed that astragaloside protected neurons from microwave-induced damages, such as mitochondrial swelling and cavitation, rough endoplasmic reticulum swelling and dilation, synaptic gap disappearing, and vesicle aggregation. Moreover, microwave-induced structural damage of synapse resulted in downregulation of acetylcholine, an important neurotransmitter for information transmission, while astragaloside could protect the structure of synapse, as well as restore the acetylcholine level in rat hippocampus. Furthermore, astragaloside also accelerated the recovery of brain electroencephalogram (EEG) after microwave exposure, indicating that astragaloside could promote the normalization of neuronal functions. In conclusion, astragaloside protected the morphological structures and restored acetylcholine level in rat hippocampus, which could improve brain functions via normalizing brain EEG. Therefore, astragaloside might be a promising candidate to treat microwave-induced injuries of central nervous system (CNS).
Collapse
Affiliation(s)
- Li Zhao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Junjun Chen
- Xinyang Central Hospital, Xinyang, Henan, 464000, People's Republic of China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xueyan Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.
| |
Collapse
|
18
|
Tian Y, Xia Z, Li M, Zhang G, Cui H, Li B, Zhou H, Dong J. The relationship between microwave radiation injury and abnormal lipid metabolism. Chem Phys Lipids 2019; 225:104802. [DOI: 10.1016/j.chemphyslip.2019.104802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/03/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
|
19
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Yang SQ, Jiang L, Lan F, Wei HJ, Xie M, Zou W, Zhang P, Wang CY, Xie YR, Tang XQ. Inhibited Endogenous H 2S Generation and Excessive Autophagy in Hippocampus Contribute to Sleep Deprivation-Induced Cognitive Impairment. Front Psychol 2019; 10:53. [PMID: 30733697 PMCID: PMC6353847 DOI: 10.3389/fpsyg.2019.00053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background and Aim: Sleep deprivation (SD) causes deficit of cognition, but the mechanisms remain to be fully established. Hydrogen sulfide (H2S) plays an important role in the formation of cognition, while excessive and prolonged autophagy in hippocampus triggers cognitive disorder. In this work, we proposed that disturbances in hippocampal endogenous H2S generation and autophagy might be involved in SD-induced cognitive impairment. Methods: After treatment of adult male wistar rats with 72-h SD, the Y-maze test, object location test (OLT), novel object recognition test (NORT) and the Morris water maze (MWM) test were performed to determine the cognitive function. The autophagosome formation was observed with electron microscope. Generation of endogenous H2S in the hippocampus of rats was detected using unisense H2S microsensor method. The expressions of cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), beclin-1, light chain LC3 II/LC3 I, and p62 in the hippocampus were assessed by western blotting. Results: The Y-maze, OLT, NORT, and MWM test demonstrated that SD-exposed rats exhibited cognitive dysfunction. SD triggered the elevation of hippocampal autophagy as evidenced by enhancement of autophagosome, up-regulations of beclin-1 and LC3 II/LC3 I, and down-regulation of p62. Meanwhile, the generation of endogenous H2S and the expressions of CBS and 3-MST (H2S producing enzyme) in the hippocampus of SD-treated rats were reduced. Conclusion: These results suggested that inhibition of endogenous H2S generation and excessiveness of autophagy in hippocampus are involved in SD-induced cognitive impairment.
Collapse
Affiliation(s)
- San-Qiao Yang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Li Jiang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ming Xie
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu-Rong Xie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
21
|
Karimi N, Bayat M, Haghani M, Saadi HF, Ghazipour GR. 2.45 GHz microwave radiation impairs learning, memory, and hippocampal synaptic plasticity in the rat. Toxicol Ind Health 2018; 34:873-883. [PMID: 30345889 DOI: 10.1177/0748233718798976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microwave (MW) radiation has a close relationship with neurobehavioral disorders. Due to the widespread usage of MW radiation, especially in our homes, it is essential to investigate the direct effect of MW radiation on the central nervous system. Therefore, this study was carried out to determine the effect of MW radiation on memory and hippocampal synaptic plasticity. The rats were exposed to 2.45 GHz MW radiation (continuous wave with overall average power density of 0.016 mW/cm2 and overall average whole-body specific absorption rate value of 0.017 W/kg) for 2 h/day over a period of 40 days. Spatial learning and memory were tested by radial maze and passive avoidance tests. We evaluated the synaptic plasticity and hippocampal neuronal cells number by field potential recording and Giemsa staining, respectively. Our results showed that MW radiation exposure decreased the learning and memory performance that was associated with decrement of long-term potentiation induction and excitability of CA1 neurons. However, MW radiation did not have any effects on short-term plasticity and paired-pulse ratio as a good indirect index for measurement of glutamate release probability. The evaluation of hippocampal morphology indicated that the neuronal density in the hippocampal CA1 area was significantly decreased by MW.
Collapse
Affiliation(s)
- Narges Karimi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Fahandezh Saadi
- Department of Information and Communication Technology (ICT), Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|