1
|
Ekong MB, Bassey OO, Pessu NA, Kpobari GV, Okuku EI, Bassey RB, Johnson EI, Peter AI, Okokon JE, Akpanabiatu MI. Tetrapleura tetraptera fruit extracts ameliorate pentylenetetrazol-induced seizures as well as ensuing cognitive deficit and oxidative stress. Metab Brain Dis 2025; 40:143. [PMID: 40072755 DOI: 10.1007/s11011-025-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Kindling is an experimental-induced seizure consistent with epilepsy disease, a chronic neurological disorder characterised by spontaneous and repeated seizures. This disease is associated with oxidative stress, and most therapeutic strategies against epilepsy aim at improving the antioxidant defence mechanism in the brain. However, prolonged usage and associated adverse side effects limit antiepileptics, warranting natural antioxidant patronage. The present study investigated the behavioural and antioxidant actions of Tetrapleura tetraptera fruit extracts (TT) against pentylenetetrazol (PTZ)-kindling rats. Twenty-five male Wistar rats (150-180 g) were assigned into five groups (1-5, n = 5): Control (normal saline, 5 ml/kg body weight, b.w.), PTZ-only (40 mg/kg/b.w. i.p.), and groups 3-5 administered PTZ (40 mg/kg/b.w. i.p.) after, respectively, receiving oral TT (500 mg/kg/b.w.), TT flavonoid (fTT, 50 mg/kg/b.w.), and sodium valproate (SV, 15 mg/kg/b.w.). All administrations were carried out 48 hourly for 21 days. In the end, buried food, novel object recognition (NOR), Y-maze, elevated plus maze (EPM), and beam walk tests were done, and the rats were sacrificed. Whole brains were processed for antioxidant assays. The results showed a high (p <.05) seizure score and buried food test latency, preference for the familiar object in the NOR test, aversion to open-arm and reduced grooming in the EPM, reduced beam walk latency, elevated brain malondialdehyde (MDA), and decreased superoxide dismutase (SOD) in the PTZ group. The TT, fTT, and SV suppressed seizure, decreased buried food latency, `preference for the novel object and open-arm, increased grooming, decreased brain MDA, and elevated SOD. In conclusion, TT extracts protected against PTZ-induced cognitive deficits and brain oxidative stress, with results similar to those of the standard anticonvulsant drug, SV.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria.
| | - Okokon O Bassey
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Nelly A Pessu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Godslove V Kpobari
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Ekereobong I Okuku
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Rosemary B Bassey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
| | - Ekemini I Johnson
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Aniekan I Peter
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
| | - Monday I Akpanabiatu
- Department of Biochemistry, Faculty of Sciences, University of Uyo, Uyo, Nigeria
| |
Collapse
|
2
|
Jones K, Smith S, Smith J, Castillo A, Burkes A, Howard A, Garvin MM, Bolton JL, Colon-Perez L, Cunningham MW. Postpartum dams exposed to a low-resource environment display neuroinflammation, elevated corticosterone, and anhedonia-like behavior. J Appl Physiol (1985) 2025; 138:666-680. [PMID: 39884662 DOI: 10.1152/japplphysiol.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Women living in an impoverished environment after birth have an increased risk of developing postpartum depression (PP-Dep) and hypertension (PP-HTN). The mechanisms underlying these heightened risks are unknown and understudied. To examine the relation between reduced environmental resources, PP-Dep, and PP-HTN, postpartum rodent dams were exposed to the low-resource limited bedding and nesting (LBN) chronic stress model during weaning. Postpartum dams were divided into control (CTL) and experimental (LBN) groups, in which the experimental group experienced LBN. At 6 wks postpartum, blood pressure, sucrose preference tests (a proxy for anhedonia and depression), corticosterone, and markers of neuroinflammation were measured. We hypothesized that postpartum dams exposed to LBN will have increased corticosterone, neuroinflammation, depression-like behaviors, and HTN. Results show that postpartum dams exposed to an impoverished environment exhibit decreased sucrose preference, increased circulating corticosterone, and elevated neuroinflammation (∼150% increased TNF-α and astrocyte activation in the cerebrum). No changes in blood pressure were observed. However, there was a strong correlation between postpartum blood pressure and corticosterone and blood pressure and TNF-α levels. Importantly, this study provides insights into the pathology and development of PP-HTN and PP-Dep in the postpartum period, which will enable the discovery of novel therapeutic approaches.NEW & NOTEWORTHY Postpartum dams exposed to a low-resource environment experience anhedonia, elevated corticosterone, and neuroinflammation. Increases in corticosterone and neuroinflammation may contribute to the development of postpartum depression (PP-Dep) and postpartum hypertension (PP-HTN). Healthcare providers should consider asking questions about the social economic status and accessibility of resources for women after pregnancy. This study advocates for extended postpartum care beyond traditional care and better implementation of assessments for PP-Dep and PP-HTN.
Collapse
Affiliation(s)
- Kylie Jones
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Savanna Smith
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonna Smith
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Angie Castillo
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Allison Burkes
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ahfiya Howard
- School of Social Work, East Texas A&M University, Texas, United States
| | - Madison M Garvin
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States
| | - Luis Colon-Perez
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Mark W Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Horvath G, Ducza E, Adlan LG, Büki A, Kekesi G. Distinct Effects of Olanzapine Depot Treatment on Behavior and Muscarinic M1 Receptor Expression in the Triple-Hit Wisket Rat Model of Schizophrenia. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70015. [PMID: 39844699 PMCID: PMC11754962 DOI: 10.1111/gbb.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner. Olanzapine treatment decreased most of these parameters, only the passive social interaction (huddling during sleeping) enhanced mostly in the Wisket rats on the injection day, which recovered within 4 days. In the Ambitus test, vehicle-treated Wisket rats showed lower locomotor and exploratory activities and impaired cognition compared to control rats, deteriorating by olanzapine in both groups. In Wisket brain samples, the M1R mRNA expression was significantly lower in the cerebral cortex and elevated in the hippocampus, with no difference in the prefrontal cortex versus control. Olanzapine normalized the hippocampal M1R expression, but enhanced it in the prefrontal cortex. The triple-hit Wisket model rats had impaired behavioral characteristics in both acute reward-based test and undisturbed circumstances investigated for prolonged periods, and altered cerebral M1R expression. Chronic olanzapine treatment resulted deterioration of some parameters in control group, and could restore only few negative signs in model rats.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of PharmacyUniversity of SzegedSzegedHungary
| | | | - Alexandra Büki
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| | - Gabriella Kekesi
- Department of PhysiologyAlbert Szent‐Györgyi Medical School, University of SzegedSzegedHungary
| |
Collapse
|
4
|
Donadio JP, De-Sousa KT, Torres RDNS, Alves TC, Hötzel MJ, Deniz M. A meta-analysis approach to evaluate the effects of early group housing on calf performance, health, and behavior during the preweaning period. J Dairy Sci 2025; 108:954-967. [PMID: 39414012 DOI: 10.3168/jds.2024-25159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to evaluate the effects of early group housing on the performance, health, and behavior of dairy calves during the preweaning period using systematic and meta-analysis approaches. Peer-reviewed articles written in English that compared dairy calves individually and group-housed with performance, health, or behavior outcomes were collected from Web of Science, PubMed, and CABDirect databases. The resulting articles (n = 850) underwent a 4-step appraisal process following the Preferred Reporting Items for Systematic Review and Meta-Analyses protocols, resulting in a final sample of 51 articles containing 85 studies. The weighted or standardized mean differences between individually housed and group-housed (pair or group with >2 calves) calves were analyzed for each variable using the DerSimonian and Laird methods. Heterogeneity between calf housing systems was evaluated by the χ2 test and I2 statistics. A meta-regression analysis was conducted to identify categorical covariate effects for variables with high heterogeneity. Most of the studies included in this review evaluated female calves (45.8%) weaned at 8 wk old (52.6%). Housing systems were mainly paired housing (55.3%), followed by groups of 3 to 6 calves (30.65) and groups of 7 to 15 calves (4.7%). We did not find studies with comparable outcomes for more robust health parameters (as occurrence of diseases), only blood parameters, that were not influenced by the housing system. However, weight gain and feed intake parameters were higher in group-housed calves. Through the meta-regression, we found that ADG was positively affected by the group housing in studies with calves housed in small pen areas (<1.5 m2 per calf). Group-housed calves presented more active behaviors (feeding and playing) and less stress-related behaviors (self-grooming and interacting with the pen) than individually housed calves. The behavioral tests most used were novel object, human approach, novel environment, and social tests. Individually housed calves presented fewer vocalizations on these tests and spent more time interacting with humans during the human approach test than group-housed calves. Our findings provide consistent evidence that group housing improves the welfare of dairy calves; however, the effects on health parameters are still scarce and unclear.
