1
|
Plouhinec L, Zhang L, Pillon A, Haon M, Grisel S, Navarro D, Black I, Neugnot V, Azadi P, Urbanowicz B, Berrin JG, Lafond M. Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach. Sci Rep 2025; 15:1716. [PMID: 39799163 PMCID: PMC11724913 DOI: 10.1038/s41598-024-83289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Pectin is a complex plant heteropolysaccharide whose structure and function differ depending on its source. In animal feed, breaking down pectin is essential, as its presence increases feed viscosity and reduces nutrient absorption. Soybean meal, a protein-rich poultry feed ingredient, contains significant amounts of pectin, the structure of which remains unclear. Consequently, the enzyme activities required to degrade soybean meal pectin and how they interact are still open questions. In this study, we produced 15 recombinant fungal carbohydrate-active enzymes (CAZymes) identified from fungal secretomes acting on pectin. After observing that these enzymes were not active on soybean meal pectin when used alone, we developed a semi-miniaturized method to evaluate their effect as multi-activity cocktails. We designed and tested 12 enzyme pools, containing up to 15 different CAZymes, using several hydrolysis markers. Thanks to our multiactivity enzymatic approach combined with a Pearson correlation matrix, we identified 10 fungal CAZymes efficient on soybean meal pectin, 9 of which originate from Talaromyces versatilis. Based on enzyme specificity and linkage analysis, we propose a structural model for soybean meal pectin. Our findings underscore the importance of combining CAZymes to improve the degradation of agricultural co-products.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- Adisseo France S.A.S, CINAbio, Toulouse, France
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alexandre Pillon
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - Mireille Haon
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - Sacha Grisel
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix-Marseille Univ, 3PE Platform, Marseille, France
| | - David Navarro
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France
- INRAE, Aix Marseille Univ, CIRM-CF, Centre International des Ressources Microbiennes- Champignons Filamenteux, Marseille, France
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA, 30602, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, Athens, GA, 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jean-Guy Berrin
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.
| | - Mickael Lafond
- BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
2
|
Muhidinov ZK, Nasriddinov AS, Strahan GD, Jonmurodov AS, Bobokalonov JT, Ashurov AI, Zumratov AH, Chau HK, Hotchkiss AT, Liu LS. Structural analyses of apricot pectin polysaccharides. Int J Biol Macromol 2024; 279:135544. [PMID: 39265912 DOI: 10.1016/j.ijbiomac.2024.135544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Apricot pectin polysaccharides' fine structure was performed using HPSEC, HPAEC-PAD, GC-MS, NMR and FTIR spectroscopies. Purified pectin fraction (F1AP) was composed of D-galacturonic acid, L-rhamnose, D-arabinose and D-galactose, Mw ∼ 1588 kDa. F1AP was eluted by water and with 0.2 M NaCl from DEAE Sepharose fraction resulting in two distinct fractions, F1AP1 and F1AP6, with different structures, molecular weights, and conformations, providing insights into their structural diversity. F1AP1 neutral properties were related to its association with protein. F1AP1 had a backbone of (1 → 4)-linked-D-galacturonic acid and (1 → 2)-linked-L-rhamnopyranosyl residues branched with arabinogalactan including multiple glycosidic linkages of T-α-Araf, 3-α-Araf, 5-α-Araf, T-α-Arap, 2-α-Arap, t-Galp, 2-Galp, 3-Galp, 4-Galp, 6-Galp, 2,4-Galp, 3,4-Galp, 3,6-Galp and 4,6-Galp side chains, having methyl and acetylated groups, and a high molecular weight (1945 kDa). The Mark-Houwink exponent was 0.276, indicating a compact spherical conformation. While the other F1AP6 fraction consists predominately of less methylated HG regions of pectin polysaccharides. The molar mass of this fraction was 117.5 kDa, which adopted a stiffer and random coil conformation. This knowledge allows us to evaluate how the balance of chemical structure and physical properties of the two pectin domains may manifest itself in the isolated structure of apricot pectin and its applications.
Collapse
Affiliation(s)
- Zayniddin K Muhidinov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan.
