1
|
Jing R, Wu P, Wang P, Zhao X, Baz NM, Wang J, Dong L, Han Y, Chen H, Cao H. The activity annotation of peach glycosyltransferase PpUGT78B based on engineering bacterial anthocyanin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109913. [PMID: 40239249 DOI: 10.1016/j.plaphy.2025.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Glycosylation modification allows the formation of anthocyanin from anthocyanidin, which enhances the stability of anthocyanins and improves fruit coloration and anthocyanin availability as a human functional component. Flavonoid glycosyltransferases (UFGT) are responsible for catalyzing anthocyanidin glycosylation. In the present study, to better clarify peach (Prunus persica L.) UFGT (PpUGT78B) function, an engineering bacterial system was constructed, which used the anthocyanidin synthase (ANS) gene for producing cyanidin with the incorporation of (+)-catechin precursors and further synthesized cyanidin-3-O-glucoside (C3G) with UFGT co-expression. In addition, it was found that expression of fusion proteins with ANS and UFGT could improve C3G production by about 15 %-20 % in engineering bacterial systems. Furthermore, combining the molecular modeling prediction and targeted mutagenesis, this engineering bacterial system linked some residues in PpUGT78B to glycosylation capacity, which involved F210, L148, Q393, G391, and H230, whose mutation resulted in reduced enzyme activity or even loss and also involved F203 and S29 whose mutation resulted in the increased catalytic activity. Subsequently, a natural mutation of PpUGT78B was detected by analyzing 109 peach genome re-sequencing data, and two residue mutants (E82D, V276F) were found in two peach varieties. Further, these two natural mutation sites were confirmed to reduce PpUGT78B activity in engineering bacterial systems. This study demonstrates the effectiveness of the engineering bacteria system in anthocyanin biosynthesis. It offers valuable insights into the functional and structural roles of PpUGT78B, advancing our understanding of anthocyanin glycosylation.
Collapse
Affiliation(s)
- Ruyu Jing
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China; Baotou Agricultural and Animal Husbandry Science Research Institute, Baotou, Inner Mongolia, 014010, China
| | - Pengyu Wu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Pengfei Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xulei Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Naila Mir Baz
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiahui Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lemeng Dong
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Yan Han
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haijiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Hongbo Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
2
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2025; 21:131-142. [PMID: 39271954 PMCID: PMC11666457 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
3
|
Li Z, Luo N, Zhang W, Khan RAA, Ling J, Zhao J, Yang Y, Mao Z, Xie B, Zhou L, Li Y. Nematicidal glycosylated resorcylic acid lactones from the fungus Pochonia chlamydosporia PC-170 and their key biosynthetic genes. Front Microbiol 2024; 15:1385255. [PMID: 38638906 PMCID: PMC11024724 DOI: 10.3389/fmicb.2024.1385255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Chemical study of the nematicidal biocontrol fungus Pochonia chlamydosporia PC-170 led to discovery of six resorcylic acid lactones (RALs), including three nematicidal glycosylated RALs, monocillin VI glycoside (1), colletogloeolactone A (2) and monocillin II glycoside (3), and three antibacterial non-glycosylated RALs, monocillin VI (4), monocillin IV (5) and monocillin II (6). The planar structure of the new compound monocillin VI glycoside (1) was elucidated using HRESIMS and NMR data, and its monosaccharide configuration was further determined through sugar hydrolysis experiment and GC-MS analysis method. Furthermore, their two biosynthetic-related PKS genes, pchE and pchI, were identified through the gene knockout experiment. The glycosylated RALs 1-3 exhibited nematicidal activity against Meloidogyne incognita, with LC50 values of 94, 152 and 64 μg/mL, respectively, and thus had great potential in the development of new nematicidal natural products to control M. incognita in the future.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ning Luo
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Wenwen Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Raja Asad Ali Khan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Cheng Q, Zeng L, Wen H, Brown SE, Wu H, Li X, Lin C, Liu Z, Mao Z. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC PLANT BIOLOGY 2023; 23:207. [PMID: 37081391 PMCID: PMC10116787 DOI: 10.1186/s12870-023-04222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Asparagus officinalis L. is a worldwide cultivated vegetable enrichened in both nutrient and steroidal saponins with multiple pharmacological activities. The upstream biosynthetic pathway of steroidal saponins (USSP) for cholesterol (CHOL) synthesis has been studied, while the downstream pathway of steroidal saponins (DSSP) starting from cholesterol and its regulation in asparagus remains unknown. RESULTS Metabolomics, Illumina RNAseq, and PacBio IsoSeq strategies were applied to different organs of both cultivated green and purple asparagus to detect the steroidal metabolite profiles & contents and to screen their key genes for biosynthesis and regulation. The results showed that there is a total of 427 compounds, among which 18 steroids were detected with fluctuated concentrations in roots, spears and flowering twigs of two garden asparagus cultivars. The key genes of DSSP include; steroid-16-hydroxylase (S16H), steroid-22-hydroxylase (S22H) and steroid-22-oxidase-16-hydroxylase (S22O-16H), steroid-26-hydroxylase (S26H), steroid-3-β-glycosyltransferase (S3βGT) and furostanol glycoside 26-O-beta-glucosidases (F26GHs) which were correlated with the contents of major steroidal saponins were screened, and the transcriptional factors (TFs) co-expressing with the resulted from synthetic key genes, including zinc fingers (ZFs), MYBs and WRKYs family genes were also screened. CONCLUSIONS Based on the detected steroidal chemical structures, profiles and contents which correlated to the expressions of screened synthetic and TFs genes, the full steroidal saponin synthetic pathway (SSP) of asparagus, including its key regulation networks was proposed for the first time.