Collapse
Affiliation(s)
- João Pedro Donadio
- Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil 18618-687; Programa de Pós-Graduação em Zootecnia, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil 18618-687
| | - Karolini Tenffen De-Sousa
- Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil 18618-687
| | - Rodrigo de Nazaré Santos Torres
- Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil 18618-687
| | - Teresa Cristina Alves
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil 13560-970
| | - Maria José Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil 88034-001
| | - Matheus Deniz
- Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil 18618-687.
| |
Collapse
|
5
|
Ekong MB, Bassey OO, Ebeh DI, Usukuma GD, Samuel DC, Bassey RB, Peter AI, Mbadugha CC, Okokon JE, Akpanabiatu MI. Rauvolfia vomitoria phenol extract relieves pentylenetetrazol-induced seizures in Swiss mice and protects some temporal lobe structures. ACTA EPILEPTOLOGICA 2024; 6:35. [PMID: 40217363 PMCID: PMC11960394 DOI: 10.1186/s42494-024-00183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Rauvolfia vomitoria (R. vomitoria) is a plant of economic importance due to its diverse ethnomedicinal properties, including the anticonvulsant effect. In this study, we studied the antiseizure and neuroprotective potentials of R. vomitoria extracts against pentylenetetrazol (PTZ)-induced kindling. METHODS Twenty-five adult Swiss mice (25-30 g) were assigned to five groups (n = 5): control group, PTZ treatment group, and PTZ treatment after receiving oral R. vomitoria crude extract (100 mg/kg), R. vomitoria phenol extract (50 mg/kg) or sodium valproate (15 mg/kg) every 48 h for 28 days. Seizure scores, cognitive behavioral tests including novel object test, Y-maze test, and the elevated plus maze test, as well as brain neurochemicals and histomorphology studies, were performed. RESULTS Compared with the control group, the PTZ group showed comparable body weight and durations in closed and open arms (P > 0.05), but preference for familiar objects, significant (P < 0.05) spontaneous alternation, increased monoamine oxidase activity and nitric oxide level, and Nissl chromatolysis in the temporal lobe structures including the cortex, hippocampus, and amygdala. R. vomitoria phenol extract pretreatment significantly (P < 0.05) reduced seizures, prevented adverse cognitive behaviors, decreased the nitric oxide level, and reduced the temporal lobe Nissl chromatolysis compared with the R. vomitoria crude extract pretreatment group and the sodium valproate pretreatment groups. CONCLUSIONS Thus, R. vomitoria phenol extract showed promising results against seizures and potential for general brain protection, suggesting that the anticonvulsant property of R. vomitoria may be attributed to its phenol constituent. More studies are needed to delineate the mechanisms of its action.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria.
| | - Okokon O Bassey
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Deborah I Ebeh
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Godslove D Usukuma
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Darlington C Samuel
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Rosemary B Bassey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, 11549, USA
| | - Aniekan I Peter
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Christopher C Mbadugha
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Monday I Akpanabiatu
- Department of Biochemistry, Faculty of Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| |
Collapse
|
6
|
Díaz L, Cortes C, Ugarte A, Trujillo A, Eguibar JR. Differences in memory performance: The effects of sex and reproductive experience on object recognition memory in high- and low-yawning Sprague‒Dawley rats. Physiol Behav 2024; 288:114713. [PMID: 39396667 DOI: 10.1016/j.physbeh.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The novel object recognition (NOR) test is an efficient way to measure nonspatial memory in rodents. The NOR performance of female and male rats is sexually dimorphic because memory performance is better in the former than in the latter. In females, maternal experience enhances spatial memory. We used the NOR test to evaluate short- and long-term recognition memory in both sexes in the high- and low-yawning sublines of rats (HY and LY, respectively), which were generated via a strict inbreeding process from the Sprague‒Dawley (SD) strain for more than ninety generations. Additionally, we evaluated the effect of maternal experience using nulliparous, primiparous, biparous, and multiparous HY, LY and SD dams. Our results revealed that LY rats presented less thigmotaxis, with lower central square crosses and more vertical exploration in the open-field arena, suggesting that they experienced anxiety. Additionally, LY males performed significantly better than LY females in short- and long-term NOR memory, and LY males performed significantly better than SD rats did. Among females, two maternal experiences negatively affected short-term memory in the LY and HY sublines with respect to primiparous dams, and HY dams had better memory performance in the NOR test than did SD dams. Our findings suggest that the yawning sublines are suitable for studying the neurobiological basis of different memory processes under different endocrine conditions in highly inbred groups of rats.
Collapse
Affiliation(s)
- Lilia Díaz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Carmen Cortes
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Araceli Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | | | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; Instituto Dirección General de Internacionalización, Benemérita Universidad Autónoma de Puebla.
| |
Collapse
|
7
|
Harter AM, Kim C, Yamazaki A, Lee L, Ji MT, Nemesh M, Redei EE. Stress enhances aggression in male rats with genetic stress hyper-reactivity. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70005. [PMID: 39422001 PMCID: PMC11487273 DOI: 10.1111/gbb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The current study investigated stress-induced aggressive behavior in the resident-intruder test in males of the genetically stress hyper-reactive Wistar Kyoto More Immobile (WMI), and the nearly isogenic, control Wistar Kyoto Less Immobile (WLI) strains. Tests were carried out against same-age intruders during adolescence, and same-age and juvenile intruders in adulthood. In adolescence and adulthood, prior acute restraint stress decreased social interactions and decreased aggressive behaviors of adolescents and adult WLIs. However, prior stress precipitated aggression in the adult WMI males toward both same-age, and juvenile intruders compared with control WMIs and WLIs. Trunk blood levels of testosterone and androstenedione increased in stressed WLIs, but not in WMIs, suggesting no direct role of androgens in the increased aggression of WMIs. Expressions of aggression-relevant genes showed patterns commensurate with being causative in aggressive behavior. The methyl-CpG binding protein 2 was lower in the frontal cortex of control WMIs, and in the amygdala of stressed WMIs compared with their respective WLIs. Frontal cortex expression of vasopressin receptor 1a and serotonin transporter increased, solely in WMI males after stress. As behaviors were the same toward same-age and non-threatening juvenile intruders, the stress-induced increase in confrontational behavior of the adult WMI male was not because of enhanced fear or anxiety. These results suggest that genetic stress hyper-reactivity is a risk factor for stress-induced increases in aggression in males. Additionally, as known aggression-related genes showed expression patterns paralleling aggressive behavior, this model system could identify novel molecular pathways leading to stress-enhanced aggression.