| | - Abubakr S Nasriddinov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Gary D Strahan
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Abduvaly S Jonmurodov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Jamshed T Bobokalonov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Ashurboy I Ashurov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Aziz H Zumratov
- Institute of Chemistry named after V.I Nikitin of the Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Hoa K Chau
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Arland T Hotchkiss
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| | - Lin Shu Liu
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| |
Collapse
|
3
|
Sanhueza D, Sepúlveda-Orellana P, Salazar-Carrasco A, Zúñiga S, Herrera R, Moya-León MA, Saez-Aguayo S. Mucilage extracted from Chilean papaya seeds is enriched with homogalacturonan domains. FRONTIERS IN PLANT SCIENCE 2024; 15:1380533. [PMID: 38872878 PMCID: PMC11169631 DOI: 10.3389/fpls.2024.1380533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Chilean papaya, also known as mountain papaya (Vasconcellea pubescens), is a fruit valued for its nutritional value and pleasant fragrance. The oblong fruit, featuring five ridges and a seed-filled mucilage cavity, is typically consumed cooked due to its high protease content. The mucilage and the seeds are usually discarded as byproducts. This study analyzed the biochemical composition of mountain papaya seed mucilage using methods such as HPAEC and immunolabeling. Results revealed that papaya seeds yield nearly 20% of their weight in mucilage polysaccharides, which can be separated into soluble and adherent layers. The mucilage exhibited a high proportion of acidic sugars, indicating that homogalacturonan (HG) is the predominant domain. It also contained other domains like rhamnogalacturonan-I (RG-I) and hemicelluloses, predominantly xyloglucan. The HG-rich mucilage, currently considered waste, emerges as a promising source of polysaccharides, indicating its multifaceted utility in various industrial applications.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Alejandra Salazar-Carrasco
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Sebastian Zúñiga
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Raúl Herrera
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
4
|
Zhu K, Wu J, Hu A, Yin Z, Hou Z, Ye X, Chen S. Extensive Analysis of Mulberry ( Morus rubra L.) Polysaccharides with Different Maturities by Using Two-Step Extraction and LC/QqQ-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38606987 DOI: 10.1021/acs.jafc.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A primary challenge of polysaccharide analysis is the need for comprehensive extraction and characterization methods. In this study, mulberry polysaccharides at different maturities were fully extracted through a two-step process involving ethylenediaminetetraacetic acid (EDTA) and sodium hydroxide (NaOH), and their structures were determined by a combination analysis of monosaccharides and glycosidic linkages based on liquid chromatography triple quadrupole mass spectrometry (LC/QqQ-MS). The results indicate mulberry polysaccharides mainly contain highly branched pectic polysaccharides, (1,3,6)-linked glucan, xylan, and xyloglucan, but the content of different portions varies at different maturity stages. HG decreases from 19.12 and 19.14% (green mulberry) to 9.80 and 6.08% (red mulberry) but increases to 17.83 and 11.83% as mulberry transitioned from red to black. In contrast, the contents of glucan showed opposite trends. When mulberry turns red to black, the RG-I arabinan chains decrease from 47.75 and 28.86% to 13.16 and 12.72%, while the galactan side chains increase from 1.18 and 1.91 to 8.3 and 6.49%, xylan and xyloglucan show an increase in content. Overall, the two-step extraction combined with LC/QqQ-MS provides a new strategy for extensive analysis of complex plant polysaccharides.
Collapse
Affiliation(s)
- Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Jinghua Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ankai Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zihao Yin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Ningbo Research Institute of Zhejiang University, Ningbo 315100, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Ningbo Research Institute of Zhejiang University, Ningbo 315100, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
5
|
Chernova T, Mikshina P, Petrova A, Ibragimova N, Ageeva M, Gorshkova T. Rhamnogalacturonan I with β-(1,4)-Galactan Side Chains as an Ever-Present Component of Tertiary Cell Wall of Plant Fibers. Int J Mol Sci 2023; 24:17253. [PMID: 38139081 PMCID: PMC10743774 DOI: 10.3390/ijms242417253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The cellulose-enriched tertiary cell walls present in many plant fibers have specific composition, architecture, machinery of formation, and function. To better understand the mechanisms underlying their mode of action and to reveal the peculiarities of fibers from different plant species, it is necessary to more deeply characterize the major components. Next to overwhelming cellulose, rhamnogalacturonan I (RG-I) is considered to be the key polymer of the tertiary cell wall; however, it has been isolated and biochemically characterized in very few plant species. Here, we add RG-I to the list from the phloem fibers of the Phaseolus vulgaris stem that was isolated and analyzed by nuclear magnetic resonance (NMR), dynamic light scattering, and immunolabeling, both within tissue and as an isolated polymer. Additionally, fibers with tertiary cell walls from nine species of dicotyledonous plants from the orders Malphigiales, Fabales, and Rosales were labeled with RG-I-related antibodies to check the presence of the polymer and compare the in situ presentation of its backbone and side chains. The obtained results confirm that RG-I is an obligatory polymer of the tertiary cell wall. However, there are differences in the structure of this polymer from various plant sources, and these peculiarities may be taxonomically related.
Collapse
Affiliation(s)
- Tatyana Chernova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia; (P.M.); (N.I.)
| | - Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
| | - Nadezhda Ibragimova
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia; (P.M.); (N.I.)
