1
|
Waszkowiak K, Szymandera-Buszka K, Kidoń M, Kobus-Cisowska J, Brzozowska A, Kowiel A, Jarzębski M, Radziejewska-Kubzdela E. Application of Chia and Flaxseed Meal as an Ingredient of Fermented Vegetable-Based Spreads to Design Their Nutritional Composition and Sensory Quality. Foods 2025; 14:438. [PMID: 39942032 PMCID: PMC11816384 DOI: 10.3390/foods14030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Fermented vegetable spreads could offer an opportunity to diversify the range of plant-based foods. The challenge in developing the spreads is to achieve high quality, including stable consistency, consumer desirability and high nutritional value. The aim was to evaluate the application of chia and flaxseed meal for fermented zucchini-cucumber spread production. The effect on the chemical composition, phenolic compound content, antioxidant activity, and sensory quality of the vegetable spread was evaluated. Its color, viscosity, and microstructure were also analyzed using instrumental methods. The meal addition varied from 4.0 to 14.0%. The spread with meal addition had higher fat, protein, ash, and dietary fiber content than the control. Total free phenolic compound content and antioxidant activity also increased, and chia seed meal impacted the parameters more. On the contrary, flaxseed meal improved more the product's consumer desirability than chia. Both were effective gelling agents that increased viscosity and enhanced product spreadability, and only flaxseed meal showed a masking ability. Its addition reduced the perception and intensity of the bitter, tart, and sour taste. The spread formula consisting of fermented zucchini and cucumber with 9 to 11.5% flaxseed meal addition was the most recommended to achieve the product with high consumer desirability.
Collapse
Affiliation(s)
- Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Marcin Kidoń
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (K.S.-B.); (J.K.-C.); (A.B.)
| | - Angelika Kowiel
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| | - Elżbieta Radziejewska-Kubzdela
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland; (M.K.); (A.K.)
| |
Collapse
|
2
|
Sahu PN, Sen A. Preventing Cancer by Inhibiting Ornithine Decarboxylase: A Comparative Perspective on Synthetic vs. Natural Drugs. Chem Biodivers 2024; 21:e202302067. [PMID: 38404009 DOI: 10.1002/cbdv.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
This perspective delves into the investigation of synthetic and naturally occurring inhibitors, their patterns of inhibition, and the effectiveness of newly utilized natural compounds as inhibitors targeting the Ornithine decarboxylase enzyme. This enzyme is known to target the MYC oncogene, thereby establishing a connection between polyamine metabolism and oncogenesis in both normal and cancerous cells. ODC activation and heightened polyamine activity are associated with tumor development in numerous cancers and fluctuations in ODC protein levels exert a profound influence on cellular activity for inhibition or suppressing tumor cells. This perspective outlines efforts to develop novel drugs, evaluate natural compounds, and identify promising inhibitors to address gaps in cancer prevention, highlighting the potential of newly designed synthetic moieties and natural flavonoids as alternatives. It also discusses natural compounds with potential as enhanced inhibitors.
Collapse
Affiliation(s)
- Preeti Nanda Sahu
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| | - Anik Sen
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| |
Collapse
|
3
|
Li L, Liu Y, Gao F, Fan P, Zhan W, Zhang S. Induced PSIG expression by Herbacetin contributes to suppressing the proliferation, migration, and invasion of melanoma cells. Arch Biochem Biophys 2023:109697. [PMID: 37481197 DOI: 10.1016/j.abb.2023.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Melanoma is a very common malignant tumor with poor prognosis. Herbacetin is a flavonol compound with outstanding anti-tumor effects. Our work investigated the biological effects and mechanism of Herbacetin in melanoma. In our study, the mRNA and protein expressions were assessed using qRT-PCR, Western blot and IHC. MSP was performed to evaluated PGIS promoter methylation level. Cell viability, migration and invasion were examined by MTT assay, transwell migration and invasion assay, respectively. Our results revealed that DNMT3B was markedly upregulated in melanoma, while PGIS was lowly expressed. Herbacetin treatment could not only inhibit the proliferation, migration, invasion of melanoma cells and inhibit the growth of melanoma in vivo. Herbacetin could also restore the abnormal expressions of DNMT3B and PGIS in melanoma cells and tumor tissues. PGIS silencing neutralized the inhibitory effects of Herbacetin on the malignant behaviors of melanoma cells. Besides, DNMT3B knockdown promoted PGIS expression via reducing PGIS promoter methylation level in melanoma cells, thereby inhibiting malignant behaviors of melanoma cells. And as expected, the inhibitory effects of Herbacetin on malignant behaviors of melanoma cells were all abolished by DNMT3B overexpression. Collectively, Herbacetin reduced DNMT3B expression to upregulate PGIS in melanoma cells and participated in suppressing the proliferation, migration, and invasion of melanoma cells.
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Yun Liu
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Fei Gao
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Pengfei Fan
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Wang Zhan
- Department of Plastic abd Cosmetic Surgery, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Shuai Zhang
- Nursing Department, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China.
| |
Collapse
|
4
|
Gai F, Janiak MA, Sulewska K, Peiretti PG, Karamać M. Phenolic Compound Profile and Antioxidant Capacity of Flax ( Linum usitatissimum L.) Harvested at Different Growth Stages. Molecules 2023; 28:molecules28041807. [PMID: 36838795 PMCID: PMC9960924 DOI: 10.3390/molecules28041807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The profile of phenolic compounds changes during the growth of a plant and this change affects its antioxidant potential. The aim of this research has been to find the growth stage of flax with the highest antioxidant capacity, and to determine the phenolic compounds responsible for such a capacity. Flax was harvested in six growth stages: from stem extension to mature seeds. The phenolic compounds were identified using LC-TOF-MS and quantified in an extract and in the fresh matter (FM) of each growth stage. The radical scavenging activity against ABTS•+ and DPPH•, the ferric-reducing antioxidant power (FRAP), and the antioxidant activity in the β-carotene-linoleic acid emulsion system were determined. Mono- and di-C-glycosyl flavones were found to be the most abundant phenolics of the aerial parts of flax, which also showed the highest content of isoorientin (210-538 µg/g FM). Coniferin, its derivative, and hydroxycinnamic acid derivatives were also detected. The plant was richer in flavone C-glycosides from stem extension to seed ripening (1105-1413 µg/g FM) than at the mature seed stage (557 µg/g FM). Most of the individual flavone C-glycoside contents in the extracts decreased when increasingly older plants were considered; however, the isoorientin content did not change significantly from the steam extension to the seed ripening stages. The antiradical activity against ABTS•+ and FRAP was higher for the aerial parts of the flax harvested at the flowering, brown capsule, and seed ripening stages, mainly due to the presence of flavone C-glycosides. The oxidation of β-carotene-linoleic acid emulsion was instead inhibited more effectively by the extracts from plants at the brown capsule and mature seed stages. Coniferin and its derivative were significantly involved in this activity. The extracts from the aerial parts of the flax harvested from flowering to seed ripening could be a valuable source of flavone C-glycosides for use as nutraceuticals and components of functional foods.