Collapse
Affiliation(s)
- Aspen M. Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chris Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anna Yamazaki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Luca Lee
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Michelle T. Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
8
|
Poitras M, Doiron A, Plamondon H. Selective estrogen receptor activation prior to global cerebral ischemia in female rats impacts microglial activation and anxiety-like behaviors without effects on CA1 neuronal injury. Behav Brain Res 2024; 470:115094. [PMID: 38844057 DOI: 10.1016/j.bbr.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Estrogen receptor (ER) activation by 17-ß estradiol (E2) can attenuate neuronal injury and behavioral impairments following global cerebral ischemia (GCI) in rodents. This study sought to further examine the discrete roles of ERs through characterization of the effects of selective ER activation on post-ischemic pro-inflammatory microglial activation, hippocampal neuronal injury, and anxiety-like behaviors. Forty-six ovariectomized (OVX) adult female Wistar rats received daily s.c injections (100 μg/kg/day) of propylpyrazole triol (PPT; ERα agonist), diarylpropionitrile (DPN; ERβ agonist), G-1 (G-protein coupled ER agonist; GPER), E2 (activating all receptors), or vehicle solution (VEH) for 21 days. After final injection, rats underwent GCI via 4-vessel occlusion (n=8 per group) or sham surgery (n=6, vehicle injections). The Open Field Test (OFT), Elevated Plus Maze (EPM), and Hole Board Test (HBT) assessed anxiety-like behaviors. Microglial activation (Iba1, CD68, CD86) in the basolateral amygdala (BLA), CA1 of the hippocampus, and paraventricular nucleus of the hypothalamus (PVN) was determined 8 days post-ischemia. Compared to sham rats, Iba1 activation and CA1 neuronal injury were increased in all ischemic groups except DPN-treated rats, with PPT-treated ischemic rats also showing increased PVN Iba1-ir expression. Behaviorally, VEH ischemic rats showed slightly elevated anxiety in the EPM compared to sham counterparts, with no significant effects of agonists. While no changes were observed in the OFT, emotion regulation via grooming in the HBT was increased in G-1 rats compared to E2 rats. Our findings support selective ER activation to regulate post-ischemic microglial activation and coping strategies in the HBT, despite minimal impact on hippocampal injury.
Collapse
Affiliation(s)
- Marilou Poitras
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Alexandra Doiron
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Hélène Plamondon
- Cerebro Vascular Accidents and Behavioral Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
9
|
Peralta-Vallejo N, Güell-Falgueras P, Cañete T, Sampedro-Viana D, Río-Álamos C, Oliveras I, Tobeña A, Fernández-Teruel A. Schizophrenia-relevant social, attentional and cognitive traits in female RHA vs. RLA rats: Effects of neonatal handling. Behav Brain Res 2024; 459:114762. [PMID: 37977340 DOI: 10.1016/j.bbr.2023.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
The Roman high- (RHA) and low-avoidance (RLA) rats were bidirectionally selected and bred for, respectively, their rapid vs. extremely poor acquisition in the two-way active avoidance task. Consistent between-strain neurobehavioural differences have been found in anxiety- and stress-linked traits, as well as in schizophrenia-related phenotypes. RLAs display enhanced anxious- and stress-related phenotypes, whereas RHA rats show impulsivity, hyperactivity and attention/cognition-related impairments. Many of these typical behavioural phenotypes have been reported to be positively modulated by environmental treatments such as neonatal handling (NH). However, most studies on the Roman rat strains have been carried out in males. Thus, the present study for the first time focused on the joint evaluation of differences in novel object exploration (NOE), social interaction (SI), prepulse inhibition of the startle response (PPI), and cognitive performance and flexibility in various spatial tasks (using the Morris water maze, MWM) in females of both Roman rat strains. We also aimed at evaluating the long-lasting effects of NH treatment on the RHA vs. RLA profiles in these tests/tasks. Results show that anxiety-related behavior, as measured by the NOE test and self-grooming in the SI test, was increased in RLA rats, and dramatically reduced by NH. In the SI test RLA rats displayed diminished social interaction, which was rescued by NH. RHA females exhibited a deficit of PPI, which was not affected by NH. Spatial tasks in the MWM showed impairments of working memory, reference learning/memory and spatial reversal learning (i.e., cognitive flexibility) in RHA females. Spatial reference learning and cognitive flexibility (i.e., reversal task) showed some improvement in rats (mainly in RHAs) that had received NH during the first three weeks of life. With the exception of the SI test, the pattern of differences between female RHA vs. RLA profiles was overall consistent with what has previously been found in males of both strains, and NH treatment was able to enduringly improve some emotion-related and (spatial) cognitive outcomes in both strains.
Collapse
Affiliation(s)
- Natalia Peralta-Vallejo
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pau Güell-Falgueras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Daniel Sampedro-Viana
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Cristóbal Río-Álamos
- Department of Psychology, School of Medicine, Austral University of Chile, Valdivia, Chile
| | - Ignasi Oliveras
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Faculty of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Fragkiadaki E, Katsanou L, Vartzoka F, Gravanis A, Pitsikas N. Effects of low doses of the novel dehydroepiandrosterone (DHEA) derivative BNN27 in rat models of anxiety. Psychopharmacology (Berl) 2024; 241:341-350. [PMID: 37917180 PMCID: PMC10806005 DOI: 10.1007/s00213-023-06490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
RATIONALE Several lines of evidence indicate that the neurosteroid dehydroepiandrosterone (DHEA) is involved in anxiety. BNN27 is a new DHEA derivative lacking steroidogenic effects. The beneficial effects exerted by BNN27 in preclinical models of schizophrenia and memory disorders have been recently reported. OBJECTIVES The present study was designed to investigate the effects of this DHEA novel analog on anxiety-like behavior in rats. METHODS To this end, the light/dark box, the open field, the contextual fear conditioning, and the excessive self-grooming induced by the serotonin 5-HT2c receptor agonist mCPP tests were utilized. RESULTS Animals treated acutely with BNN27 (1, 3, and 6 mg/kg) dose dependently spent more time in the bright compartment of the light/dark box and in the central zone of the open field with respect to their vehicle-treated cohorts. Further, BNN27 reduced freezing behavior and weakened the mCPP-induced excessive self-grooming. CONCLUSIONS Our data indicate that BNN27 is a highly potent anxiolytic agent, as in all studied paradigms it showed anxiolytic-like effects in male rats.
Collapse
Affiliation(s)
- Evangelia Fragkiadaki
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece
| | - Lamprini Katsanou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece
| | - Foteini Vartzoka
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00, Larissa, Greece.
| |
Collapse
|
11
|
de Souza VS, Medeiros LF, Stein DJ, de Oliveira CL, Medeiros HR, Dussan-Sarria JA, Caumo W, de Souza A, Torres ILS. Transcranial direct current stimulation is more effective than pregabalin in controlling nociceptive and anxiety-like behaviors in a rat fibromyalgia-like model. Scand J Pain 2024; 24:sjpain-2023-0038. [PMID: 38557595 DOI: 10.1515/sjpain-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.