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
| |
Collapse
|
6
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
8
|
Sushytskyi L, Synytsya A, Mirzayeva T, Kalouskova T, Bleha R, Čopíková J, Kubač D, Grivalský T, Ulbrich P, Kaštánek P. Fractionation of the water insoluble part of the heterotrophic mutant green microalga Parachlorella kessleri HY1 (Chlorellaceae) biomass: Identification and structure of polysaccharides. Int J Biol Macromol 2022; 213:27-42. [PMID: 35623455 DOI: 10.1016/j.ijbiomac.2022.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
The water-insoluble part of Parachlorella kessleri HY1 biomass was subjected to the extraction of cell-wall polysaccharides using polar aprotic solvents (DMSO, LiCl/DMSO) and aqueous alkaline solutions (0.1, 1 and 4 mol·l-1 of NaOH). Proteins predominated in all the crude extracts and in the insoluble residues were partially removed by treatment with proteolytic enzymes (pepsin and pronase), and in some cases with the HCl/H2O2 reagent, yielding purified polysaccharide-enriched fractions. These treatments led to the solubilisation of some products in water. The composition and structure of isolated polysaccharides were characterised based on monosaccharide composition, glycosidic linkage and spectroscopic analyses. The DMSO extract contained mainly proteins, and polysaccharides were not detected. The water-soluble parts isolated from the LiCl/DMSO extract contained α-l-rhamnan, α-d-glucan and β-d-glucogalactan; the water-insoluble part contained (1 → 4)-β-d-xylan, first isolated from the biomass of green microalgae. The alkali extracts contained polysaccharides of similar structure, and also water-insoluble (1 → 4)-β-d-mannan. The insoluble part after all extractions contained α-chitin as the main polysaccharide, which was confirmed by spectroscopic methods. All these polysaccharides can play a certain role in the cell wall structure of this microalga.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tamilla Mirzayeva
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Tereza Kalouskova
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Czech Republic
| | - David Kubač
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Tomáš Grivalský
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 81 Třebon, Czech Republic
| | - Pavel Ulbrich
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o, Ocelářská 9, Prague 9 Libeň 190 00, Czech Republic
| |
Collapse
|
9
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:411-425. [PMID: 33276159 DOI: 10.1016/j.molp.2020.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Salinity severely reduces plant growth and limits agricultural productivity. Dynamic changes and rearrangement of the plant cell wall is an important response to salt stress, but relatively little is known about the biological importance of specific cell wall components in the response. Here, we demonstrate a specific function of β-1,4-galactan in salt hypersensitivity. We found that salt stress induces the accumulation of β-1,4-galactan in root cell walls by up regulating the expression of GALACTAN SYNTHASE 1 (GALS1), which encodes a β-1,4-galactan synthase. The accumulation of β-1,4-galactan negatively affects salt tolerance. Exogenous application of D-galactose (D-Gal) causes an increase in β-1,4-galactan levels in the wild type and GALS1 mutants, especially in GALS1 overexpressors, which correlated with the aggravated salt hypersensitivity. Furthermore, we discovered that the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factors BPC1/BPC2 positively regulate plant salt tolerance by repressing GALS1 expression and β-1,4-galactan accumulation. Genetic analysis suggested that GALS1 is genetically epistatic to BPC1/BPC2 with respect to the control of salt sensitivity as well as accumulation of β-1,4-galactan. Taken together, our results reveal a new regulatory mechanism by which β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
11
|
Tsuchida M, Yamaguchi H, Katayama N, Sato Y, Kawashima W, Kasai M. Structural changes in cell wall of Japanese radish accompanied by release of rhamnogalacturonan during pressure cooker heating. Food Chem 2021; 349:129117. [PMID: 33556722 DOI: 10.1016/j.foodchem.2021.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 11/15/2022]
Abstract
Changes in the cell wall of Japanese radish due to heating at 100 °C or 117 °C for 3 h were examined. Signals in 13C cross polarization magic angle spinning solid-state NMR (which detects rigid components) showed no differences between heating temperatures. 13C pulse saturation transfer magic angle spinning NMR (which detects flexible components) showed clear temperature-dependent changes in the rhamnose side chains of rhamnogalacturonan. Alcohol-insoluble solids isolated from raw samples were heated in water at 100 °C or 117 °C for 3 h. The concentrations of dissolved sugars and metal ions measured after heating in water at 117 °C were greater than in samples heated at 100 °C, indicating that loosening of cell wall structures increased with temperature, likely via degradation and elution of rhamnogalacturonan followed by β-elimination of homogalacturonan, and fewer interactions between cell wall components, including divalent metal ions. Vegetable shape was retained despite fewer interactions.
Collapse
Affiliation(s)
- Mitose Tsuchida
- Graduate School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| | - Hideyuki Yamaguchi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | - Norihisa Katayama
- Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho, Nagoya 467-8501, Japan.
| | - Yoko Sato
- Faculity of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| | - Wakano Kawashima
- Graduate School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| | - Midori Kasai
- Faculity of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
12
|
Cao J, Yang J, Wang Z, Lu M, Yue K. Modified citrus pectins by UV/H 2O 2 oxidation at acidic and basic conditions: Structures and in vitro anti-inflammatory, anti-proliferative activities. Carbohydr Polym 2020; 247:116742. [PMID: 32829861 DOI: 10.1016/j.carbpol.2020.116742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Two modified citrus pectins, MCP4 and MCP10, were prepared by UV/H2O2 treatment at pH 4 and pH 10, respectively, and their structures were characterized. MCP10 had a rhamnogalacturonan-I (RG-I) enriched backbone with a high degree of branching (DB ∼61 %) and a low methoxylation degree (24 %). MCP4 had a homogalacturonan enriched backbone with a high degree (46 %) of methoxylation and a low DB (∼41 %) of RG-I branches. MCP10 exhibited a higher anti-inflammatory activity than MCP4 in suppressing the NF-κB expression and the production of pro-inflammatory factors TNF-α and IL-1β of THP-1 cells stimulated by lipopolysaccharide. MCP10 also showed a stronger inhibitory effect on Caco-2 cell proliferation. The stronger bioactivities of MCP10 may be attributable to the abundant branches and the proper length of terminal galactan residues attached to the RG-I domain.
Collapse
Affiliation(s)
- Jing Cao
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, 510640, PR China
| | - Kaiting Yue
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, PR China
| |
Collapse
|
13
|
Popielarska-Konieczna M, Sala K, Abdullah M, Tuleja M, Kurczyńska E. Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta. PLANT CELL REPORTS 2020; 39:779-798. [PMID: 32232559 PMCID: PMC7235053 DOI: 10.1007/s00299-020-02530-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes).