Collapse
Affiliation(s)
- Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Michał A. Janiak
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Katarzyna Sulewska
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Pier Giorgio Peiretti
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Magdalena Karamać
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
5
|
Tse TJ, Guo Y, Shim YY, Purdy SK, Kim JH, Cho JY, Alcorn J, Reaney MJT. Availability of bioactive flax lignan from foods and supplements. Crit Rev Food Sci Nutr 2022; 63:9843-9858. [PMID: 35532015 DOI: 10.1080/10408398.2022.2072807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.
Collapse
Affiliation(s)
- Timothy J Tse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yajia Guo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Sarah K Purdy
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangdong, China
| |
Collapse
|
6
|
Consonni R, Ottolina G. NMR Characterization of Lignans. Molecules 2022; 27:2340. [PMID: 35408739 PMCID: PMC9000441 DOI: 10.3390/molecules27072340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
Lignans are particularly interesting secondary metabolites belonging to the phenyl-propanoid biosynthetic pathway. From the structural point of view, these molecules could belong to the aryltetralin, arylnaphtalene, or dibenzylbutyrolactone molecular skeleton. Lignans are present in different tissues of plants but are mainly accumulated in seeds. Extracts from plant tissues could be characterized by using the NMR-based approach, which provides a profile of aromatic molecules and detailed structural information for their elucidation. In order to improve the production of these secondary metabolites, elicitors could effectively stimulate lignan production. Several plant species are considered in this review with a particular focus on Linum species, well recognized as the main producer of lignans.
Collapse
Affiliation(s)
- Roberto Consonni
- Institute of Chemical Sciences and Technologies “Giulio Natta”, National Research Council, Via Corti 12, 20133 Milan, Italy;
| | | |
Collapse
|
7
|
Tripathi V, Mishra A, Pathak Y, Kumar A, Mishra S. Natural compounds as potential inhibitors of SARS-CoV-2 main protease: An in-silico study. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.310202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Evidence of TCM Theory in Treating the Same Disease with Different Methods: Treatment of Pneumonia with Ephedra sinica and Scutellariae Radix as an Example. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8873371. [PMID: 33354223 PMCID: PMC7737398 DOI: 10.1155/2020/8873371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Pneumonia is a serious global health problem and the leading cause of mortality in children. Antibiotics are the main treatment for bacterial pneumonia, but there are serious drug resistance problems. Traditional Chinese medicine (TCM) has been used to treat diseases for thousands of years and has a unique theory. This article takes the treatment of pneumonia with Ephedra sinica as a representative hot medicine and Scutellariae Radix as a representative cold medicine as an example. We explore and explain the theory of treating the same disease with different TCM treatments. Using transcriptomics and network pharmacology methods, GO, KEGG enrichment, and PPI network construction were carried out, demonstrating that Ephedra sinica plays a therapeutic role through the NF-κB and apoptosis signaling pathways targeting PLAU, CD40LG, BLC2L1, CASP7, and CXCL8. The targets of Scutellariae Radix through the IL-17 signaling pathway are MMP9, CXCL8, and MAPK14. Molecular docking technology was also used to verify the results. In short, our results provide evidence for the theory of treating the same disease with different treatments, and we also discuss future directions for traditional Chinese medicine.
Collapse
|
9
|
Dubois F, Musa C, Duponchel B, Tidahy L, Sécordel X, Mallard I, Delattre F. Nuclear Magnetic Resonance and Calorimetric Investigations of Extraction Mode on Flaxseed Gum Composition. Polymers (Basel) 2020; 12:E2654. [PMID: 33187145 PMCID: PMC7697610 DOI: 10.3390/polym12112654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/04/2023] Open
Abstract
We discussed about the influence of extraction mode on the flaxseed gums composition and their thermal stabilities. In order to do so, flaxseed gum was extracted by both classical magnetic stirring method and ultrasonic-assisted extraction (UAE). As a function of time, protein content, gum yield, pH values were evaluated and samples were characterized by 1H and 13C nuclear magnetic resonance (NMR) experiments as well as scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The flaxseed gum extracted in aqueous solution correspond to a mixture of different components, including polysaccharides, proteins and sometimes lignan derivatives. It is found that the protein and gum contents increase with the extraction duration for both the ultrasonic assisted and the traditional extraction while the pH decreases at the same time. As expected, compared to traditional magnetic stirring method, ultrasonic assisted extraction method can significantly enhance the yield of polysaccharides, lignans and proteins. The variation of pH is correlated to the increase of lignan molecules in the extracted samples. For thermic methods, SEM experiments showed that lignan derivatives which ester-bonded to polysaccharides associated to proteins are responsible to the formation of globular aggregates. Supplementary rod-like molecular organization were obtained from UAE and questions on the nature of the amphiphilic mesogen carbohydrate structures.