Collapse
Affiliation(s)
- Vanessa Silva de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Universidade La Salle, Canoas, RS, 92010-000, Brazil
- Post graduate program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Camila Lino de Oliveira
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | | | - Wolnei Caumo
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Andressa de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Iraci L S Torres
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Department of Pharmacology, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
12
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Jia T, Chen J, Wang YD, Xiao C, Zhou CY. A subthalamo-parabrachial glutamatergic pathway is involved in stress-induced self-grooming in mice. Acta Pharmacol Sin 2023; 44:2169-2183. [PMID: 37322164 PMCID: PMC10618182 DOI: 10.1038/s41401-023-01114-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive self-grooming is an important behavioral phenotype of the stress response in rodents. Elucidating the neural circuit that regulates stress-induced self-grooming may suggest potential treatment to prevent maladaptation to stress that is implicated in emotional disorders. Stimulation of the subthalamic nucleus (STN) has been found to induce strong self-grooming. In this study we investigated the role of the STN and a related neural circuit in mouse stress-related self-grooming. Body-restraint and foot-shock stress-induced self-grooming models were established in mice. We showed that both body restraint and foot shock markedly increased the expression of c-Fos in neurons in the STN and lateral parabrachial nucleus (LPB). Consistent with this, the activity of STN neurons and LPB glutamatergic (Glu) neurons, as assessed with fiber photometry recording, was dramatically elevated during self-grooming in the stressed mice. Using whole-cell patch-clamp recordings in parasagittal brain slices, we identified a monosynaptic projection from STN neurons to LPB Glu neurons that regulates stress-induced self-grooming in mice. Enhanced self-grooming induced by optogenetic activation of the STN-LPB Glu pathway was attenuated by treatment with fluoxetine (18 mg·kg-1·d-1, p.o., for 2 weeks) or in the presence of a cage mate. Furthermore, optogenetic inhibition of the STN-LPB pathway attenuated stress-related but not natural self-grooming. Taken together, these results suggest that the STN-LPB pathway regulates the acute stress response and is a potential target for intervention in stress-related emotional disorders.
Collapse
Affiliation(s)
- Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying-di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
14
|
Rojas-Carvajal M, Leandro R, Brenes JC. Distinct acute stressors exert an antagonistic effect on complex grooming during novelty habituation in rats. Behav Processes 2023; 212:104931. [PMID: 37598764 DOI: 10.1016/j.beproc.2023.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Grooming is a common readout in multiple rat models of neuropsychiatric diseases. It is usually associated with distress and negative emotionality, but also with emotional de-arousal after stress. These seemingly conflicting interpretations may result from specific grooming sequences appearing at different arousal levels and during distinct phases of the stress response. To further explore this hypothesis, we analyzed how distinct stressors affect grooming syntaxis and kinetics. To that end, we explored the independent and interacting effects of foot shocks, corticosterone (CORT), and novelty on exploratory activity, grooming, and ultrasonic vocalizations (USVs) in an open-field test (OF). Wistar rats were intraperitoneally injected either with vehicle or CORT, placed in a chamber where half of them were foot-shocked and then assessed in the OF. The next day, animals were re-exposed to the shock chamber and then tested in the OF without receiving any treatment. On day 1, foot shocks and -to a less extent CORT- increased freezing and inhibited rearing in the chamber, but only foot shocks increased distress USVs. In the OF, both treatments suppressed complex grooming, with foot-shocks also inhibiting exploration and CORT marginally reducing rearing. On day 2, foot-shocked rats showed conditioned fear when re-exposed to the chamber. When tested in the OF, foot-shocked and CORT-treated animals still showed low levels of complex grooming, with the former group also showing increased distress USVs. In this study, all different stressors inhibited complex grooming, suggesting an inverse association between these grooming subtypes and negative emotionality.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Rita Leandro
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica
| |
Collapse
|
15
|
Makarov M, Sysoev YI, Agafonova O, Prikhodko VA, Korkotian E, Okovityi SV. Color-Coding Method Reveals Enhancement of Stereotypic Locomotion by Phenazepam in Rat Open Field Test. Brain Sci 2023; 13:brainsci13030408. [PMID: 36979218 PMCID: PMC10046075 DOI: 10.3390/brainsci13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
One of the most important tasks in neuroscience is the search for theoretical foundations for the development of methods for diagnosing and treating neurological pathology, and for assessing the effect of pharmacological drugs on the nervous system. Specific behavioral changes associated with exposure to systemic influences have been invisible to the human eye for a long time. A similar pattern of changes is characteristic of phenazepam, a drug with a wide range of effects on the brain. In this study, we used a color-coding method, which consists of combining three time positions in one image, the present (0 s), the near future (0.33 s) and the far future (1.6 s). This method made it possible to identify movement patterns, such as the initialization of ahead movements, side turns and 180° turns (back), and also to determine the degree of predictability of future movements. The obtained data revealed a decrease in the number of turns to the sides while maintaining ahead movement, as well as an increase in the predictability of movements in rats under the influence of phenazepam. Thus, sedative doses of phenazepam do not exhibit general depression of brain functions, but the inhibition of specific centers, including the medial prefrontal cortex and postsubiculum, which are involved in stereotypic locomotive behavior.
Collapse
Affiliation(s)
- Mark Makarov
- Faculty of Biology, Perm State University, 614068 Perm, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | | | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Correspondence:
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 Saint Petersburg, Russia
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
16
|
Fardell LL, Pavey CR, Dickman CR. Influences of roaming domestic cats on wildlife activity in patchy urban environments. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Roaming domestic cats (Felis catus) are recognised as a threat to wildlife globally. Yet management of pet cats in urbanised areas is not regularly mandated, and management of feral cats in urbanised areas is rarely implemented. Mounting evidence emphasises the value of urban environments as hot spots of wildlife activity, which as the human population continues to grow may become the best or only habitats available to some wildlife species. Wildlife in urban environments must navigate introduced stressors that can compound with natural stressors. Additional, often novel, predators such as free-roaming pet and feral cats that are prevalent in urban environments could have high nonconsumptive fear/stress impacts on urban wildlife that influence their activity and adversely affect their health and reproduction capabilities, possibly more so than direct predation effects do. Cat roaming activity, particularly that of pet cats, could be managed with the support of the community, though motivation needs to be ensured. Understanding if roaming cat activity influences urban wildlife activity via perceived fear/stress impacts will help to build community motivation for the need for domestic cat management in urbanised areas. Using infrared motion sensor cameras positioned in both yards and green space edge habitats, we observed whether the presence and times active of native and introduced small mammals, and native birds, were impacted by domestic cat activity within a 24-h period and by their activity in the prior-24-h period. We found evidence of cat roaming activity during the hours of most wildlife activity, and show that wildlife navigated “landscapes of fear” relative to cat activity, as wildlife observed across a 24-h period increased their activity in the absence of cats in the same 24-h period and in the previous 24-h period. We also tested if cat activity was relative to previous cat activity, or disturbances, and found that cats reduced activity in response to each, but were still consistently present. Our results provide justification for the need to increase management of domestic cats in urbanised areas and offer fear/stress impacts as a novel approach to engender community support of such management.
Collapse
|
17
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Aytekin Sahin G, Karabulut D, Unal G, Sayan M, Sahin H. Effects of probiotic supplementation on very low dose AFB1-induced neurotoxicity in adult male rats. Life Sci 2022; 306:120798. [PMID: 35843344 DOI: 10.1016/j.lfs.2022.120798] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022]
Abstract
AIMS Aflatoxin B1 (AFB1) is the most toxic and common form of AF found in food and feed. Although AFB1 exposure has toxic effects on many organs, studies on the brain are limited. Moreover, to the best of our knowledge, there is no study on the effect of probiotics on AFB1-induced neurotoxicity. Therefore, we aimed to evaluate the possible effects of probiotics on AFB1-induced neurotoxicity in the brain. MAIN METHODS Thirty-two adult male Wistar rats were divided into four groups: Vehicle (VEH), Probiotic (PRO) (2.5 × 1010 CFU/day VSL#3, orally), Aflatoxin B1 (AFB1) (25 μg/kg/week AFB1, orally), and Aflatoxin B1 + Probiotic (AFB1 + PRO) (2.5 × 1010 CFU/day VSL#3 + 25 μg/kg/week AFB1, orally). At the end of eight weeks, rats were behaviorally evaluated by the open field test, novel object recognition test, and forced swim test. Then, oxidative stress and inflammatory markers in brain tissues were analyzed. Next, brain sections were processed for Hematoxylin&Eosin staining and NeuN and GFAP immunostaining. KEY FINDINGS Probiotic supplementation tended to decrease oxidative stress and inflammatory markers compared to the AFB1 group. Besides, brain tissues had more normal histological structures in VEH, PRO, and AFB1 + PRO groups than in the AFB1 group. Moreover, in probiotic groups, GFAP immunoreactivity intensity was decreased, while NeuN-positive cell number increased in brain tissues compared to the AFB1 group. SIGNIFICANCE Probiotics seem to be effective at reducing the neurotoxic effects of AFB1. Thus, our study suggested that especially Bifidobacterium and Lactobacillus species can improve AFB1-induced neurotoxicity with their antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gizem Aytekin Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Nuh Naci Yazgan University, Kayseri, Turkey.