Collapse
Affiliation(s)
- Marzena Popielarska-Konieczna
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Katarzyna Sala
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Mohib Abdullah
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Faculty of Biology, Institute of Botany, Jagiellonian University in Cracow, Gronostajowa 9, 30-387, Cracow, Poland
| | - Ewa Kurczyńska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
14
|
Klaassen MT, Trindade LM. RG-I galactan side-chains are involved in the regulation of the water-binding capacity of potato cell walls. Carbohydr Polym 2020; 227:115353. [DOI: 10.1016/j.carbpol.2019.115353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
15
|
Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr Polym 2019; 230:115644. [PMID: 31887907 DOI: 10.1016/j.carbpol.2019.115644] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.
Collapse
|
16
|
Collins PP, O'donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, Schröder R, McAtee PA, Prakash R, Ireland HS, Johnston JW, Atkinson RG, Schaffer RJ, Hallett IC, Brummell DA. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6085-6099. [PMID: 31408160 DOI: 10.1093/jxb/erz370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.
Collapse
Affiliation(s)
- Patrick P Collins
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Heather R Tiffin
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- PFR, Motueka, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| |
Collapse
|
17
|
Pinski A, Betekhtin A, Sala K, Godel-Jedrychowska K, Kurczynska E, Hasterok R. Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20102571. [PMID: 31130622 PMCID: PMC6567261 DOI: 10.3390/ijms20102571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023] Open
Abstract
Plants frequently encounter diverse abiotic stresses, one of which is environmental thermal stress. To cope with these stresses, plants have developed a range of mechanisms, including altering the cell wall architecture, which is facilitated by the arabinogalactan proteins (AGP) and extensins (EXT). In order to characterise the localisation of the epitopes of the AGP and EXT, which are induced by the stress connected with a low (4 °C) or a high (40 °C) temperature, in the leaves of Brachypodium distachyon, we performed immunohistochemical analyses using the antibodies that bind to selected AGP (JIM8, JIM13, JIM16, LM2 and MAC207), pectin/AGP (LM6) as well as EXT (JIM11, JIM12 and JIM20). The analyses of the epitopes of the AGP indicated their presence in the phloem and in the inner bundle sheath (JIM8, JIM13, JIM16 and LM2). The JIM16 epitope was less abundant in the leaves from the low or high temperature compared to the control leaves. The LM2 epitope was more abundant in the leaves that had been subjected to the high temperatures. In the case of JIM13 and MAC207, no changes were observed at the different temperatures. The epitopes of the EXT were primarily observed in the mesophyll and xylem cells of the major vascular bundle (JIM11, JIM12 and JIM20) and no correlation was observed between the presence of the epitopes and the temperature stress. We also analysed changes in the level of transcript accumulation of some of the genes encoding EXT, EXT-like receptor kinases and AGP in the response to the temperature stress. In both cases, although we observed the upregulation of the genes encoding AGP in stressed plants, the changes were more pronounced at the high temperature. Similar changes were observed in the expression profiles of the EXT and EXT-like receptor kinase genes. Our findings may be relevant for genetic engineering of plants with increased resistance to the temperature stress.
Collapse
Affiliation(s)
- Artur Pinski
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Kamila Godel-Jedrychowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| |
Collapse
|
18
|
Brahem M, Renard CM, Bureau S, Watrelot AA, Le Bourvellec C. Pear ripeness and tissue type impact procyanidin-cell wall interactions. Food Chem 2019; 275:754-762. [DOI: 10.1016/j.foodchem.2018.09.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
19
|
Leonard W, Hutchings SC, Warner RD, Fang Z. Effects of incorporating roasted lupin ( Lupinus angustifolius) flour on the physicochemical and sensory attributes of beef sausage. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne 3010 Parkville Vic. Australia
| | - Scott C. Hutchings
- School of Agriculture and Food The University of Melbourne 3010 Parkville Vic. Australia
| | - Robyn D. Warner
- School of Agriculture and Food The University of Melbourne 3010 Parkville Vic. Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne 3010 Parkville Vic. Australia
| |
Collapse
|
20
|
Lahaye M, Bouin C, Barbacci A, Le Gall S, Foucat L. Water and cell wall contributions to apple mechanical properties. Food Chem 2018; 268:386-394. [DOI: 10.1016/j.foodchem.2018.06.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
21
|
Izquierdo L, Martín I, Albornos L, Hernández-Nistal J, Hueso P, Dopico B, Labrador E. Overexpression of Cicer arietinum βIII-Gal but not βIV-Gal in arabidopsis causes a reduction of cell wall β-(1,4)-galactan compensated by an increase in homogalacturonan. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:135-146. [PMID: 30268077 DOI: 10.1016/j.jplph.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
In Cicer arietinum, as in several plant species, the β-galactosidases are encoded by multigene families, although the role of the different proteins is not completely elucidated. Here, we focus in 2 members of this family, βIII-Gal and βIV-Gal, with high degree of amino acid sequence identity (81%), but involved in different developmental processes according to previous studies. Our objective is to deepen in the function of these proteins by establishing their substrate specificity and the possible alterations caused in the cell wall polysaccharides when they are overproduced in Arabidopsis thaliana by constructing the 35S::βIII-Gal and 35S::βIV-Gal transgenic plants. βIII-Gal does cause visible alterations of the morphology of the transgenic plant, all related to a decrease in growth at different stages of development. FTIR spectroscopy and immunological studies showed that βIII-Gal causes changes in the structure of the arabidopsis cell wall polysaccharides, mainly a reduction of the galactan side chains which is compensated by a marked increase in homogalacturonan, which allows us to attribute to galactan a role in the control of the architecture of the cell wall, and therefore in the processes of growth. The 35S::βIV-Gal plants do not present any phenotypic changes, neither in their morphology nor in their cell walls. In spite of the high sequence homology, our results show different specificity of substrate for these proteins, maybe due to other dissimilar characteristics, such as isoelectric points or the number of N-glycosylation sites, which could determine their enzymatic properties and their distinct action in the cell walls.