Collapse
Affiliation(s)
- Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Liangqin Zeng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Hao Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
5
|
Song W, Zhang C, Wu J, Qi J, Hua X, Kang L, Yuan Q, Yuan J, Xue Z. Characterization of Three Paris polyphylla Glycosyltransferases from Different UGT Families for Steroid Functionalization. ACS Synth Biol 2022; 11:1669-1680. [PMID: 35286065 DOI: 10.1021/acssynbio.2c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant steroid glycosides, such as phytosterol glycosides, steroidal saponins, and steroidal glycoalkaloids, are natural products with great pharmaceutical values. In this study, we characterized three UDP-glycosyltransferases (UGTs) involved in the glycosylation of steroidal sapogenin from Paris polyphylla. Substrate specificity analysis revealed that UGT73CR1 could glycosylate steroidal sapogenins and steroidal alkaloids, with the highest affinity for diosgenin. The residues His27 and Asp129 of UGT73CR1 are conserved in corresponding positions of plant glycosyltransferases, which are crucial for activating the C-3 OH of the receptor substrates. In comparison, UGT80A33 and UGT80A34 exhibited a higher affinity for cholesterol than other steroids. UGT80s have a larger active pocket, which allows them to accommodate the side chain of sterols. In summary, we assessed three P. polyphylla glycosyltransferases from two UGT families for the functionalization of steroidal molecules, which will provide a basis for the future biomanufacturing of diverse bioactive steroid glycosides.
Collapse
Affiliation(s)
- Wei Song
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jiali Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jianzhao Qi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi 712100, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Zheyong Xue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
| |
Collapse
|
6
|
Fu H, Pan W, Vincent SP. Pyruvate-Kinase-Coupled Glycosyltransferase Assays: Limitations, Struggles and Problem Resolution. Chembiochem 2017; 18:2129-2136. [PMID: 28857455 DOI: 10.1002/cbic.201700326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Enzyme assays involving coupled pyruvate kinase (PK) have been used for many years to monitor the activity of major classes of enzymes including glycosyltransferases. Numerous potent inhibitors have been discovered and kinetically characterized thanks to this technology. However, when inhibitors of these important enzymes are screened, PK inhibitors or activators are very often observed. In this study we report solutions to resolve the problems encountered either during the screening or during the kinetic characterization of glycosyltransferase inhibitors by means of PK-coupled assays. The enzyme under study-WaaC-is an important glycosyltransferase involved in the bacterial lipopolysaccharide (LPS) biosynthesis pathway. Firstly we showed that alternative kinases such as nucleoside 5-diphosphate kinase (NDPK), myokinase (MK), and ADPdependent hexokinase that catalyze similar reactions to PK are prone to the same troubles. Moreover, an ADP chemosensor was used as an alternative but the sensitivity was not sufficient to allow a proper screening. Finally, we found that a stepwise PK/luciferase assay resolved the problems encountered with PK inhibitors and that a WaaC HPLC assay allowed the identification of WaaC inhibitors acting as PK activators, thus allowing false positive and false negative results linked to the coupling to PK to be eliminated.
Collapse
Affiliation(s)
- Huixiao Fu
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014, China
| | - Stéphane P Vincent
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
7
|
Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Front Microbiol 2016; 7:182. [PMID: 26925049 PMCID: PMC4757703 DOI: 10.3389/fmicb.2016.00182] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial GTs show a higher sequence similarity in comparison to mammalian ones. Even when most GTs are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial GTs, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.