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Meryem Sayan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Habibe Sahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Bove M, Schiavone S, Tucci P, Sikora V, Dimonte S, Colia AL, Morgese MG, Trabace L. Ketamine administration in early postnatal life as a tool for mimicking Autism Spectrum Disorders core symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110560. [PMID: 35460811 DOI: 10.1016/j.pnpbp.2022.110560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Abstract
Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
20
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
21
|
Hwang HM, Hashimoto-Torii K. Activation of the anterior cingulate cortex ameliorates anxiety in a preclinical model of fetal alcohol spectrum disorders. Transl Psychiatry 2022; 12:24. [PMID: 35058425 PMCID: PMC8776849 DOI: 10.1038/s41398-022-01789-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
People with fetal alcohol spectrum disorders (FASD) are suffered from a wide range of interlinked cognitive and psychological problems. However, few therapeutic options are available for those patients due to limited dissection of its underlying etiology. Here we found that prenatal alcohol exposure (PAE) increases anxiety in mice due to a dysregulated functional connectivity between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA). We also show that chemogenetic activation of excitatory neurons in the ACC reduced this anxiety behavior in the PAE mice. Interestingly, although the level of plasma corticosterone correlated with the increase in anxiety in the PAE, this level was not altered by chemogenetic activation of the ACC, suggesting that the functional connectivity between the ACC and the BLA does not alter the activity of the hypothalamic-pituitary-adrenal axis. Altogether, this study demonstrated that reduced excitation in the ACC is a cause of anxiety in the PAE mice, providing critical insights into the ACC-BLA neural circuit as a potential target for treating anxiety in FASD patients.
Collapse
Affiliation(s)
- Hye M. Hwang
- grid.239560.b0000 0004 0482 1586Center for Neuroscience Research, The Children’s Research Institute, Children’s National Hospital, Washington, DC USA ,grid.253615.60000 0004 1936 9510The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
22
|
Ninomiya A, Mshaty A, Haijima A, Yajima H, Kokubo M, Khairinisa MA, Ariyani W, Fujiwara Y, Ishii S, Hosoi N, Hirai H, Amano I, Koibuchi N. The neurotoxic effect of lactational PFOS exposure on cerebellar functional development in male mice. Food Chem Toxicol 2021; 159:112751. [PMID: 34871666 DOI: 10.1016/j.fct.2021.112751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023]
Abstract
Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.
Collapse
Affiliation(s)
- Ayane Ninomiya
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Abdallah Mshaty
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Asahi Haijima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Laboratory for Environmental Brain Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Hiroyuki Yajima
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Michifumi Kokubo
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Miski Aghnia Khairinisa
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Jatinangor, Sumedang, West Java, 45363, Indonesia
| | - Winda Ariyani
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Yuki Fujiwara
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Sumiyasu Ishii
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Nobutake Hosoi
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, 371-8511, Japan.
| |
Collapse
|
23
|
Büki A, Bohár Z, Kekesi G, Vécsei L, Horvath G. Wisket rat model of schizophrenia: Impaired motivation and, altered brain structure, but no anhedonia. Physiol Behav 2021; 244:113651. [PMID: 34800492 DOI: 10.1016/j.physbeh.2021.113651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/17/2023]
Abstract
It is well-known that the poor cognition in schizophrenia is strongly linked to negative symptoms, including motivational deficit, which due to, at least partially, anhedonia. The goal of this study was to explore whether the schizophrenia-like Wisket animals with impaired motivation (obtained in the reward-based hole-board test), also show decreased hedonic behavior (investigated with the sucrose preference test). While neurochemical alterations of different neurotransmitter systems have been detected in the Wisket rats, no research has been performed on structural changes. Therefore, our additional aim was to reveal potential neuroanatomical and structural alterations in different brain regions in these rats. The rats showed decreased general motor activity (locomotion, rearing and exploration) and impaired task performance in the hole-board test compared to the controls, whereas no significant difference was observed in the sucrose preference test between the groups. The Wisket rats exhibited a significant decrease in the frontal cortical thickness and the hippocampal area, and moderate increases in the lateral ventricles and cell disarray in the CA3 subfield of hippocampus. To our knowledge, this is the first study to investigate the hedonic behavior and neuroanatomical alterations in a multi-hit animal model of schizophrenia. The results obtained in the sucrose preference test suggest that anhedonic behavior might not be involved in the impaired motivation obtained in the hole-board test. The neuropathological changes agree with findings obtained in patients with schizophrenia, which refine the high face validity of the Wisket model.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary.
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary; Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725, Hungary; Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725 Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| |
Collapse
|
24
|
Rojas-Carvajal M, Chinchilla-Alvarado J, Brenes JC. Muscarinic regulation of self-grooming behavior and ultrasonic vocalizations in the context of open-field habituation in rats. Behav Brain Res 2021; 418:113641. [PMID: 34756999 DOI: 10.1016/j.bbr.2021.113641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/05/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022]
Abstract
Laboratory rats repeatedly exposed to an open field (OF) apparatus display increasingly high levels of grooming -especially that characterized by long and complex sequences- which has been taken as an additional index of novelty habituation. We hypothesized that disrupting such a learning process by administering an amnesic drug as the antimuscarinic scopolamine (SCP) could delay the appearance of more complex grooming subtypes. Thus, rats were pretreated either with SCP (15 mg/kg or 30 mg/kg) or vehicle (VEH) upon four one-day apart OF (OF1-4). On a fifth assessment, all rats received VEH to analyze the likely carry-over effect of SCP. Finally, we measured 50-kHz and 22-kHz ultrasonic vocalizations (USVs) as reliable markers of positive and negative emotionality, respectively. We found that SCP increased locomotion during OF1 and reduced rearing on OF1-OF4, causing no disruption in habituation over tests. SCP prevented the increase of total grooming time by inhibiting complex grooming subtypes and promoting short cephalic sequences. Despite the SCP-induced alterations on grooming agreed with our hypotheses, those changes may have resulted from a motor impairment that could have also affected rearing behavior. Additionally, SCP suppressed 50-kHz USVs while marginally increased 22-kHz calls. Once SCP was withdrawn, rearing, grooming, and some 50-kHz USVs subtypes returned to VEH levels, suggesting that novelty habituation occurred despite the SCP administration. Altogether, that mixed profile of SCP-induced behavioral changes may derive from the complex interplay between the contrasting action of SCP on different brain regions and the doses here used.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Jimmy Chinchilla-Alvarado
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Montes de Oca, San José, Costa Rica; Institute for Psychological Research, University of Costa Rica, Montes de Oca, San José, Costa Rica.