Collapse
Affiliation(s)
- Lucía Izquierdo
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | | | - Pablo Hueso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal, Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, 37007, Spain.
| |
Collapse
|
22
|
Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Cornuault V, Posé S, Knox JP. Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems. Food Chem 2018; 246:275-285. [PMID: 29291850 PMCID: PMC5770856 DOI: 10.1016/j.foodchem.2017.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023]
Abstract
The matrix polysaccharides of plant cell walls are diverse and variable sets of polymers influencing cell wall, tissue and organ properties. Focusing on the relatively simple parenchyma tissues of four fruits - tomato, aubergine, strawberry and apple - we have dissected cell wall matrix polysaccharide contents using sequential solubilisation and antibody-based approaches with a focus on pectic homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). Epitope detection in association with anion-exchange chromatography analysis indicates that in all cases solubilized polymers include spectra of HG molecules with unesterified regions that are separable from methylesterified HG domains. In highly soluble fractions, RG-I domains exist in both HG-associated and non-HG-associated forms. Soluble xyloglucan and pectin-associated xyloglucan components were detected in all fruits. Aubergine glycans contain abundant heteroxylan epitopes, some of which are associated with both pectin and xyloglucan. These profiles of polysaccharide heterogeneity provide a basis for future studies of more complex cell and tissue systems.
Collapse
Affiliation(s)
- Valérie Cornuault
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Posé
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
24
|
Khosravi C, Kun RS, Visser J, Aguilar-Pontes MV, de Vries RP, Battaglia E. In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiol 2017; 17:214. [PMID: 29110642 PMCID: PMC5674754 DOI: 10.1186/s12866-017-1118-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Background The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. Result In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. Conclusion This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate. Electronic supplementary material The online version of this article (doi: 10.1186/s12866-017-1118-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands.
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| |
Collapse
|
25
|
Majda M, Grones P, Sintorn IM, Vain T, Milani P, Krupinski P, Zagórska-Marek B, Viotti C, Jönsson H, Mellerowicz EJ, Hamant O, Robert S. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells. Dev Cell 2017; 43:290-304.e4. [DOI: 10.1016/j.devcel.2017.10.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
|
26
|
Karaki N, Aljawish A, Muniglia L, Bouguet-Bonnet S, Leclerc S, Paris C, Jasniewski J, Humeau-Virot C. Functionalization of pectin with laccase-mediated oxidation products of ferulic acid. Enzyme Microb Technol 2017. [DOI: 10.1016/j.enzmictec.2017.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Chen D, Harris PJ, Sims IM, Zujovic Z, Melton LD. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles. BMC PLANT BIOLOGY 2017; 17:104. [PMID: 28619057 PMCID: PMC5472923 DOI: 10.1186/s12870-017-1046-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/24/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. RESULTS This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. CONCLUSIONS Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.
Collapse
Affiliation(s)
- Da Chen
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Philip J. Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ian M. Sims
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Zoran Zujovic
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
- NMR Centre, School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Laurence D. Melton
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Paim RTT, Benjamin SR, Rondina D, Marques MMM, Viana DDA, Gonzaga MLDC, Vieira ÍGP, Mendes FNP, Rodrigues PAS, Guedes MIF. Antihypercholesterolemic Effects of Fruit Aqueous Extract of Copernicia prunifera (Miller) H. E. Moore in Mice Diet-Induced Hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:6376173. [PMID: 29081820 PMCID: PMC5610856 DOI: 10.1155/2017/6376173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
The present objective of the investigation is to evaluate the antihypercholesterolemic activity of the aqueous fruit pulp extract (APE) of Copernicia prunifera (Miller) H. E. Moore (Arecaceae family). Various chemical characterization methods like thin layer chromatography, Fourier transform infrared spectroscopy, 1H and 13C NMR, and molecular weight by gel permeation chromatography have been employed to characterize the extracted pectin. The present study demonstrated that hypercholesterolemic diet (HD) created hypercholesterolemia, caused significant increases in body weight, total cholesterol, and low-density lipoprotein, and caused decreases in high-density lipoprotein in serum compared with SD group. Two doses (APE 150 and 300 mg/Kg b.w./day) were administered to hyperlipidemic mice for 90 days. APE reversed body weight changes, changed serum lipids to normal values, and significantly inhibited the changes of lipid peroxidation and inflammation in the liver tissues. The renal parameters analyzed (urea and creatinine) altered by diet were reverted to normal values. Our results revealed that aqueous fruit pulp extracts of carnauba reduced hypercholesterolemia showing a potential preventive effect against cardiovascular diseases without side effects cause.