Collapse
Affiliation(s)
- Jochen Schmid
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Dominik Heider
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Norma J Wendel
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Nadine Sperl
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| |
Collapse
|
8
|
Wang X, Chen D, Wang Y, Xie J. De novo transcriptome assembly and the putative biosynthetic pathway of steroidal sapogenins of Dioscorea composita. PLoS One 2015; 10:e0124560. [PMID: 25860891 PMCID: PMC4393236 DOI: 10.1371/journal.pone.0124560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
The plant Dioscorea composita has important applications in the medical and energy industries, and can be used for the extraction of steroidal sapogenins (important raw materials for the synthesis of steroidal drugs) and bioethanol production. However, little is known at the genetic level about how sapogenins are biosynthesized in this plant. Using Illumina deep sequencing, 62,341 unigenes were obtained by assembling its transcriptome, and 27,720 unigenes were annotated. Of these, 8,022 unigenes were mapped to 243 specific pathways, and 531 unigenes were identified to be involved in 24 secondary metabolic pathways. 35 enzymes, which were encoded by 79 unigenes, were related to the biosynthesis of steroidal sapogenins in this transcriptome database, covering almost all the nodes in the steroidal pathway. The results of real-time PCR experiments on ten related transcripts (HMGR, MK, SQLE, FPPS, DXS, CAS, HMED, CYP51, DHCR7, and DHCR24) indicated that sapogenins were mainly biosynthesized by the mevalonate pathway. The expression of these ten transcripts in the tuber and leaves was found to be much higher than in the stem. Also, expression in the shoots was low. The nucleotide and protein sequences and conserved domains of four related genes (HMGR, CAS, SQS, and SMT1) were highly conserved between D. composita and D. zingiberensis; but expression of these four genes is greater in D. composita. However, there is no expression of these key enzymes in potato and no steroidal sapogenins are synthesized.
Collapse
Affiliation(s)
- Xia Wang
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Dijia Chen
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Yuqi Wang
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| | - Jun Xie
- Institute of New Energy and New Materials, South China Agriculture University, Guangzhou, 510642, P. R. China
- Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Guangzhou, 510642, P. R. China
- Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, P. R. China, Guangzhou, 510642, P. R. China
| |
Collapse
|
9
|
Thimmappa R, Geisler K, Louveau T, O'Maille P, Osbourn A. Triterpene biosynthesis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:225-57. [PMID: 24498976 DOI: 10.1146/annurev-arplant-050312-120229] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The triterpenes are one of the most numerous and diverse groups of plant natural products. They are complex molecules that are, for the most part, beyond the reach of chemical synthesis. Simple triterpenes are components of surface waxes and specialized membranes and may potentially act as signaling molecules, whereas complex glycosylated triterpenes (saponins) provide protection against pathogens and pests. Simple and conjugated triterpenes have a wide range of applications in the food, health, and industrial biotechnology sectors. Here, we review recent developments in the field of triterpene biosynthesis, give an overview of the genes and enzymes that have been identified to date, and discuss strategies for discovering new triterpene biosynthetic pathways.
Collapse
Affiliation(s)
- Ramesha Thimmappa
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | | | | | | | | |
Collapse
|
10
|
Thuan NH, Sohng JK. Recent biotechnological progress in enzymatic synthesis of glycosides. J Ind Microbiol Biotechnol 2013; 40:1329-56. [PMID: 24005992 DOI: 10.1007/s10295-013-1332-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most important post-modification processes of small molecules and enables the parent molecule to have increased solubility, stability, and bioactivity. Enzyme-based glycosylation has achieved significant progress due to advances in protein engineering, DNA recombinant techniques, exploitation of biosynthetic gene clusters of natural products, and computer-based modeling programs. Our report summarizes glycosylation data that have been published within the past five years to provide an overall review of current progress. We also present the future trends and perspectives for glycosylation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University, #100, Kalsan-ri, Tangjeong-myeon, Asan-si, Chungnam, 336-708, Republic of Korea
| | | |
Collapse
|
11
|
Putative genes involved in saikosaponin biosynthesis in Bupleurum species. Int J Mol Sci 2013; 14:12806-26. [PMID: 23783277 PMCID: PMC3709813 DOI: 10.3390/ijms140612806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/26/2022] Open
Abstract
Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of gene extraction, functional characterization of isolated genes and assessment of expression patterns of genes encoding enzymes in the process of saikosaponin production in Bupleurum species, mainly B. kaoi. We focus on the effects of MeJA on saikosaponin production, transcription patterns of genes involved in biosynthesis and on functional depiction.
