1
|
Cotrim GDS, Silva DMD, Graça JPD, Oliveira Junior AD, Castro CD, Zocolo GJ, Lannes LS, Hoffmann-Campo CB. Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability. PHYTOCHEMISTRY 2023; 205:113472. [PMID: 36270412 DOI: 10.1016/j.phytochem.2022.113472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Potassium (K+) has vital physiological and metabolic functions in plants and its availability can impact tolerance to biotic and abiotic stress conditions. Limited studies have investigated the effect of K+ fertilization on soybean metabolism. Using integrated omics, ionomics and metabolomics, we investigated the field-grown Glycine max (soybean) response, after four K+ soil fertilization rates. Soybean leaf and pod tissue (valves and immature seeds) extracts were analysed by ultra-performance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Multivariate analyses (PCA-X&Y e O2PLS-DA) showed that 51 compounds of 19 metabolic pathways were regulated in response to K+ availability. Under very low potassium availability, soybean plants accumulated of Ca2+, Mg2+, Fe2+, Cu2+, and B in young and old leaves. Potassium fertilization upregulated carbohydrate, galactolipid, and flavonol glycoside biosynthesis in leaves and pod valves, while K+ deficient pod tissues showed increasing amino acids, oligosaccharides, benzoic acid derivatives, and isoflavones contents. Severely K+ deficient soils elicited isoflavones, coumestans, pterocarpans, and soyasaponins in trifoliate leaves, likely associated to oxidative and photodynamic stress status. Additionally, results demonstrate that L-asparagine content is higher in potassium deficient tissues, suggesting this compound as a biomarker of K+ deficiency in soybean plants. These results demonstrate that potassium soil fertilization did not linearly contribute to changes in specialised constitutive metabolites of soybean. Altogether, this work provides a reference for improving the understanding of soybean metabolism as dependent on K+ availability.
Collapse
Affiliation(s)
- Gustavo Dos Santos Cotrim
- São Paulo State University - UNESP, 15385-000, Ilha Solteira, SP, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil.
| | - Deivid Metzker da Silva
- Santa Catarina Federal University - UFSC, 88040-900, Florianópolis, SC, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - José Perez da Graça
- Maringá State University - UEM, 87020-900, Maringá, PR, Brazil; Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | | | - Cesar de Castro
- Brazilian Agricultural Research Corporation - Embrapa Soybean, 86001-970, Londrina, PR, Brazil
| | - Guilherme Julião Zocolo
- Brazilian Agricultural Research Corporation - Embrapa Agroindústria Tropical, 60511-110, Fortaleza, CE, Brazil
| | | | | |
Collapse
|
2
|
Bragagnolo FS, Funari CS, Ibáñez E, Cifuentes A. Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods 2021; 10:foods10061308. [PMID: 34200265 PMCID: PMC8230045 DOI: 10.3390/foods10061308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Cristiano Soleo Funari
- School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (F.S.B.); (C.S.F.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL-CSIC), 28049 Madrid, Spain;
- Correspondence:
| |
Collapse
|
3
|
Rodrigues JM, Coutinho FS, Dos Santos DS, Vital CE, Ramos JRLS, Reis PB, Oliveira MGA, Mehta A, Fontes EPB, Ramos HJO. BiP-overexpressing soybean plants display accelerated hypersensitivity response (HR) affecting the SA-dependent sphingolipid and flavonoid pathways. PHYTOCHEMISTRY 2021; 185:112704. [PMID: 33640683 DOI: 10.1016/j.phytochem.2021.112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic environmental stresses have limited the increase in soybean productivity. Overexpression of the molecular chaperone BiP in transgenic plants has been associated with the response to osmotic stress and drought tolerance by maintaining cellular homeostasis and delaying hypersensitive cell death. Here, we evaluated the metabolic changes in response to the hypersensitivity response (HR) caused by the non-compatible bacteria Pseudomonas syringae pv. tomato in BiP-overexpressing plants. The HR-modified metabolic profiles in BiP-overexpressing plants were significantly distinct from the wild-type untransformed. The transgenic plants displayed a lower abundance of HR-responsive metabolites as amino acids, sugars, carboxylic acids and signal molecules, including p-aminobenzoic acid (PABA) and dihydrosphingosine (DHS), when compared to infected wild-type plants. In contrast, salicylic acid (SA) biosynthetic and signaling pathways were more stimulated in transgenic plants, and both pathogenesis-related genes (PRs) and transcriptional factors controlling the SA pathway were more induced in the BiP-overexpressing lines. Furthermore, the long-chain bases (LCBs) and ceramide biosynthetic pathways showed alterations in gene expression and metabolite abundance. Thus, as a protective pathway against pathogens, HR regulation by sphingolipids and SA may account at least in part by the enhanced resistance of transgenic plants. GmNAC32 transcriptional factor was more induced in the transgenic plants and it has also been reported to regulate flavonoid synthesis in response to SA. In fact, the BiP-overexpressing plants showed an increase in flavonoids, mainly prenylated isoflavones, as precursors for phytoalexins. Our results indicate that the BiP-mediated acceleration in the hypersensitive response may be a target for metabolic engineering of plant resistance against pathogens.