Collapse
Affiliation(s)
- Raquel Teixeira Terceiro Paim
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| | - Stephen Rathinaraj Benjamin
- Laboratory of Biotechnology and Molecular Biology and Health Science Center, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| | - Davide Rondina
- Faculty of Veterinary, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| | | | - Daniel de Araújo Viana
- Laboratory of Veterinary Pathology, State University of Ceará, Itaperi Campus, 60740-000 Fortaleza, CE, Brazil
| | | | - Ícaro Gusmão Pinto Vieira
- Laboratory of Natural Products, State University of Ceará, Itaperi Campus, 60740-000 Fortaleza, CE, Brazil
| | - Francisca Noélia Pereira Mendes
- Laboratory of Biotechnology and Molecular Biology and Health Science Center, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| | - Paula Alves Salmito Rodrigues
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Itaperi Campus, 60714-903 Fortaleza, CE, Brazil
| |
Collapse
|
29
|
The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proc Natl Acad Sci U S A 2017; 114:4261-4266. [PMID: 28373556 DOI: 10.1073/pnas.1701894114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.
Collapse
|
30
|
O'Donoghue EM, Somerfield SD, Deroles SC, Sutherland PW, Hallett IC, Erridge ZA, Brummell DA, Hunter DA. Simultaneous knock-down of six β-galactosidase genes in petunia petals prevents loss of pectic galactan but decreases petal strength. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:208-221. [PMID: 28254702 DOI: 10.1016/j.plaphy.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/05/2017] [Indexed: 05/02/2023]
Abstract
Galactose (Gal) is incorporated into cell wall polysaccharides as flowers open, but then is lost because of β-galactosidase activity as flowers mature and wilt. The significance of this for flower physiology resides in the role of galactan-containing polysaccharides in the cell wall, which is still largely unresolved. To investigate this, transcript accumulation of six cell wall-associated β-galactosidases was simultaneously knocked down in 'Mitchell' petunia (Petunia axillaris x (P. axillaris x P. hybrida)) flower petals. The multi-PhBGAL RNAi construct targeted three bud- and three senescence-associated β-galactosidase genes. The petals of the most down-regulated line (GA19) were significantly disrupted in galactose turnover during flower opening, and at the onset of senescence had retained 86% of their galactose compared with 20% in the controls. The Gal content of Na2CO3-soluble cell wall extracts and the highly insoluble polysaccharides associated with cellulose were particularly affected. Immunodetection with the antibody LM5 showed that much of the cell wall Gal in GA19 was retained as galactan, presumably the side-chains of rhamnogalacturonan-I. The flowers of GA19, despite having retained substantially more galactan, were no different from controls in their internal cell arrangement, dimensions, weight or timing of opening and senescence. However, the GA19 petals had less petal integrity (as judged by force required to cause petal fracture) after opening and showed a greater decline in this integrity with time than controls, raising the possibility that galactan loss is a mechanism for helping to maintain petal tissue cohesion after flower opening.
Collapse
Affiliation(s)
- Erin M O'Donoghue
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand.
| | - Sheryl D Somerfield
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Simon C Deroles
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland, 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland, 1142, New Zealand
| | - Zoë A Erridge
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Palmerston North, 4442, New Zealand
| |
Collapse
|
31
|
Lopez RA, Renzaglia KS. Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. PLANTA 2016; 243:947-957. [PMID: 26739842 DOI: 10.1007/s00425-015-2448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Both male and female gametes of archegoniates are highly specialized cells surrounded by an extraprotoplasmic matrix rich in AGPs, which are speculated to facilitate development and gamete fusion through Ca 2+) oscillations. An additional layer, the egg envelope, forms around the egg periphery, except at the fertilization pore, and contains arabinose-rich polymers that presumably impart flexibility for the rapidly growing zygote and embryo. The abundant AGPs and arabinan pectins associated with the eggs of C. richardii not only are integral to development, fertilization, and early embryogenesis, but also may be involved in desiccation tolerance important to the survival of the reproductive gametophyte. A defining feature of gametogenesis in archegoniates is the deposition of a special matrix outside of the plasmalemma of both egg and sperm cells that displaces the primary cell wall away from the protoplasm. It is within this matrix that gamete differentiation occurs. In leptosporangiate ferns, maturation of the egg cell involves the deposition of a second specialized wall, the so-called egg envelope that surrounds the cell except at the fertilization pore, a narrow site where gamete fusion takes place. We provide the first conclusive evidence of the macromolecular constituents in the unique structures surrounding fern egg cells before and after fertilization. To test the hypotheses that the egg extracellular matrix contains arabinogalactan proteins (AGPs) as does the sperm cell matrix, and that cell wall polysaccharides, especially pectins, are components of the egg envelope, we examined the expression patterns of AGPs and cell wall constituents during oogenesis in Ceratopteris richardii. Utilizing histochemical stains for callose, cellulose and AGPs coupled with immunogold localizations employing a suite of monoclonal antibodies to cell wall components (JIM13, JIM8, LM2, LM5, LM6, LM19, LM20 and anticallose), we demonstrate that AGPs, but not pectins, are abundant in the matrix around egg cells and degrading neck canal and ventral canal cells during archegonial development. A striking finding is that both AGPs and (1,5)-α-L-arabinan pectin epitopes are principle components of the egg envelope before and after fertilization, suggesting that they are important in both egg maturation and gamete fusion.