Collapse
Affiliation(s)
- Fang Dubois
- Littoral Côte d’Opale University, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; (F.D.); (C.M.); (L.T.); (I.M.)
| | - Corentin Musa
- Littoral Côte d’Opale University, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; (F.D.); (C.M.); (L.T.); (I.M.)
| | - Benoit Duponchel
- Littoral Côte d’Opale University, UR 4476, UDSMM, Unité de Dynamique et Structure des Matériaux Moléculaires, 145 Avenue Maurice Schumann, 59140 Dunkerque, France;
| | - Lucette Tidahy
- Littoral Côte d’Opale University, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; (F.D.); (C.M.); (L.T.); (I.M.)
| | - Xavier Sécordel
- Littoral Côte d’Opale University, UR 4493, LPCA, IRenE, 145 Avenue Maurice Schumann, 59140 Dunkerque, France;
| | - Isabelle Mallard
- Littoral Côte d’Opale University, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; (F.D.); (C.M.); (L.T.); (I.M.)
| | - François Delattre
- Littoral Côte d’Opale University, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, 145 Avenue Maurice Schumann, 59140 Dunkerque, France; (F.D.); (C.M.); (L.T.); (I.M.)
| |
Collapse
|
10
|
Stodolak B, Starzyńska-Janiszewska A, Mika M, Wikiera A. Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules 2020; 25:E4759. [PMID: 33081302 PMCID: PMC7587534 DOI: 10.3390/molecules25204759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/17/2022] Open
Abstract
Tempe-type fermentation originating from Indonesia can enhance the antioxidant activity of plant material. However, this biological potential depends on substrates and applied microorganisms. This study aimed to determine whether co-fermentation with Rhizopus oligosporus and Lactobacillus plantarum improved antioxidant activity of tempe obtained from grass pea seeds with flaxseed oil-cake addition (up to 30%). For this purpose, substances reacting with Folin-Ciocalteu reagent and free radicals scavenging potential were measured in water-soluble fractions and dialysates from simulated in vitro digestion. Additionally, the water-soluble phenolic profile was estimated. The higher level of water-extractable compounds with antioxidant activity was determined in co-fermentation products than in fungal fermentation products. Moreover, the fermentation process with the use of L. plantarum contributed to a greater accumulation of some phenolic acids (gallic acid, protocatechuic acid) in tempe without having a negative effect on the levels of other phenolic compounds determined in fungal fermented tempe. During in vitro digestion simulating the human digestive tract, more antioxidant compounds were released from products obtained after co-fermentation than fungal fermentation. An addition of 20% flaxseed oil-cake and the application of bacterial-fungal co-fermentation, can be considered as an alternative tool to enhance the antioxidant parameters of grass pea tempe.
Collapse
Affiliation(s)
- Bożena Stodolak
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland; (A.S.-J.); (M.M.); (A.W.)
| | | | | | | |
Collapse
|
11
|
Thiombiano B, Gontier E, Molinié R, Marcelo P, Mesnard F, Dauwe R. An untargeted liquid chromatography-mass spectrometry-based workflow for the structural characterization of plant polyesters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1323-1339. [PMID: 31943449 DOI: 10.1111/tpj.14686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 05/23/2023]
Abstract
Cell wall localized heterogeneous polyesters are widespread in land plants. The composition of these polyesters, such as cutin, suberin, or more plant-specific forms such as the flax seed coat lignan macromolecule, can be determined after total hydrolysis of the ester linkages. The main bottleneck in the structural characterization of these macromolecules, however, resides in the determination of the higher order monomer sequences. Partial hydrolysates of the polyesters release a complex mixture of fragments of different lengths, each present in low abundance and therefore are challenging to structurally characterize. Here, a method is presented by which liquid chromatography-mass spectrometry (LC-MS) profiles of such partial hydrolysates are searched for pairs of related fragments. LC-MS peaks that show a mass difference corresponding to the addition of one or more macromolecule monomers were connected in a network. Starting from the lowest molecular weight peaks in the network, the annotation of the connections as the addition of one or more polyester monomers allows the prediction of consecutive and increasingly complex adjacent peaks. Multi-stage MS (MSn) experiments further helped to reject, corroborate, and sometimes refine the structures predicted by the network. As a proof of concept, this procedure was applied to partial hydrolysates of the flax seed coat lignan macromolecule, and allowed to characterize 120 distinct oligo-esters, consisting of up to six monomers, and containing monomers and linkages for which incorporation in the lignan macromolecule had not been described before. These results showed the capacity of the approach to advance the structural elucidation of complex plant polyesters.
Collapse
Affiliation(s)
- Benjamin Thiombiano
- Unité de Recherche BIOPI, UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Eric Gontier
- Unité de Recherche BIOPI, UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Roland Molinié
- Unité de Recherche BIOPI, UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Paulo Marcelo
- Plateforme Ingénierie Cellulaire et Analyses des Protéines, Université de Picardie Jules Verne, 80000, Amiens, France
| | - François Mesnard
- Unité de Recherche BIOPI, UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Rebecca Dauwe
- Unité de Recherche BIOPI, UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000, Amiens, France
| |
Collapse
|
12
|
Anjum S, Komal A, Drouet S, Kausar H, Hano C, Abbasi BH. Feasible Production of Lignans and Neolignans in Root-derived In Vitro Cultures of Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E409. [PMID: 32218181 PMCID: PMC7238537 DOI: 10.3390/plants9040409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Flax lignans and neolignans impart health benefits, particularly in treating different types of cancers, due to their strong phytoestrogenic and antioxidant properties. The present study enhances the comprehension on the biosynthesis of antioxidant lignans and neolignans in root-derived in vitro cultures of flax (both callus and adventitious root). The results presented here clearly showed that the adventitious root culture efficiently produced a higher amount of lignans (at day 40) and neolignans (at day 30) than callus culture of flax. High performance liquid chromatography (HPLC) analysis revealed that the accumulations of secoisolariciresinol diglucoside (SDG, 5.5 mg g-1 DW (dry weight)) and dehydrodiconiferyl alcohol glucoside (DCG, 21.6 mg/g DW) were 2-fold higher, while guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG, 4.9 mg/g DW) and lariciresinol glucoside (LDG, 11.9 mg/g DW) contents were 1.5-fold higher in adventitious root culture than in callus culture. Furthermore, the highest level of total phenolic production (119.01 mg/L), with an antioxidant free radical scavenging activity of 91.01%, was found in adventitious root culture at day 40, while the maximum level of total flavonoid production (45.51 mg/L) was observed in callus culture at day 30 of growth dynamics. These results suggest that adventitious root culture can be a good candidate for scaling up to industrial level to commercially produce these pharmacologically and nutritionally valuable metabolites.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Amna Komal