Collapse
|
12
|
Ohyama K, Okawa A, Moriuchi Y, Fujimoto Y. Biosynthesis of steroidal alkaloids in Solanaceae plants: involvement of an aldehyde intermediate during C-26 amination. PHYTOCHEMISTRY 2013; 89:26-31. [PMID: 23473422 DOI: 10.1016/j.phytochem.2013.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 05/18/2023]
Abstract
The C-26 amino group of steroidal alkaloids, such as tomatine, is introduced during an early step of their biosynthesis from cholesterol. In the present study, the mechanism of C-26 amination was reinvestigated by administering stable isotope labeled compounds, such as (26,26,26,27,27,27-(2)H6)cholesterol during biosynthesis of tomatine, solanine and solasonine. The chemical compositions of tomatine and solanine so obtained were analyzed by LC-MS after administering the d6-cholesterol to a tomato seedling and a potato shoot, respectively. The resulting spectra indicated that two deuterium atoms were eliminated from C-26 of cholesterol during biosynthesis. Furthermore, administration of (6-(13)C(2)H3)mevalonate in combination with lovastatin to an eggplant seedling, followed by GC-MS analysis of solasodine after TMS derivatization established that two deuterium atoms were eliminated from C-26 of cholesterol during solasonine biosynthesis. These findings are in contrast to an earlier observation that one hydrogen atom was lost from C-26 during tomatidine biosynthesis, and suggest that C-26 nitrogen atom addition involves an aldehyde intermediate. Thus, it is proposed that the C-26 amination reaction that occurs during steroidal alkaloid biosynthesis proceeds by way of a transamination mechanism.
Collapse
Affiliation(s)
- Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | |
Collapse
|
13
|
Malik V, Black GW. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:87-115. [PMID: 22607753 DOI: 10.1016/b978-0-12-398312-1.00004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The biosynthesis of the complex carbohydrates that govern many cellular functions requires the action of a diverse range of selective glycosyltransferases (GTs). Uridine diphosphate sugar-utilizing GTs (UGTs) account for the majority of characterized GTs. GTs have been classified into families (currently 92) based on amino-acid sequence similarity. However, as amino-acid sequence similarity cannot reliable predict catalytic mechanism, GTs have also been grouped into four clans based on catalytic mechanism and structural fold. GTs catalyze glycosidic bond formation with two possible stereochemical outcomes: inversion or retention of anomeric configuration. All UGTs also belong to one of two distinct structural folds, GT-A and GT-B. UGTs have conserved residues that are associated with nucleotide diphosphate sugar recognition and acceptor recognition. UGT diversification has been performed using in vitro DNA recombination, domain swapping, and random mutagenesis.
Collapse
Affiliation(s)
- Vatsala Malik
- School of Life Sciences, Department of Biomedical Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
14
|
Osbourn A, Goss RJM, Field RA. The saponins: polar isoprenoids with important and diverse biological activities. Nat Prod Rep 2011; 28:1261-8. [PMID: 21584304 DOI: 10.1039/c1np00015b] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Saponins are polar molecules that consist of a triterpene or steroid aglycone with one or more sugar chains. They are one of the most numerous and diverse groups of plant natural products. These molecules have important ecological and agronomic functions, contributing to pest and pathogen resistance and to food quality in crop plants. They also have a wide range of commercial applications in the food, cosmetics and pharmaceutical sectors. Although primarily found in plants, saponins are produced by certain other organisms, including starfish and sea cucumbers. The under explored biodiversity of this class of natural products is likely to prove to be a vital resource for discovery of high-value compounds. This review will focus on the biological activity of some of the best-studied examples of saponins, on the relationship between structure and function, and on prospects for synthesis of ‘‘designer’’ saponins.