Collapse
Affiliation(s)
- Renee A Lopez
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| | - Karen S Renzaglia
- Department of Plant Biology, MC: 6509, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| |
Collapse
|
32
|
Zujovic Z, Chen D, Melton LD. Comparison of celery (Apium graveolens L.) collenchyma and parenchyma cell wall polysaccharides enabled by solid-state 13C NMR. Carbohydr Res 2016; 420:51-7. [DOI: 10.1016/j.carres.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
|
33
|
Buffetto F, Cornuault V, Rydahl MG, Ropartz D, Alvarado C, Echasserieau V, Le Gall S, Bouchet B, Tranquet O, Verhertbruggen Y, Willats WGT, Knox JP, Ralet MC, Guillon F. The Deconstruction of Pectic Rhamnogalacturonan I Unmasks the Occurrence of a Novel Arabinogalactan Oligosaccharide Epitope. PLANT & CELL PHYSIOLOGY 2015; 56:2181-96. [PMID: 26384432 DOI: 10.1093/pcp/pcv128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.
Collapse
Affiliation(s)
- Fanny Buffetto
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France Present address: Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Valérie Cornuault
- Centre for Plant Sciences, Faculty of Biological Sciences University of Leeds, Leeds LS2 9JT, UK
| | - Maja Gro Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - David Ropartz
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Camille Alvarado
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | | | - Sophie Le Gall
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Brigitte Bouchet
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - Olivier Tranquet
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | | | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences University of Leeds, Leeds LS2 9JT, UK
| | | | - Fabienne Guillon
- INRA, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| |
Collapse
|
34
|
Lin D, Lopez-Sanchez P, Gidley MJ. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydr Polym 2015; 126:108-21. [DOI: 10.1016/j.carbpol.2015.03.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 02/05/2023]
|
35
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
36
|
Galactans and Its Applications. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:781-92. [PMID: 24725206 DOI: 10.1094/mpmi-02-14-0036-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.
Collapse
|
38
|
Jin H, Do J, Shin SJ, Choi JW, Choi YI, Kim W, Kwon M. Exogenously applied 24-epi brassinolide reduces lignification and alters cell wall carbohydrate biosynthesis in the secondary xylem of Liriodendron tulipifera. PHYTOCHEMISTRY 2014; 101:40-51. [PMID: 24582278 DOI: 10.1016/j.phytochem.2014.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/30/2013] [Accepted: 02/03/2014] [Indexed: 05/06/2023]
Abstract
The roles of brassinosteroids (BRs) in vasculature development have been implicated based on an analysis of Arabidopsis BR mutants and suspension cells of Zinnia elegans. However, the effects of BRs in vascular development of a woody species have not been demonstrated. In this study, 24-epi brassinolide (BL) was applied to the vascular cambium of a vertical stem of a 2-year-old Liriodendron, and the resulting chemical and anatomical phenotypes were characterized to uncover the roles of BRs in secondary xylem formation of a woody species. The growth in xylary cells was clearly promoted when treated with BL. Statistical analysis indicated that the length of both types of xylary cells (fiber and vessel elements) increased significantly after BL application. Histochemical analysis demonstrated that BL-induced growth promotion involved the acceleration of cell division and cell elongation. Histochemical and expression analysis of several lignin biosynthetic genes indicated that most genes in the phenylpropanoid pathway were significantly down-regulated in BL-treated stems compared to that in control stems. Chemical analysis of secondary xylem demonstrated that BL treatment induced significant modification in the cell wall carbohydrates, including biosynthesis of hemicellulose and cellulose. Lignocellulose crystallinity decreased significantly, and the hemicellulose composition changed with significant increases in galactan and arabinan. Thus, BL has regulatory roles in the biosynthesis and modification of secondary cell wall components and cell wall assembly during secondary xylem development in woody plants.
Collapse
Affiliation(s)
- Hyunjung Jin
- Department of Biosystems Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Jihye Do
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Soo-Jeong Shin
- Department of Wood and Paper Science, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Joon Weon Choi
- Department of Forest Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Young Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-350, Republic of Korea
| | - Wook Kim
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Mi Kwon
- Department of Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
39
|
Cankar K, Kortstee A, Toonen MAJ, Wolters-Arts M, Houbein R, Mariani C, Ulvskov P, Jorgensen B, Schols HA, Visser RGF, Trindade LM. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:492-502. [PMID: 24428422 DOI: 10.1111/pbi.12156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 05/06/2023]
Abstract
Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ng JK, Zujovic ZD, Smith BG, Johnston JW, Schröder R, Melton LD. Solid-state 13C NMR study of the mobility of polysaccharides in the cell walls of two apple cultivars of different firmness. Carbohydr Res 2014; 386:1-6. [DOI: 10.1016/j.carres.2013.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/30/2022]
|
41
|
Gruben BS, Zhou M, Wiebenga A, Ballering J, Overkamp KM, Punt PJ, de Vries RP. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism. Appl Microbiol Biotechnol 2014; 98:5531-40. [PMID: 24682478 DOI: 10.1007/s00253-014-5607-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The genome of the filamentous fungus Aspergillus niger is rich in genes encoding pectinases, a broad class of enzymes that have been extensively studied due to their use in industrial applications. The sequencing of the A. niger genome provided more knowledge concerning the individual pectinolytic genes, but little is known about the regulatory genes involved in pectin degradation. Understanding regulation of the pectinolytic genes provides a tool to optimize the production of pectinases in this industrially important fungus. This study describes the identification and characterization of one of the activators of pectinase-encoding genes, RhaR. Inactivation of the gene encoding this regulator resulted in down-regulation of genes involved in the release of L-rhamnose from the pectin substructure rhamnogalacturonan I, as well as catabolism of this monosaccharide. The rhaR disruptant was unable to grow on L-rhamnose, but only a small reduction in growth on pectin was observed. This is likely caused by the presence of a second, so far unknown regulator that responds to the presence of D-galacturonic acid.