| |
Collapse
|
25
|
Beaver JN, Gilman TL. Salt as a non-caloric behavioral modifier: A review of evidence from pre-clinical studies. Neurosci Biobehav Rev 2021; 135:104385. [PMID: 34634356 DOI: 10.1016/j.neubiorev.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
Though excess salt intake is well-accepted as a dietary risk factor for cardiovascular diseases, relatively little has been explored about how it impacts behavior, despite the ubiquity of salt in modern diets. Given the challenges of manipulating salt intake in humans, non-human animals provide a more tractable means for evaluating behavioral sequelae of high salt. By describing what is known about the impact of elevated salt on behavior, this review highlights how underexplored salt's behavioral effects are. Increased salt consumption in adulthood does not affect spontaneous anxiety-related behaviors or locomotor activity, nor acquisition of maze or fear tasks, but does impede expression of spatial/navigational and fear memory. Nest building is reduced by heightened salt in adults, and stress responsivity is augmented. When excess salt exposure occurs during development, and/or to parents, offspring locomotion is increased, and both spatial memory expression and social investigation are attenuated. The largely consistent findings reviewed here indicate expanded study of salt's effects will likely uncover broader behavioral implications, particularly in the scarcely studied female sex.
Collapse
Affiliation(s)
- Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
26
|
Ochi R, Fujita N, Goto N, Takaishi K, Oshima T, Nguyen ST, Nishijo H, Urakawa S. Medial prefrontal area reductions, altered expressions of cholecystokinin, parvalbumin, and activating transcription factor 4 in the corticolimbic system, and altered emotional behavior in a progressive rat model of type 2 diabetes. PLoS One 2021; 16:e0256655. [PMID: 34506507 PMCID: PMC8432800 DOI: 10.1371/journal.pone.0256655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders are associated with a higher risk of psychiatric disorders. We previously reported that 20-week-old Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of progressive type 2 diabetes, showed increased anxiety-like behavior and regional area reductions and increased cholecystokinin-positive neurons in the corticolimbic system. However, in which stages of diabetes these alterations in OLETF rats occur remains unclear. We aimed to investigate anxiety-like behavior and its possible mechanisms at different stages of type 2 diabetes in OLETF rats. Eight- and 30-week-old OLETF rats were used as diabetic animal models at the prediabetic and progressive stages of type 2 diabetes respectively, and age-matched Long-Evans Tokushima Otsuka rats served as non-diabetic controls. In the open-field test, OLETF rats showed less locomotion in the center zone and longer latency to leave the center zone at 8 and 30 weeks old, respectively. The areas of the medial prefrontal cortex were smaller in the OLETF rats, regardless of age. The densities of cholecystokinin-positive neurons in OLETF rats were higher in the lateral and basolateral amygdala only at 8 weeks old and in the anterior cingulate and infralimbic cortices and hippocampal cornu ammonis area 3 at both ages. The densities of parvalbumin-positive neurons of OLETF rats were lower in the cornu ammonis area 2 at 8 weeks old and in the prelimbic and infralimbic cortices at both ages. No apoptotic cell death was detected in OLETF rats, but the percentage of neurons co-expressing activating transcription factor 4 and cholecystokinin and parvalbumin was higher in OLETF rats at both ages in the anterior cingulate cortex and basolateral amygdala, respectively. These results suggest that altered emotional behavior and related neurological changes in the corticolimbic system are already present in the prediabetic stage of OLETF rats.
Collapse
Affiliation(s)
- Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Natsuki Goto
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kaho Takaishi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Takaya Oshima
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Son Tien Nguyen
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
27
|
Camargo A, Dalmagro AP, Fraga DB, Rosa JM, Zeni ALB, Kaster MP, Rodrigues ALS. Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway. Psychopharmacology (Berl) 2021; 238:2555-2568. [PMID: 34342672 DOI: 10.1007/s00213-021-05879-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
RATIONALE Guanosine has been shown to potentiate ketamine's antidepressant-like actions, although its ability to augment the anxiolytic effect of ketamine remains to be determined. OBJECTIVE This study investigated the anxiolytic-like effects of a single administration with low doses of ketamine and/or guanosine in mice subjected to chronic administration of corticosterone and the role of NLRP3-driven signaling. METHODS Corticosterone (20 mg/kg, p.o.) was administered for 21 days, followed by a single administration of ketamine (0.1 mg/kg, i.p.), guanosine (0.01 mg/kg, p.o.), or ketamine (0.1 mg/kg, i.p.) plus guanosine (0.01 mg/kg, p.o.). Anxiety-like behavior and NLRP3-related targets were analyzed 24 h following treatments. RESULTS Corticosterone reduced the time spent in the open arms and the central zone in the elevated plus-maze test and open-field test, respectively. Corticosterone raised the number of unsupported rearings and the number and time of grooming, and decreased the latency to start grooming in the open-field test. Disturbances in regional distribution (increased rostral grooming) and grooming transitions (increased aborted and total incorrect transitions) were detected in corticosterone-treated mice. These behavioral alterations were accompanied by increased immunocontent of Iba-1, ASC, NLRP3, caspase-1, TXNIP, and IL-1β in the hippocampus, but not in the prefrontal cortex. The treatments with ketamine, guanosine, and ketamine plus guanosine were effective to counteract corticosterone-induced anxiety-like phenotype, but not disturbances in the hippocampal NLRP3 pathway. CONCLUSIONS Our study provides novel evidence that low doses of ketamine and/or guanosine reverse corticosterone-induced anxiety-like behavior and shows that the NLRP3 inflammasome pathway is likely unrelated to this response.
Collapse
Affiliation(s)
- Anderson Camargo
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Paula Dalmagro
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Daiane B Fraga
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia B Zeni
- Laboratory of Evaluation of Bioactive Substances, Department of Natural Sciences, Universidade Regional de Blumenau, Blumenau, Santa Catarina, 89030-903, Brazil
| | - Manuella P Kaster
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Center of Biological Sciences, Neuroscience Postgraduate Program, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil. .,Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
28
|
Aleshin VA, Graf AV, Artiukhov AV, Boyko AI, Ksenofontov AL, Maslova MV, Nogués I, di Salvo ML, Bunik VI. Physiological and Biochemical Markers of the Sex-Specific Sensitivity to Epileptogenic Factors, Delayed Consequences of Seizures and Their Response to Vitamins B1 and B6 in a Rat Model. Pharmaceuticals (Basel) 2021; 14:ph14080737. [PMID: 34451834 PMCID: PMC8400147 DOI: 10.3390/ph14080737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
The disturbed metabolism of vitamins B1 or B6, which are essential for neurotransmitters homeostasis, may cause seizures. Our study aims at revealing therapeutic potential of vitamins B1 and B6 by estimating the short- and long-term effects of their combined administration with the seizure inductor pentylenetetrazole (PTZ). The PTZ dose dependence of a seizure and its parameters according to modified Racine’s scale, along with delayed physiological and biochemical consequences the next day after the seizure are assessed regarding sexual dimorphism in epilepsy. PTZ sensitivity is stronger in the female than the male rats. The next day after a seizure, sex differences in behavior and brain biochemistry arise. The induced sex differences in anxiety and locomotor activity correspond to the disappearance of sex differences in the brain aspartate and alanine, with appearance of those in glutamate and glutamine. PTZ decreases the brain malate dehydrogenase activity and urea in the males and the phenylalanine in the females. The administration of vitamins B1 and B6 24 h before PTZ delays a seizure in female rats only. This desensitization is not observed at short intervals (0.5–2 h) between the administration of the vitamins and PTZ. With the increasing interval, the pyridoxal kinase (PLK) activity in the female brain decreases, suggesting that the PLK downregulation by vitamins contributes to the desensitization. The delayed effects of vitamins and/or PTZ are mostly sex-specific and interacting. Our findings on the sex differences in sensitivity to epileptogenic factors, action of vitamins B1/B6 and associated biochemical events have medical implications.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Anastasia V. Graf
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Alexandra I. Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Isabel Nogués
- Research Institute of Terrestrial Ecosystems, National Research Council, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy;
| | - Martino L. di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, 00185 Rome, Italy;
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.); (A.V.A.); (A.I.B.)