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, Lahore-54000, Pakistan; (A.K.); (H.K.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad-45320, Pakistan
| |
Collapse
|
13
|
Waszkowiak K, Mikołajczak B, Gliszczyńska‐Świgło A, Niedźwiedzińska K. Effect of thermal pre‐treatment on the phenolic and protein profiles and oil oxidation dynamics of golden flaxseeds. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Katarzyna Waszkowiak
- Department of Gastronomy Science and Functional Foods Faculty of Food Science and Nutrition Poznan University of Life Sciences Wojska Polskiego 31 Poznan 60‐624 Poland
| | - Beata Mikołajczak
- Department of Meat Technology Faculty of Food Science and Nutrition Poznan University of Life Sciences Wojska Polskiego 31 Poznan 60‐624 Poland
| | - Anna Gliszczyńska‐Świgło
- Faculty of Commodity Science Poznan University of Economics and Business Niepodległości 10 61‐875 Poznan Poland
| | - Karina Niedźwiedzińska
- Department of Gastronomy Science and Functional Foods Faculty of Food Science and Nutrition Poznan University of Life Sciences Wojska Polskiego 31 Poznan 60‐624 Poland
| |
Collapse
|
14
|
Li L, Fan P, Chou H, Li J, Wang K, Li H. Herbacetin suppressed MMP9 mediated angiogenesis of malignant melanoma through blocking EGFR-ERK/AKT signaling pathway. Biochimie 2019; 162:198-207. [PMID: 31075281 DOI: 10.1016/j.biochi.2019.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
Malignant melanoma remains a challenge for clinical practice and novel therapeutic strategies are urgently needed. Herbacetin, a natural flavonoid compound that has multiple pharmacological activities, exerts anticancer effects on several human tumors. In this study, the anti-angiogenesis effect of Herbacetin in human malignant melanoma was investigated. The results indicated that Herbacetin treatment significantly suppressed tumor growth and angiogenesis of malignant melanoma both in vitro and in vivo. In melanoma A375 and Hs294T cells, Herbacetin treatment suppressed both EGF-induced and constitutive phosphorylation of EGFR, accelerated the internalization and degradation of EGFR, and subsequently suppressed the activation of the downstream kinases (AKT and ERK). Moreover, MMP9 was determined as a key angiogenic factor in Herbacetin treated melanoma cells. Knockdown of MMP9 suppressed the in vitro angiogenesis while overexpression of MMP9 in Herbacetin treated melanoma cells restored the angiogenesis ability. We concluded that Herbacetin suppressed melanoma angiogenesis through blocking EGFR-ERK/AKT-MMP9 signaling pathway and Herbacetin may be developed as a potential drug for melanoma treatment.
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Pengfei Fan
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Haiyan Chou
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Juan Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Kai Wang
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hao Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
15
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
16
|
Abstract
Interest in the content of natural antioxidants in plant-based foods can be from the human health perspective, in terms of how these compounds might help promote one's health and wellness, or from the storage point-of-view, as the endogenous antioxidant constituents aid to extend a foodstuff's shelf-life. This chapter reports essential information about the mechanism of antioxidant action and methods employed for determination of their activity, classes of phenolic compounds (phenolic acids, flavonoids, lignans, stilbenes, tannins), sources of plant antioxidants (oil seeds, cereals, legumes, plants of the Lamiaceae family, tea and coffee, tree nuts, fruits, and berries), extraction strategies of phenolic compounds from plant material, and the influence of processing and storage on the content of natural antioxidants in foods and their antioxidant activity. Thermal processing, if not releasing bound phenolics from the structural matrices of the food, tends to decrease the antioxidant potential or, in the best case scenario, has no significant negative impact. Gentler sterilization processes such as high-pressure processing tend to better retain the antioxidant potential of a foodstuff than thermal treatments such as steaming, boiling, or frying. The impact of processing can be assessed by determining the antioxidant potential of foodstuffs either at the point of formulation or after different periods of storage under specified conditions.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, United States
| |
Collapse
|
17
|
Song M, Bode AM, Dong Z, Lee MH. AKT as a Therapeutic Target for Cancer. Cancer Res 2019; 79:1019-1031. [PMID: 30808672 DOI: 10.1158/0008-5472.can-18-2738] [Citation(s) in RCA: 530] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022]
Abstract
Many cellular processes in cancer are attributed to kinase signaling networks. V-akt murine thymoma viral oncogene homolog (AKT) plays a major role in the PI3K/AKT signaling pathways. AKT is activated by PI3K or phosphoinositide-dependent kinases (PDK) as well as growth factors, inflammation, and DNA damage. Signal transduction occurs through downstream effectors such as mTOR, glycogen synthase kinase 3 beta (GSK3β), or forkhead box protein O1 (FOXO1). The abnormal overexpression or activation of AKT has been observed in many cancers, including ovarian, lung, and pancreatic cancers, and is associated with increased cancer cell proliferation and survival. Therefore, targeting AKT could provide an important approach for cancer prevention and therapy. In this review, we discuss the rationale for targeting AKT and also provide details regarding synthetic and natural AKT-targeting compounds and their associated studies.
Collapse
Affiliation(s)
- Mengqiu Song
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Mee-Hyun Lee
- Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China. .,China-US (Henan) Hormel Cancer Institute, Jinshui District, Zhengzhou, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
18
|
Garros L, Drouet S, Corbin C, Decourtil C, Fidel T, Lebas de Lacour J, Leclerc EA, Renouard S, Tungmunnithum D, Doussot J, Abassi BH, Maunit B, Lainé É, Fliniaux O, Mesnard F, Hano C. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax ( Linum usitatissimum L.) Seeds. Molecules 2018; 23:molecules23102636. [PMID: 30322184 PMCID: PMC6222607 DOI: 10.3390/molecules23102636] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.