Collapse
Affiliation(s)
- Juliano Mendonça Rodrigues
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Danilo Silva Dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Camilo Elber Vital
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Pedro Braga Reis
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Maria Goreti Almeida Oliveira
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Brasília, DF, Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil
| | - Humberto Josué Oliveira Ramos
- Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG, Brazil; Núcleo de Análise de Biomoléculas, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. CHINESE HERBAL MEDICINES 2020; 12:257-264. [PMID: 36119014 PMCID: PMC9476754 DOI: 10.1016/j.chmed.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.
Collapse
|
5
|
Murai Y, Takahashi R, Kitajima J, Iwashina T. New Quercetin Triglycoside from the Leaves of Soybean Cultivar ‘Clark’. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19843614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new flavonol triglycoside, Quercetin 3- O-α-rhamnopyranosyl-(1→4)-[α-rhamnopyranosyl-(1→6)-β-galactopyranoside], was isolated from the leaves of soybean ( Glycine max) cultivar “Clark” and identified by UV spectra, LC-ESI-MS, acid hydrolysis, and1H and13C NMR. The compound was found together with 7 known flavonol glycosides, quercetin 3- O-robinobioside, quercetin 3- O-rutinoside, kaempferol 3- O-rhamnosyl-(1→4)-[rhamnosyl-(1→6)-galactoside], kaempferol 3- O-robinobioside, kaempferol 3- O-rutinoside, isorhamnetin 3- O-robinobioside, and isorhamnetin 3- O-rutinoside.
Collapse
Affiliation(s)
- Yoshinori Murai
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| | | | - Junichi Kitajima
- Laboratory of Pharmacognosy, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
6
|
Sukumaran A, McDowell T, Chen L, Renaud J, Dhaubhadel S. Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:966-981. [PMID: 30195273 DOI: 10.1111/tpj.14083] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 05/27/2023]
Abstract
Phytoalexin glyceollins are soybean-specific antimicrobial compounds that are derived from the isoflavonoid pathway. They are synthesized by soybean in response to extrinsic stress such as pathogen attack or injury, thereby conferring partial resistance if synthesized rapidly at the site of infection and at the required concentration. Soybean produces multiple forms of glyceollins that result from the differential prenylation reaction catalyzed by prenyltransferases (PTs) on either the C-2 or C-4 carbon of a pterocarpan glycinol. The soybean genome contains 77 PT-encoding genes (GmPTs) where at least 11 are (iso)flavonoid-specific. Transcript accumulation of five candidates GmPTs was increased in response to Phytophthora sojae infection, suggesting their role in phytoalexin synthesis. The induced GmPTs localize to plastids and display tissue-specific expression. We have in this study identified two additional GmPTs: an isoflavone dimethylallyltransferase 3 (IDT3); and a glycinol 2-dimethylallyl transferase GmPT01. GmPT01 prenylates (-)-glycinol at the C-2 position, localizes in the plastid, and exhibits root-specific gene expression. Furthermore, its expression is induced rapidly in response to stress, and is associated with a quantitative trait loci linked with resistance to P. sojae. Based on these results, we conclude that GmPT01 are possibly one of the loci involved in conferring partial resistance against stem and root rot disease in soybean.
Collapse
Affiliation(s)
- Arjun Sukumaran
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, Canada
| | - Ling Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, Canada
| | - Justin Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, Canada
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Huzar-Novakowiski J, Paul PA, Dorrance AE. Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio. PHYTOPATHOLOGY 2017; 107:937-949. [PMID: 28398874 DOI: 10.1094/phyto-01-17-0030-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent outbreaks of Sclerotinia stem rot (SSR) of soybean in Ohio, along with new fungicides and cultivars with resistance to this disease, have led to a renewed interest in studies to update disease management guidelines. The effect of host resistance (in moderately resistant [MR] and moderately susceptible [MS] cultivars) and chemical control on SSR and yield was evaluated in 12 environments from 2014 to 2016. The chemical treatments evaluated were an untreated check, four fungicides (boscalid, picoxystrobin, pyraclostrobin, and thiophanate-methyl), and one herbicide (lactofen) applied at soybean growth stage R1 (early flowering) alone or at R1 followed by a second application at R2 (full flowering). SSR developed in 6 of 12 environments, with mean disease incidence in the untreated check of 2.5 to 41%. The three environments with high levels of SSR (disease incidence in the untreated check >20%) were used for further statistical analysis. There were significant effects (P < 0.05) of soybean cultivar and chemical treatment on SSR levels. Significantly lower levels of SSR were observed in MR cultivars. Both boscalid and lactofen reduced SSR but did not increase yield. Pyraclostrobin increased SSR compared with the untreated check in the three environments with high levels of disease. In the six fields where SSR did not develop, chemical treatment did not increase yield, nor was the yield from the MR cultivar significantly different from the MS cultivar. For Ohio, MR cultivars alone were effective for management of SSR in soybean fields where this disease has historically occurred.