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.G.); (A.L.K.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
29
|
Morin A, Poitras M, Plamondon H. Global cerebral ischemia in adolescent male Long Evans rats: Effects of vanillic acid supplementation on stress response, emotionality, and visuospatial memory. Behav Brain Res 2021; 412:113403. [PMID: 34090940 DOI: 10.1016/j.bbr.2021.113403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
The developmental period is critical in delineating plastic response to internal and external events. However, neurobehavioural effects of global cerebral ischemia (GCI) in the maturing brain remain largely unknown. This study characterised the effects of GCI experienced at puberty on adulthood (1) hippocampus CA1 neuronal damage, (2) cognitive and emotional impairments, and (3) glucocorticoid receptor (GR) expression. Effects of adolescent exposure to the phenol vanillic acid (VA) on post-ischemic outcomes were also determined. Male Long Evans rats (n = 35) were supplemented for 21 consecutive days (postnatal days 33-53) with VA (91 mg/kg) or nut paste vehicle (control) prior to a 10-min GCI or sham surgery. As adults, rats were tested in the Open Field Test (OFT), Elevated-Plus Maze (EPM), and Barnes Maze (BM). GR expression was determined in the basolateral amygdala (BLA), CA1, and paraventricular nucleus (PVN), and brain injury assessed via CA1 neuronal density. Adolescent GCI exposure induced extensive hippocampal CA1 injury, which was not prevented by VA supplementation. Behaviourally, GCI increased EPM exploration while having no impact on spatial memory. VA intake increased OFT peripheral exploration. Notably, while no delayed changes in CA1 and PVN GR immunoreactivity were noted, both treatments separately increased BLA GR expression when compared with sham-nut paste rats. Age at GCI occurrence plays a critical role on post-ischemic impairments. The observation of minimal functional impairments despite important CA1 neuronal damage supports use of compensatory mechanisms. Our findings also show daily VA supplementation during adolescence to have no protective effects on post-ischemic outcomes, contrasting adult intake.
Collapse
Affiliation(s)
- Alexandre Morin
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Marilou Poitras
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
30
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Lordkipanidze T. Aging affects cognition and hippocampal ultrastructure in male Wistar rats. Dev Neurobiol 2021; 81:833-846. [PMID: 34047044 DOI: 10.1002/dneu.22839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.
Collapse
Affiliation(s)
- Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology Howard, University College of Medicine, Washington, District of Columbia, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
31
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
32
|
van Schie MKM, Lammers GJ, Fronczek R, Middelkoop HAM, van Dijk JG. Vigilance: discussion of related concepts and proposal for a definition. Sleep Med 2021; 83:175-181. [PMID: 34022494 DOI: 10.1016/j.sleep.2021.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
We reviewed current definitions of vigilance to propose a definition, applicable in sleep medicine. As previous definitions contained terms such as attention, alertness, and arousal, we addressed these concepts too. We defined alertness as a quantitative measure of the mind state governing sensitivity to stimuli. Arousal comprises a stimulus-induced upward change in alertness, irrespective of the subsequent duration of the increased level of alertness. Vigilance is defined as the capability to be sensitive to potential changes in one's environment, ie the capability to reach a level of alertness above a threshold for a certain period of time rather than the state of alertness itself. It has quantitative and temporal dimensions. Attention adds direction towards a stimulus to alertness, requiring cognitive control: it involves being prepared to process stimuli coming from an expected direction. Sustained attention corresponds to a state in which some level of attention is purposefully maintained, adding a time factor to the definition of attention. Vigilance differs from sustained attention in that the latter in addition implies a direction to which attention is cognitively directed as well as a specification of duration. Attempts to measure vigilance, however, are often in fact measurements of sustained attention.
Collapse
Affiliation(s)
- Mojca K M van Schie
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, the Netherlands.
| | - Gert Jan Lammers
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, the Netherlands; Sleep-wake Center SEIN, Heemstede, the Netherlands
| | - Rolf Fronczek
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, the Netherlands; Sleep-wake Center SEIN, Heemstede, the Netherlands
| | - Huub A M Middelkoop
- Department of Neurology and Neuropsychology, Leiden University Medical Center, the Netherlands; Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, the Netherlands
| | - J Gert van Dijk
- Department of Neurology and Clinical Neurophysiology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
33
|
Sampedro-Viana D, Cañete T, Sanna F, Soley B, Giorgi O, Corda MG, Torrecilla P, Oliveras I, Tapias-Espinosa C, Río-Álamos C, Sánchez-González A, Tobeña A, Fernández-Teruel A. Decreased social interaction in the RHA rat model of schizophrenia-relevant features: Modulation by neonatal handling. Behav Processes 2021; 188:104397. [PMID: 33887361 DOI: 10.1016/j.beproc.2021.104397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 12/18/2022]
Abstract
The Roman-Low (RLA) and High-Avoidance (RHA) rat strains have been bidirectionally selected and bred, respectively, for extremely poor vs. rapid acquisition of the two-way active avoidance task. Over 50 years of selective breeding have led to two strains displaying many differential specific phenotypes. While RLAs display anxious-related behaviours, RHA rats show impulsivity, and schizophrenia-like positive and cognitive symptoms or phenotypes. Neonatal handling (NH) is an environmental treatment with long-lasting anxiolytic-like and anti-stress effects. NH also reduces symptoms related to schizophrenia, such as pre-pulse inhibition (PPI) impairment and latent inhibition (LI) deficits, and improves spatial working memory and cognitive flexibility. The present work was aimed at exploring whether RHAs also display negative schizophrenia-like symptoms (or phenotypes), such as lowered preference for social interaction (i.e. asociality), and whether NH would reduce these deficits. To this aim, we evaluated naïve inbred RHA and RLA rats in a social interaction (SI) test after either long- or short-term habituation to the testing set up (studies 1-2). In Study 3 we tested untreated and NH-treated RHA and RLA rats in novel object exploration (NOE) and SI tests. Compared with RHAs, RLA rats displayed increased anxiety-related behaviours in the NOE (i.e. higher behavioural inhibition, lesser exploration of the novel object) and SI (i.e. higher levels of self-grooming) tests which were dramatically reduced by NH treatment, thus supporting the long-lasting anxiolytic-like effect of NH. Remarkably, RHA rats showed decreased social preference in the SI test compared with RLAs, evidencing that RHAs would present a relative asociality, which is thought to model some negative symptomatology (i.e. social withdrawal) of schizophrenia. NH increased absolute levels of social behaviour in both strains, but with a more marked effect in RHA rats, especially in the first 5 min of the SI test. Thus, it is hypothesized that, apart from its effects on anxiety-related behaviours, NH might have long-lasting positive effects on behavioural and neurobiological processes that are impaired in schizophrenia.