Collapse
Affiliation(s)
- Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cédric Decourtil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Thibaud Fidel
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Julie Lebas de Lacour
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Emilie A Leclerc
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Joël Doussot
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Le CNAM, Ecole Sciences Industrielles et Technologies de l'Information (SITI), Chimie Alimentation Santé Environnement Risque (CASER), 75141 Paris Cedex 3, France.
| | - Bilal Haider Abassi
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Biotechnology, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Benoit Maunit
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Ophélie Fliniaux
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - François Mesnard
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| |
Collapse
|
19
|
Muñoz O, Fuentealba C, Ampuero D, Figuerola F, Estévez AM. The effect of Lactobacillus acidophilus and Lactobacillus casei on the in vitro bioaccessibility of flaxseed lignans (Linum usitatissimum L.). Food Funct 2018; 9:2426-2432. [PMID: 29629722 DOI: 10.1039/c8fo00390d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Secoisolariciresinol (SECO) is present in flaxseeds as a glucoside, secoisolariciresinol diglucoside (SDG), which can be metabolized to enterodiol (ED) and enterolactone (EL) by the human intestinal microbiota. The aim of this study was to evaluate the effect of Lactobacillus casei and Lactobacillus acidophilus on the bioaccessibility of flaxseed lignans from a complete in vitro digestion of whole flaxseeds (WFs) and flaxseed flour (FF). Lignans are only detected in the large intestine. The bioaccessibility of SDG for FF digestion can be ordered as follows: control (without probiotics) > L. casei > L. acidophilus; and for WF digestion, only in the presence of L. casei SDG was detected. For SECO and EL, the presence of both probiotics had no effect on FF and WF digestion. However, in the digestion of WF both L. casei and L. acidophilus increased ED bioaccessibility in the first 12 h; but both probiotics had no significant effect on FF digestion.
Collapse
Affiliation(s)
- O Muñoz
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral de Chile. Campus Isla Teja s/n. Valdivia, Chile
| | | | | | | | | |
Collapse
|
20
|
Kim DJ, Lee MH, Liu K, Lim DY, Roh E, Chen H, Kim SH, Shim JH, Kim MO, Li W, Ma F, Fredimoses M, Bode AM, Dong Z. Herbacetin suppresses cutaneous squamous cell carcinoma and melanoma cell growth by targeting AKT and ODC. Carcinogenesis 2017; 38:1136-1146. [PMID: 29029040 PMCID: PMC5862242 DOI: 10.1093/carcin/bgx082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Herbacetin is a flavonol compound that is found in plants such as flaxseed and ramose scouring rush herb, it possesses a strong antioxidant capacity, and exerts anticancer effects on colon and breast cancer. However, the effect of herbacetin on skin cancer has not been investigated. Herein, we identified herbacetin as a dual V-akt murine thymoma viral oncogene homolog (AKT) and ornithine decarboxylase (ODC) inhibitor, and illustrated its anticancer effects in vitro and in vivo against cutaneous squamous cell carcinoma (SCC) and melanoma cell growth. To identify the direct target(s) of herbacetin, we screened several skin cancer-related protein kinases, and results indicated that herbacetin strongly suppresses both AKT and ODC activity. Results of cell-based assays showed that herbacetin binds to both AKT and ODC, inhibits TPA-induced neoplastic transformation of JB6 mouse epidermal cells, and suppresses anchorage-independent growth of cutaneous SCC and melanoma cells. The inhibitory activity of herbacetin was associated with markedly reduced NF-κB and AP1 reporter activity. Interestingly, herbacetin effectively attenuated TPA-induced skin cancer development and also exhibited therapeutic effects against solar-UV-induced skin cancer and melanoma growth in vivo. Our findings indicate that herbacetin is a potent AKT and ODC inhibitor that should be useful for preventing skin cancers.
Collapse
Affiliation(s)
- Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - KangDong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450008, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sung-Hyun Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Jung-Hyun Shim
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Myoung Ok Kim
- Center for Laboratory Animal Resources, School of Animal Biotechnology, Kyungpook National University, Dae-gu 700-842, Republic of Korea
| | - Wenwen Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Fayang Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
21
|
Fofana B, Ghose K, Somalraju A, McCallum J, Main D, Deyholos MK, Rowland GG, Cloutier S. Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles. FRONTIERS IN PLANT SCIENCE 2017; 8:1638. [PMID: 28983308 PMCID: PMC5613138 DOI: 10.3389/fpls.2017.01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Kaushik Ghose
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Ashok Somalraju
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | - David Main
- Charlottetown Research and Development Centre, Agriculture and Agri-Food CanadaCharlottetown, PE, Canada
| | | | - Gordon G. Rowland
- Department of Plant Science, Crop Development Centre, University of SaskatchewanSaskatoon, SK, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
| |
Collapse
|
22
|
Fofana B, Ghose K, McCallum J, You FM, Cloutier S. UGT74S1 is the key player in controlling secoisolariciresinol diglucoside (SDG) formation in flax. BMC PLANT BIOLOGY 2017; 17:35. [PMID: 28152982 PMCID: PMC5290659 DOI: 10.1186/s12870-017-0982-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/23/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Flax lignan, commonly known as secoisolariciresinol (SECO) diglucoside (SDG), has recently been reported with health-promoting activities, including its positive impact in metabolic diseases. However, not much was reported on the biosynthesis of SDG and its monoglucoside (SMG) until lately. Flax UGT74S1 was recently reported to sequentially glucosylate SECO into SMG and SDG in vitro. However, whether this gene is the only UGT achieving SECO glucosylation in flax was not known. RESULTS Flax genome-wide mining for UGTs was performed. Phylogenetic and gene duplication analyses, heterologous gene expression and enzyme assays were conducted to identify family members closely related to UGT74S1 and to establish their roles in SECO glucosylation. A total of 299 different UGTs were identified, of which 241 (81%) were duplicated. Flax UGTs diverged 2.4-153.6 MYA and 71% were found to be under purifying selection pressure. UGT74S1, a single copy gene located on chromosome 7, displayed no evidence of duplication and was deemed to be under positive selection pressure. The phylogenetic analysis identified four main clusters where cluster 4, which included UGT74S1, was the most diverse. The duplicated UGT74S4 and UGT74S3, located on chromosomes 8 and 14, respectively, were the most closely related to UGT74S1 and were differentially expressed in different tissues. Heterologous expression levels of UGT74S1, UGT74S4 and UGT74S3 proteins were similar but UGT74S4 and UGT74S3 glucosylation activity towards SECO was seven fold less than UGT74S1. In addition, they both failed to produce SDG, suggesting neofunctionalization following their divergence from UGT74S1. CONCLUSIONS We showed that UGT74S1 is closely related to two duplicated genes, UGT74S4 and UGT74S3 which, unlike UGT74S1, failed to glucosylate SMG into SDG. The study suggests that UGT74S1 may be the key player in controlling SECO glucosylation into SDG in flax although its closely related genes may also contribute to a minor extent in supplying the SMG precursor to UGT74S1.