Collapse
Affiliation(s)
- Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, UK.
| | | | | |
Collapse
|
15
|
Tárraga S, Lisón P, López-Gresa MP, Torres C, Rodrigo I, Bellés JM, Conejero V. Molecular cloning and characterization of a novel tomato xylosyltransferase specific for gentisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4325-38. [PMID: 20729481 PMCID: PMC2955746 DOI: 10.1093/jxb/erq234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 05/08/2023]
Abstract
The importance of salicylic acid (SA) in the signal transduction pathway of plant disease resistance has been well documented in many incompatible plant-pathogen interactions, but less is known about signalling in compatible interactions. In this type of interaction, tomato plants have been found to accumulate high levels of 2,5-dihydroxybenzoic acid (gentisic acid, GA), a metabolic derivative of SA. Exogenous GA treatments induce in tomato plants a set of PR proteins that differ from those induced by salicylic acid. While SA accumulates in tomato plants mainly as 2-O-β-D-glucoside, GA has only been found as 5-O-β-D-xyloside. To characterize this step of the GA signalling pathway further, the present work focuses on the study of the GA-conjugating activity in tomato plants. A gentisate glycosyltransferase (GAGT) cDNA has been isolated and overexpressed in Pichia pastoris, and GA-conjugating activity was confirmed by detecting the xylosylated GA. The purified plant protein is highly specific for GA, showing no activity toward many other phenolic compounds, including SA. In addition, it shows an outstanding selectivity for UDP-xylose as the sugar donor, which differentiates this enzyme from most glycosyltransferases. Both the GA-conjugating activity and the corresponding mRNA show a strong, rapid, and transient induction upon treatment of tomato plants with GA or SA. Furthermore, its expression is rapidly induced by compatible infections. However, neither the gene nor the activity seems to respond to incompatible infections or wounding. The unique properties of this new glycosyltransferase suggest a specific role in regulating the free GA levels in compatible plant-pathogen interactions.
Collapse
Affiliation(s)
| | | | | | | | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV) - Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, E-46022 Valencia, Spain
| | | | | |
Collapse
|
16
|
Vieira PM, Santos SC, Chen-Chen L. Assessment of mutagenicity and cytotoxicity of Solanum paniculatum L. extracts using in vivo micronucleus test in mice. BRAZ J BIOL 2010; 70:601-6. [DOI: 10.1590/s1519-69842010000300017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/06/2009] [Indexed: 12/19/2022] Open
Abstract
Solanum paniculatum L. is a plant species widespread throughout tropical America, especially in the Brazilian Savanna region. It is used in Brazil for culinary purposes and in folk medicine to treat liver and gastric dysfunctions, as well as hangovers. Because of the wide use of this plant as a therapeutic resource and food, the present study aimed at evaluating the mutagenic and cytotoxic effects of S. paniculatum ethanolic leaf and fruit extracts using the mouse bone marrow micronucleus test. Our results indicate that neither S. paniculatum ethanolic leaf extract nor its ethanolic fruit extract exhibited mutagenic effect in mice bone marrow; however, at higher doses, both extracts presented cytotoxic activity.
Collapse
|
17
|
Dong Q, Ouyang LM, Yu HL, Xu JH, Lin GQ. A biocatalytic synthesis of diosgenyl-β-d-glucopyranoside by the use of four recombinant enzymes in one pot. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Owens DK, McIntosh CA. Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. PHYTOCHEMISTRY 2009; 70:1382-91. [PMID: 19733370 DOI: 10.1016/j.phytochem.2009.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/23/2009] [Accepted: 07/22/2009] [Indexed: 05/05/2023]
Abstract
Glucosylation is a predominant flavonoid modification reaction affecting the solubility, stability, and subsequent bioavailability of these metabolites. Flavonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications in these species. In this work, a Citrus paradisi glucosyltransferase gene was identified, cloned, and introduced into the pET recombinant protein expression system utilizing primers designed against a predicted flavonoid glucosyltransferase gene (AY519364) from Citrus sinensis. The encoded C. paradisi protein is 51.2 kDa with a predicted pI of 6.27 and is 96% identical to the C. sinensis homologue. A number of compounds from various flavonoid subclasses were tested, and the enzyme glucosylated only the flavonol aglycones quercetin (K(m)(app)=67 microM; V(max)=20.45 pKat/microg), kaempferol (K(m)(app)=12 microM; V(max)=11.63 pKat/microg), and myricetin (K(m)(app)=33 microM; V(max)=12.21 pKat/microg) but did not glucosylate the anthocyanidin, cyanidin. Glucosylation occurred at the 3 hydroxyl position as confirmed by HPLC and TLC analyses with certified reference compounds. The optimum pH was 7.5 with a pronounced buffer effect noted for reactions performed in Tris-HCl buffer. The enzyme was inhibited by Cu(2+), Fe(2+), and Zn(2+) as well as UDP (K(i)(app)=69.5 microM), which is a product of the reaction. Treatment of the enzyme with a variety of amino acid modifying compounds suggests that cysteine, histidine, arginine, tryptophan, and tyrosine residues are important for activity. The thorough characterization of this C. paradisi flavonol 3-O-glucosyltransferase adds to the growing base of glucosyltransferase knowledge, and will be used to further investigate structure-function relationships.