Collapse
Affiliation(s)
- Birgit S Gruben
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Zhu J, Liu W, Yu J, Zou S, Wang J, Yao W, Gao X. Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydr Polym 2013; 98:8-16. [DOI: 10.1016/j.carbpol.2013.04.057] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 02/05/2023]
|
44
|
Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydr Polym 2013; 99:527-36. [PMID: 24274539 DOI: 10.1016/j.carbpol.2013.08.094] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/21/2022]
Abstract
Interactions between seven hairy regions of pectins, rhamnogalacturonans II and arabinogalactan-proteins and procyanidins with different average degrees of polymerization, low (DP9) and high (DP30), were investigated by isothermal titration calorimetry and absorption analysis to study the impact of neutral sugar side chains of pectins on these associations. Associations between pectic fractions and procyanidins involved hydrophobic interactions and hydrogen bonds. No difference in association constants between various hairy regions and procyanidins DP9 was found. Nevertheless, arabinan chains showed lower association constants, and hairy regions of pectins with only monomeric side chains showed higher association with procyanidin DP30. Only very low affinities were obtained with rhamnogalacturonans II and arabinogalactan-proteins. Aggregation could be observed only with the procyanidins of DP30 and the protein-rich arabinogalactan-protein. Associations were obtained at both degrees of polymerization of the procyanidins, but differed depending on neutral sugar composition and the structure of pectic fractions.
Collapse
|
45
|
Cell Wall Pectic Arabinans Influence the Mechanical Properties of Arabidopsis thaliana Inflorescence Stems and Their Response to Mechanical Stress. ACTA ACUST UNITED AC 2013; 54:1278-88. [DOI: 10.1093/pcp/pct074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Henare SJ, Rutherfurd SM. Digestion of kiwifruit fiber. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 68:187-203. [PMID: 23394988 DOI: 10.1016/b978-0-12-394294-4.00010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dietary fiber affects the digestion and absorption of nutrients in the gastrointestinal tract. Moreover, it is generally believed that fiber largely escapes digestion in the human small intestine and is therefore mainly a substrate for microbial fermentation in the hindgut. Kiwifruit is a food naturally high in dietary fiber, yet the impact of dietary kiwifruit on nutrient availability has not been reported. The digestion of kiwifruit has been investigated but only in in vitro digestion studies. With its naturally high nonstarch polysaccharide content, it would be expected that kiwifruit would possess the characteristics of a good source of fiber for nutrition and health. Kiwifruit contains soluble and nonsoluble fiber components, both of which would be expected to affect the physical attributes of digesta as it transits the gastrointestinal tract. This chapter summarizes fiber digestion in general and current knowledge of kiwifruit fiber digestion in the gastrointestinal tract.
Collapse
|
47
|
Liwanag AJM, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MC, Clausen MH, Scheller HV. Pectin biosynthesis: GALS1 in Arabidopsis thaliana is a β-1,4-galactan β-1,4-galactosyltransferase. THE PLANT CELL 2012; 24:5024-36. [PMID: 23243126 PMCID: PMC3556973 DOI: 10.1105/tpc.112.106625] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 10/22/2012] [Accepted: 11/28/2012] [Indexed: 05/17/2023]
Abstract
β-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, β-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but β-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased β-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher β-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto β-1,4-galactopentaose. GALS1 specifically formed β-1,4-galactosyl linkages and could add successive β-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as β-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.
Collapse
Affiliation(s)
- April Jennifer Madrid Liwanag
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Berit Ebert
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Yves Verhertbruggen
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Emilie A. Rennie
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Carsten Rautengarten
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ai Oikawa
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Mathias C.F. Andersen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
- Address correspondence to
| |
Collapse
|
48
|
Portillo L, Olmedilla A, Santacruz-Ruvalcaba F. Cellular and molecular changes associated with somatic embryogenesis induction in Agave tequilana. PROTOPLASMA 2012; 249:1101-1107. [PMID: 22270826 DOI: 10.1007/s00709-011-0354-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.
Collapse
Affiliation(s)
- L Portillo
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, A. P. 1-139, Zapopan, Jal. 45101, Mexico.
| | | | | |
Collapse
|
49
|
Larsen FH, Schöbitz M, Schaller J. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy. Carbohydr Polym 2012; 89:640-7. [DOI: 10.1016/j.carbpol.2012.03.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
|
50
|
Larsen FH, Byg I, Damager I, Diaz J, Engelsen SB, Ulvskov P. Residue Specific Hydration of Primary Cell Wall Potato Pectin Identified by Solid-State 13C Single-Pulse MAS and CP/MAS NMR Spectroscopy. Biomacromolecules 2011; 12:1844-50. [DOI: 10.1021/bm2001928] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Flemming H. Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Inge Byg
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- Novozymes A/S, Krogshoejvej 36, DK-2880 Bagsvaerd, Denmark
- CP Kelco Aps, Ved Banen 16, DK-4623 Lille Skensved, Denmark
| | - Iben Damager
- Biotechnology Group, University of Aarhus, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jerome Diaz
- Biotechnology Group, University of Aarhus, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren B. Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - Peter Ulvskov
- Biotechnology Group, University of Aarhus, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|