Collapse
Affiliation(s)
- Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
| | - Kaushik Ghose
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Jason McCallum
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, Prince Edward Island C1A 4N6 Canada
| | - Frank M. You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100 Unit 100, Morden, Manitoba R6M 1Y5 Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
| |
Collapse
|
23
|
Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development. Food Chem 2017; 217:1-8. [DOI: 10.1016/j.foodchem.2016.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 11/21/2022]
|
24
|
Fang J, Ramsay A, Renouard S, Hano C, Lamblin F, Chabbert B, Mesnard F, Schneider B. Laser Microdissection and Spatiotemporal Pinoresinol-Lariciresinol Reductase Gene Expression Assign the Cell Layer-Specific Accumulation of Secoisolariciresinol Diglucoside in Flaxseed Coats. FRONTIERS IN PLANT SCIENCE 2016; 7:1743. [PMID: 27917190 PMCID: PMC5116464 DOI: 10.3389/fpls.2016.01743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/04/2016] [Indexed: 05/08/2023]
Abstract
The concentration of secoisolariciresinol diglucoside (SDG) found in flaxseed (Linum usitatissimum L.) is higher than that found in any other plant. It exists in flaxseed coats as an SDG-3-hydroxy-3-methylglutaric acid oligomer complex. A laser microdissection method was applied to harvest material from different cell layers of seed coats of mature and developing flaxseed to detect the cell-layer specific localization of SDG in flaxseed; NMR and HPLC were used to identify and quantify SDG in dissected cell layers after alkaline hydrolysis. The obtained results were further confirmed by a standard molecular method. The promoter of one pinoresinol-lariciresinol reductase gene of L. usitatissimum (LuPLR1), which is a key gene involved in SDG biosynthesis, was fused to a β-glucuronidase (GUS) reporter gene, and the spatio-temporal regulation of LuPLR1 gene expression in flaxseed was determined by histochemical and activity assays of GUS. The result showed that SDG was synthesized and accumulated in the parenchymatous cell layer of the outer integument of flaxseed coats.
Collapse
Affiliation(s)
- Jingjing Fang
- Max Planck Institute for Chemical EcologyJena, Germany
| | - Aïna Ramsay
- EA3900 – BioPI Faculté de Pharmacie, Université de Picardie Jules VerneAmiens, France
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, Université d’OrléansChartres, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, Université d’OrléansChartres, France
| | - Frédéric Lamblin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, UPRES EA 1207, Antenne Scientifique Universitaire de Chartres, Université d’OrléansChartres, France
| | - Brigitte Chabbert
- INRA, UMR614 Fractionnement des AgroRessources et EnvironnementReims, France
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-ArdenneReims, France
| | - François Mesnard
- EA3900 – BioPI Faculté de Pharmacie, Université de Picardie Jules VerneAmiens, France
- *Correspondence: François Mesnard,
| | | |
Collapse
|
25
|
Kim DJ, Roh E, Lee MH, Oi N, Lim DY, Kim MO, Cho YY, Pugliese A, Shim JH, Chen H, Cho EJ, Kim JE, Kang SC, Paul S, Kang HE, Jung JW, Lee SY, Kim SH, Reddy K, Yeom YI, Bode AM, Dong Z. Herbacetin Is a Novel Allosteric Inhibitor of Ornithine Decarboxylase with Antitumor Activity. Cancer Res 2015; 76:1146-1157. [PMID: 26676750 DOI: 10.1158/0008-5472.can-15-0442] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well-established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials.
Collapse
Affiliation(s)
- Dong Joon Kim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Biomedical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Korea
| | - Eunmiri Roh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,China-US Hormel Institute, Henan, 45008, China
| | - Naomi Oi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Center for Laboratory Animal Resources, School of Animal Biotechnology, Kyungpook National University, Dae-gu, 700-842, Republic of Korea
| | - Young-Yeon Cho
- Department of Pharmacology, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Angelo Pugliese
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jung-Hyun Shim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Eun Jin Cho
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jong-Eun Kim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Hee Eun Kang
- Department of Pharmacology, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Ji Won Jung
- Department of Pharmacology, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Sung-Hyun Kim
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.,Center for Laboratory Animal Resources, School of Animal Biotechnology, Kyungpook National University, Dae-gu, 700-842, Republic of Korea
| | - Kanamata Reddy
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Young Il Yeom
- Biomedical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
26
|
Efficiency of a SDG-β-glucosidase from Bacillus altitudinis HK02 for the deglycation of glycosides from flaxseeds. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Dalisay DS, Kim KW, Lee C, Yang H, Rübel O, Bowen BP, Davin LB, Lewis NG. Dirigent Protein-Mediated Lignan and Cyanogenic Glucoside Formation in Flax Seed: Integrated Omics and MALDI Mass Spectrometry Imaging. JOURNAL OF NATURAL PRODUCTS 2015; 78:1231-42. [PMID: 25981198 DOI: 10.1021/acs.jnatprod.5b00023] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 μm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis.