Collapse
Affiliation(s)
- Daniel K Owens
- School of Graduate Studies and Department of Biological Sciences, P.O. Box 70703, East Tennessee State University, Johnson City, TN 37614, United States
| | | |
Collapse
|
19
|
Williams GJ, Gantt RW, Thorson JS. The impact of enzyme engineering upon natural product glycodiversification. Curr Opin Chem Biol 2009; 12:556-64. [PMID: 18678278 DOI: 10.1016/j.cbpa.2008.07.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/07/2008] [Indexed: 12/20/2022]
Abstract
Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs.
Collapse
Affiliation(s)
- Gavin J Williams
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
20
|
Osmani SA, Bak S, Møller BL. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. PHYTOCHEMISTRY 2009; 70:325-47. [PMID: 19217634 DOI: 10.1016/j.phytochem.2008.12.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 05/05/2023]
Abstract
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.
Collapse
Affiliation(s)
- Sarah A Osmani
- University of Copenhagen, Department of Plant Biology and Biotechnology, Plant Biochemistry Laboratory, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Cartwright AM, Lim EK, Kleanthous C, Bowles DJ. A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J Biol Chem 2008; 283:15724-31. [PMID: 18378673 DOI: 10.1074/jbc.m801983200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant Family 1 glycosyltransferases (GTs) recognize a wide range of natural and non-natural scaffolds and have considerable potential as biocatalysts for the synthesis of small molecule glycosides. Regiospecificity of glycosylation is an important property, given that many acceptors have multiple potential glycosylation sites. This study has used a domain-swapping approach to explore the determinants of regiospecific glycosylation of two GTs of Arabidopsis thaliana, UGT74F1 and UGT74F2. The flavonoid quercetin was used as a model acceptor, providing five potential sites for O-glycosylation by the two GTs. As is commonly found for many plant GTs, both of these enzymes produce distinct multiple glycosides of quercetin. A high performance liquid chromatography method has been established to perform detailed steady-state kinetic analyses of these concurrent reactions. These data show the influence of each parameter in determining a GT product formation profile toward quercetin. Interestingly, construction and kinetic analyses of a series of UGT74F1/F2 chimeras have revealed that mutating a single amino acid distal to the active site, Asn-142, can lead to the development of a new GT with a more constrained regiospecificity. This ability to form the 4 '-O-glucoside of quercetin is transferable to other flavonoid scaffolds and provides a basis for preparative scale production of flavonoid 4 '-O-glucosides through the use of whole-cell biocatalysis.
Collapse
Affiliation(s)
- Adam M Cartwright
- Centre for Novel Agricultural Products, University of York, York, UK
| | | | | | | |
Collapse
|
22
|
Kopycki JG, Rauh D, Chumanevich AA, Neumann P, Vogt T, Stubbs MT. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. J Mol Biol 2008; 378:154-64. [PMID: 18342334 DOI: 10.1016/j.jmb.2008.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.
Collapse
Affiliation(s)
- Jakub G Kopycki
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
23
|
Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R. Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1199-207. [PMID: 17704015 DOI: 10.1016/j.bbapap.2007.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/04/2007] [Accepted: 06/18/2007] [Indexed: 01/09/2023]
Abstract
Sterol glycosyltransferases catalyze the synthesis of diverse glycosterols in plants. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a novel 27beta-hydroxy glucosyltransferase was purified to near homogeneity from cytosolic fraction of W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme showed activity with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols/withanolides with beta-OH group at C-17, C-21 and C-27 positions. It transferred glucose to the alkanol at C-25 position of the lactone ring, provided an alpha-OH was present at C-17 in the sterol skeleton. A comparable enzyme has not been reported earlier from plants. The enzyme is distinct from the previously purified W. somnifera 3beta-hydroxy specific sterol glucosyltransferase and does not glucosylate the sterols at C-3 position; though it also follows an ordered sequential bisubstrate reaction mechanism, in which UDP-glucose and sterol are the first and second binding substrates. The enzyme activity with withanolides suggests its role in secondary metabolism in W. somnifera. Results on peptide mass fingerprinting showed its resemblance with glycuronosyltransferase like protein. The enzyme activity in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses.
Collapse
|