Collapse
Affiliation(s)
- Daniel Sampedro-Viana
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Francesco Sanna
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Bernat Soley
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Maria G Corda
- Department of Life and Environmental Sciences (DiSVA), University of Cagliari, Italy
| | - Pilar Torrecilla
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Carles Tapias-Espinosa
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Ana Sánchez-González
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
34
|
Rojas-Carvajal M, Quesada-Yamasaki D, Brenes JC. The cage test as an easy way to screen and evaluate spontaneous activity in preclinical neuroscience studies. MethodsX 2021; 8:101271. [PMID: 34434792 PMCID: PMC8374250 DOI: 10.1016/j.mex.2021.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Within behavioral neuroscience, subjects used to be randomly assigned to the experimental groups based on the premise that interindividual variability will be homogeneously distributed. However, the equivalence offered by randomization diminishes in small samples, which is the case for most experiments in the field. In rodents, it is well-recognized that individual differences in psychomotor reactivity, risk-assessment behaviors, and emotional responsiveness modulate the effects of different pharmacological and non-pharmacological treatments. For that reason, knowing such differences before the experiment provides highly valuable information for balancing the groups so that the interindividual variability is equally distributed within the groups without excluding subjects as far as possible. Because unconditioned anxiety tests such as the open-field (OF) and the elevated plus-maze are commonly used within experimental procedures, we developed a strategy to explore the rat's behavioral phenotype by assessing it in a very innocuous testing context: a housing cage.•We offer a very straightforward protocol for assessing spontaneous, novelty-induced reactivity in rodents.•We describe its implementation, analysis, and use, as well as some suggestions about key behavioral readouts for the group allocation procedure.•The current protocol provides an alternative strategy to assess a reasonably wide range of behavioral outcomes, most of which are of great interest in modeling different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Institute for Psychological Research, University of Costa Rica Costa Rica
- Neuroscience Research Center, University of Costa Rica Costa Rica
| | | | - Juan C. Brenes
- Institute for Psychological Research, University of Costa Rica Costa Rica
- Neuroscience Research Center, University of Costa Rica Costa Rica
| |
Collapse
|
35
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
36
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Gasimov E. Age‐related behavioral and ultrastructural changes in the rat amygdala. Dev Neurobiol 2020; 80:433-442. [DOI: 10.1002/dneu.22788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Nino Lomidze
- School of Life Sciences and Medicine Ilia State University Tbilisi GA USA
| | - Mzia G. Zhvania
- School of Life Sciences and Medicine Ilia State University Tbilisi GA USA
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
| | - Yousef Tizabi
- Department of Pharmacology Howard University College of Medicine Washington DC USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
- Medical School New Vision University Tbilisi Georgia
| | - Nino Pochkhidze
- Department of Brain Ultrastructure and Nanoarchitecture Ivane Beritashvili Center of Experimental Biomedicine Tbilisi GA USA
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology Azerbaijan Medical University Baku Baku Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology Azerbaijan Medical University Baku Baku Azerbaijan
| |
Collapse
|
37
|
Rojas-Carvajal M, Brenes JC. Acute stress differentially affects grooming subtypes and ultrasonic vocalisations in the open-field and home-cage test in rats. Behav Processes 2020; 176:104140. [PMID: 32413473 DOI: 10.1016/j.beproc.2020.104140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Grooming behaviour in rodents has been associated with emotional distress, especially in unfamiliar and aversive contexts. However, the biological function of grooming in such situations is still unclear. We hypothesised that particular grooming subtypes are differentially associated with the stress response. Here, we investigated the effects of an acute stress exposure on grooming and ultrasonic vocalisations (USVs) assessed on different testing contexts varying in the level of familiarity. To this aim, footshocked and non-footshocked rats were tested for 20 min on one of the following conditions: an unfamiliar open-field test, a familiar open-field test, and an individual home cage filled with bedding. We found that footshock stress slightly decreased complex grooming sequences while increased cephalic grooming. Stress induced a negative affective state inferred from an increase and decrease of 22-kHz and 50-kHz calls, respectively. The latter USVs correlated positively with the complex grooming subtypes. Altogether, a detailed analysis of grooming seems necessary for elucidating its diverse biological functions. Nevertheless, footshock stress and testing conditions produced weaker-than-expected effects, possibly because the time elapsed between footshocks and behavioural testing was too short for eliciting a full stress response, and because the simple footshock-chamber experience may have impeded detecting stronger effects of familiarity.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Costa Rica; Institute for Psychological Research, University of Costa Rica, Costa Rica.
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Costa Rica; Institute for Psychological Research, University of Costa Rica, Costa Rica.
| |
Collapse
|
38
|
Rojas-Carvajal M, Sequeira-Cordero A, Brenes JC. Neurobehavioral Effects of Restricted and Unpredictable Environmental Enrichment in Rats. Front Pharmacol 2020; 11:674. [PMID: 32477137 PMCID: PMC7235364 DOI: 10.3389/fphar.2020.00674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
To study how motivational factors modulate experience-dependent neurobehavioral plasticity, we modify a protocol of environmental enrichment (EE) in rats. We assumed that the benefits derived from EE might vary according to the level of incentive salience attributed to it. To enhance the rewarding properties of EE, access to the EE cage varied randomly from 2 to 48 h for 30 days (REE). The REE group was enriched only 50% of the time and was compared to standard housing and continuous EE (CEE) groups. As behavioral readout, we analyzed the spontaneous activity and the ultrasonic vocalizations (USVs) within the EE cage weekly, and in the open field test at the end of the experiment. In the cage, REE increased the utilization of materials, physical activity, and the rate of appetitive USVs. In the OF, the CEE-induced enhancements in novelty habituation and social signaling were equaled by the REE. At the neural level, we measured the expression of genes related to neural plasticity and epigenetic regulations in different brain regions. In the dorsal striatum and hippocampus, REE upregulated the expression of the brain-derived neurotrophic factor, its tropomyosin kinase B receptor, and the DNA methyltransferase 3A. Altogether, our results suggest that the higher activity within the cage and the augmented incentive motivation provoked by the REE boosted its neurobehavioral effects equaling or surpassing those observed in the CEE condition. As constant exposures to treatments or stimulating environments are virtually impossible for humans, restricted EE protocols would have greater translational value than traditional ones.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| | - Andrey Sequeira-Cordero
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Health Research, University of Costa Rica, San Pedro, Costa Rica
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, San Pedro, Costa Rica.,Institute for Psychological Research, University of Costa Rica, San Pedro, Costa Rica
| |
Collapse
|
39
|
Riljak V, Laštůvka Z, Mysliveček J, Borbélyová V, Otáhal J. Early postnatal hypoxia induces behavioral deficits but not morphological damage in the hippocampus in adolescent rats. Physiol Res 2019; 69:165-179. [PMID: 31852194 DOI: 10.33549/physiolres.934234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypoxia is one of the major pathological factors affecting brain function. The aim of the present study was to describe the effect of neonatal hypobaric hypoxia on the behavior of rats and to analyze its effect on hippocampal neurodegeneration. Hypobaric hypoxia at a simulated altitude of 9000 m was induced for one hour in neonatal rat pups (PND7 and PND9) of both sexes. Subsequently, the rats underwent behavioral testing on PND25 and PND35 using a LABORAS apparatus to assess spontaneous behavior. Hypoxia did not cause any morphological damage in the hippocampus of rats. However, hypoxia on PND7 led to less horizontal locomotor activity both, in males (on PND25) and females (on PND35). Hypoxia on PND9 led to higher rearing in females on PND25. Hypoxic males exhibited higher grooming activity, while females lower grooming activity on PND35 following hypoxia induced on PND7. In females, hypoxia on PND9 resulted in higher grooming activity on PND25. Sex differences in the effect of hypoxia was observed on PND35, when hypoxic males compared to hypoxic females displayed more locomotor, rearing and grooming activity. Our data suggest that hypoxia on PND7 versus PND9 differentially affects locomotion and grooming later in adolescence and these effects are sex-dependent.
Collapse
Affiliation(s)
- V Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|