Collapse
Affiliation(s)
- Doralyn S Dalisay
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Kye Won Kim
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Choonseok Lee
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Hong Yang
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Oliver Rübel
- ‡Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Benjamin P Bowen
- §Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Laurence B Davin
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| | - Norman G Lewis
- †Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, United States
| |
Collapse
|
28
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
29
|
Fuentealba C, Figuerola F, Estévez AM, González-Muñoz A, Muñoz O. Optimization of secoisolariciresinol diglucoside extraction from flaxseed (Linum usitatissimumL.) and isolation by a simple HPLC-UV method. CYTA - JOURNAL OF FOOD 2014. [DOI: 10.1080/19476337.2014.953209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Investigation of antibrowning activity of pine needle (Cedrus deodara) extract with fresh-cut apple slice model and identification of the primary active components. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2263-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Herchi W, Arr^|^aacute;ez-Rom^|^aacute;n D, Trabelsi H, Bouali I, Boukhchina S, Kallel H, Segura-Carretero A, Fern^|^aacute;ndez-Gutierrez A. Phenolic Compounds in Flaxseed: a Review of Their Properties and Analytical Methods. An Overview of the Last Decade. J Oleo Sci 2014; 63:7-14. [DOI: 10.5650/jos.ess13135] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Fang J, Ramsay A, Paetz C, Tatsis EC, Renouard S, Hano C, Grand E, Fliniaux O, Roscher A, Mesnard F, Schneider B. Concentration kinetics of secoisolariciresinol diglucoside and its biosynthetic precursor coniferin in developing flaxseed. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:41-46. [PMID: 22689568 DOI: 10.1002/pca.2377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION In the plant kingdom, flaxseed (Linum usitatissimum L.) is the richest source of secoisolariciresinol diglucoside (SDG), which is of great interest because of its potential health benefits for human beings. The information about the kinetics of SDG formation during flaxseed development is rare and incomplete. OBJECTIVE In this study, a reversed-phase high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed to quantify SDG and coniferin, a key biosynthetic precursor of SDG in flaxseed. METHODOLOGY Seeds from different developmental stages, which were scaled by days after flowering (DAF), were harvested. After alkaline hydrolysis, the validated HPLC method was applied to determine SDG and coniferin concentrations of flaxseed from different developing stages. RESULTS Coniferin was found in the entire capsule as soon as flowering started and became undetectable 20 DAF. SDG was detected 6 DAF, and the concentration increased until maturity. On the other hand, the SDG amount in a single flaxseed approached the maximum around 25 DAF, before desiccation started. Concentration increase between 25 DAF and 35 DAF can be attributed to corresponding seed weight decrease. CONCLUSION The biosynthesis of coniferin is not synchronous with that of SDG. Hence, the concentrations of SDG and coniferin change during flaxseed development.
Collapse
Affiliation(s)
- Jingjing Fang
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Beutenberg Campus, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hao M, Beta T. Qualitative and quantitative analysis of the major phenolic compounds as antioxidants in barley and flaxseed hulls using HPLC/MS/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:2062-2068. [PMID: 22278383 DOI: 10.1002/jsfa.5582] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Both qualitative and quantitative analyses of the major phenolic compounds in barley and flaxseed hulls were conducted using reverse phase high-performance liquid chromatography coupled with photodiode array detection and quadrupole time-of-flight mass spectrometry. RESULTS Ferulic acid, p-coumaric acid, vanillic acid and vanillin were identified and quantified in four barley hull samples. Four ferulate dehydrodimers were also detected. The phenolic compounds of flaxseed hull were distinct from those of barley hull. Three flaxseed hull samples varied significantly (P < 0.05) in their contents of secoisolariciresinol diglucoside (16.38-33.92 g kg(-1) ), coumaric acid glucoside (35.68-49.22 g kg(-1) ) and ferulic acid glucoside (5.07-15.23 g kg(-1) ). The phytochemical profiles of co-extracts featured the major phenolic compounds from both barley and flaxseed hulls. The total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity varied significantly (P < 0.05) among different varieties of flaxseed and barley hulls. CONCLUSION As agricultural by-products, barley and flaxseed hulls may be utilised as potential sources of functional food ingredients through extraction and concentration of the phytochemicals identified above.
Collapse
Affiliation(s)
- Meili Hao
- Department of Food Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
34
|
Huis R, Morreel K, Fliniaux O, Lucau-Danila A, Fénart S, Grec S, Neutelings G, Chabbert B, Mesnard F, Boerjan W, Hawkins S. Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. PLANT PHYSIOLOGY 2012; 158:1893-915. [PMID: 22331411 PMCID: PMC3320194 DOI: 10.1104/pp.111.192328] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/09/2012] [Indexed: 05/02/2023]
Abstract
Flax (Linum usitatissimum) stems contain cells showing contrasting cell wall structure: lignified in inner stem xylem tissue and hypolignified in outer stem bast fibers. We hypothesized that stem hypolignification should be associated with extensive phenolic accumulation and used metabolomics and transcriptomics to characterize these two tissues. (1)H nuclear magnetic resonance clearly distinguished inner and outer stem tissues and identified different primary and secondary metabolites, including coniferin and p-coumaryl alcohol glucoside. Ultrahigh-performance liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry aromatic profiling (lignomics) identified 81 phenolic compounds, of which 65 were identified, to our knowledge, for the first time in flax and 11 for the first time in higher plants. Both aglycone forms and glycosides of monolignols, lignin oligomers, and (neo)lignans were identified in both inner and outer stem tissues, with a preponderance of glycosides in the hypolignified outer stem, indicating the existence of a complex monolignol metabolism. The presence of coniferin-containing secondary metabolites suggested that coniferyl alcohol, in addition to being used in lignin and (neo)lignan formation, was also utilized in a third, partially uncharacterized metabolic pathway. Hypolignification of bast fibers in outer stem tissues was correlated with the low transcript abundance of monolignol biosynthetic genes, laccase genes, and certain peroxidase genes, suggesting that flax hypolignification is transcriptionally regulated. Transcripts of the key lignan genes Pinoresinol-Lariciresinol Reductase and Phenylcoumaran Benzylic Ether Reductase were also highly abundant in flax inner stem tissues. Expression profiling allowed the identification of NAC (NAM, ATAF1/2, CUC2) and MYB transcription factors that are likely involved in regulating both monolignol production and polymerization as well as (neo)lignan production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Simon Hawkins
- Université Lille Nord de France, Lille 1 UMR 1281, F–59650 Villeneuve d’Ascq cedex, France (R.H., A.L., S.F., S.G., G.N., S.H.); INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux Cultivés, F–59650 Villeneuve d’Ascq, France (R.H., A.L., S.F., S.G., G.N., S.H.); Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (K.M., W.B.); Department of Plant Biotechnology and Bioinformatics, University of Ghent, 9052 Ghent, Belgium (K.M., W.B.); Université de Picardie Jules Verne, EA 3900, Biologie des Plantes et Innovation, Laboratoire de Phytotechnologie, F–80037 Amiens cedex 1, France (O.F., F.M.); INRA, UMR 614 Fractionnement des AgroRessources et Environnement, F–51100 Reims, France (B.C.); and Université de Reims Champagne-Ardenne, UMR 614 Fractionnement des AgroRessources et Environnement, F–51100 Reims, France (B.C.)
| |
Collapse
|
35
|
|
36
|
Kosińska A, Penkacik K, Wiczkowski W, Amarowicz R. Presence of caffeic acid in flaxseed lignan macromolecule. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:270-4. [PMID: 21766213 PMCID: PMC3156902 DOI: 10.1007/s11130-011-0245-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phenolic compounds were extracted from defatted flaxseeds using ethanol-dioxane (1:1, v/v). The crude extract obtained was purified using Amberlite XAD-16 column chromatography with water and methanol as mobile phases. RP-HPLC and SE-HPLC showed a lignan macromolecule (LM) as a dominant phenolic compound in the purified extract. After the alkaline hydrolysis of LM caffeic acid glucoside (CaAG) was isolated using a semi-preparative HPLC and its structure was confirmed by LC-ESI-MS. In LM of the investigated flaxseed, one molecule of caffeic acid corresponded with five molecules of p-coumaric acid and two molecules of ferulic acid. The presence of caffeic acid in the lignan molecule might be very beneficial due to its high antioxidant activity.
Collapse
Affiliation(s)
- Agnieszka Kosińska
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland.
| | | | | | | |
Collapse
|
37
|
Evaluation of a Microwave-Assisted Extraction Method for Lignan Quantification in Flaxseed Cultivars and Selected Oil Seeds. FOOD ANAL METHOD 2011. [DOI: 10.1007/s12161-011-9281-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Attoumbré J, Bienaimé C, Dubois F, Fliniaux MA, Chabbert B, Baltora-Rosset S. Development of antibodies against secoisolariciresinol--application to the immunolocalization of lignans in Linum usitatissimum seeds. PHYTOCHEMISTRY 2010; 71:1979-87. [PMID: 20888604 DOI: 10.1016/j.phytochem.2010.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 05/24/2023]
Abstract
Lignans are widely distributed plant metabolites associated with a large range of biological activities. In order to gain insight into their biosynthesis and their spatio-temporal accumulation an immunological probe was developed. Secondary metabolites generally have too small molecular weight to be antigenic and have to be associated with a carrier protein. Secoisolariciresinol was chosen as the hapten and was linked to bovine serum albumin via a spacer arm, the p-aminohippuric acid. The artificial antigen was injected to New Zealand rabbits. The successful production of polyclonal antibodies against secoisolariciresinol was assessed with indirect enzyme immunosorbent assay (ELISA) by comparison with pre-immune serum and by competitive assays using dilutions of secoisolariciresinol standards. The antibodies had an IC(50) value of 94 μg/ml and showed moderate cross-reactivities with structurally related compounds. They were thus used to immunolocalize lignans in flaxseed (Linum usitatissimum), one of the richest sources of lignans. The immunohistochemical labeling allowed us to localize for the first time lignans in planta. They are mainly localized in the secondary wall of the sclerite cells of the outer integument of the seed. A very light labeling is also observed in cytoplasmic inclusions of the endosperm. The results were correlated with HPLC analytical results which enabled to evaluate the relative lignan quantities: in flaxseed about 90% of the metabolites are localized in the outer integument.
Collapse
Affiliation(s)
- Jacques Attoumbré
- Université de Picardie Jules Verne, EA3900-BioPI Biologie des Plantes et contrôle des Insectes ravageurs, Faculté de Pharmacie, 1 rue des Louvels, 80037 Amiens cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 2010; 68:571-603. [PMID: 20883417 DOI: 10.1111/j.1753-4887.2010.00319.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The present review of the literature on lignan physiology and lignan intervention and epidemiological studies was conducted to determine if lignans decrease the risks of cardiovascular disease in Western populations. Five intervention studies using flaxseed lignan supplements indicated beneficial associations with C-reactive protein, and a meta-analysis that included these studies also suggested lignans have a lowering effect on plasma total and low-density lipoprotein cholesterol. Three intervention studies using sesamin supplements indicated possible lipid- and blood pressure-lowering associations. Eleven human observational epidemiological studies examined dietary intakes of lignans in relation to cardiovascular disease risk. Five showed decreased risk with either increasing dietary intakes of lignans or increased levels of serum enterolactone (an enterolignan used as a biomarker of lignan intake), five studies were of borderline significance, and one was null. The associations between lignans and decreased risk of cardiovascular disease are promising, but they are yet not well established, perhaps due to low lignan intakes in habitual Western diets. At the higher doses used in intervention studies, associations were more evident.
Collapse
Affiliation(s)
- Julia Peterson
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachussets, USA
| | | | | | | | | | | |
Collapse
|
40
|
Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Lehraiki A, Attoumbré J, Bienaimé C, Matifat F, Bensaddek L, Nava-Saucedo E, Fliniaux MA, Ouadid-Ahidouch H, Baltora-Rosset S. Extraction of Lignans from Flaxseed and Evaluation of Their Biological Effects on Breast Cancer MCF-7 and MDA-MB-231 Cell Lines. J Med Food 2010; 13:834-41. [DOI: 10.1089/jmf.2009.0172] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Abdelali Lehraiki
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
- Laboratory of Cellular and Molecular Physiology, JE 2530, Faculty of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Jacques Attoumbré
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Christophe Bienaimé
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Fabrice Matifat
- Laboratory of Cellular and Molecular Physiology, JE 2530, Faculty of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Lamine Bensaddek
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Edmundo Nava-Saucedo
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Marc-André Fliniaux
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, JE 2530, Faculty of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Sylvie Baltora-Rosset
- Biology of Plantes and Insects, EA 3900, Faculty of Pharmacy, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
42
|
|