Collapse
Affiliation(s)
- Jaqueline Huzar-Novakowiski
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691
| | - Pierce A Paul
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691
| |
Collapse
|
8
|
Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W. Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey. J Biotechnol 2016; 239:106-114. [DOI: 10.1016/j.jbiotec.2016.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
9
|
Yoneyama K, Akashi T, Aoki T. Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids. PLANT & CELL PHYSIOLOGY 2016; 57:2497-2509. [PMID: 27986914 PMCID: PMC5159607 DOI: 10.1093/pcp/pcw178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/15/2016] [Indexed: 05/19/2023]
Abstract
Soybean (Glycine max) accumulates several prenylated isoflavonoid phytoalexins, collectively referred to as glyceollins. Glyceollins (I, II, III, IV and V) possess modified pterocarpan skeletons with C5 moieties from dimethylallyl diphosphate, and they are commonly produced from (6aS, 11aS)-3,9,6a-trihydroxypterocarpan [(-)-glycinol]. The metabolic fate of (-)-glycinol is determined by the enzymatic introduction of a dimethylallyl group into C-4 or C-2, which is reportedly catalyzed by regiospecific prenyltransferases (PTs). 4-Dimethylallyl (-)-glycinol and 2-dimethylallyl (-)-glycinol are precursors of glyceollin I and other glyceollins, respectively. Although multiple genes encoding (-)-glycinol biosynthetic enzymes have been identified, those involved in the later steps of glyceollin formation mostly remain unidentified, except for (-)-glycinol 4-dimethylallyltransferase (G4DT), which is involved in glyceollin I biosynthesis. In this study, we identified four genes that encode isoflavonoid PTs, including (-)-glycinol 2-dimethylallyltransferase (G2DT), using homology-based in silico screening and biochemical characterization in yeast expression systems. Transcript analyses illustrated that changes in G2DT gene expression were correlated with the induction of glyceollins II, III, IV and V in elicitor-treated soybean cells and leaves, suggesting its involvement in glyceollin biosynthesis. Moreover, the genomic signatures of these PT genes revealed that G4DT and G2DT are paralogs derived from whole-genome duplications of the soybean genome, whereas other PT genes [isoflavone dimethylallyltransferase 1 (IDT1) and IDT2] were derived via local gene duplication on soybean chromosome 11.
Collapse
Affiliation(s)
- Keisuke Yoneyama
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| | - Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880 Japan
| |
Collapse
|
10
|
Analysis of ginsenoside content, functional genes involved in ginsenosides biosynthesis, and activities of antioxidant enzymes in Panax quinquefolium L. adventitious roots by fungal elicitors. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2770-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Li J, Wang J, Wu X, Liu D, Li J, Li J, Liu S, Gao W. Jasmonic acid and methyl dihydrojasmonate enhance saponin biosynthesis as well as expression of functional genes in adventitious roots of Panax notoginseng F.H. Chen. Biotechnol Appl Biochem 2016; 64:225-238. [PMID: 26777985 DOI: 10.1002/bab.1477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023]
Abstract
Panax notoginseng, an important herbal medicine, has wide uses for its bioactive compounds and health function. In this work, we compared the content of saponin in cultivation and adventitious root. The total content of saponins in adventitious root (8.48 mg⋅g-1 ) was found lower than in the native one (3-year-old) (34.34 mg⋅g-1 ). To enhance the content of bioactive compounds, we applied elicitors jasmonic acid (JA) and methyl dihydrojasmonate (MDJ) to the adventitious root culture. It was observed that the highest total content of saponins (71.94 mg⋅g-1 ) was achieved after treatment with 5 mg⋅L-1 JA, which was 2.09-fold higher than native roots and 8.45-fold higher than the control group. The findings from high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis showed that six new compounds were present after the treatment with the elicitors. Furthermore, we found that JA and MDJ significantly upregulated the expression of the geranyl diphosphate synthase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, dammarenediol synthase, and CYP716A47 and CYP716A53v2 (CYP450 enzyme) genes; downregulated the expression of the cycloartenol synthase gene; and increased superoxide dismutase and peroxidase activities.
Collapse
Affiliation(s)
- Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Xiaolei Wu
- Tianjin ZhongXin Pharmaceuticals R&D Center, Tianjin, People's Republic of China
| | - Dahui Liu
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:1116. [PMID: 26734026 PMCID: PMC4689856 DOI: 10.3389/fpls.2015.01116] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/25/2015] [Indexed: 05/19/2023]
Abstract
The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these "omics" approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.
Collapse
Affiliation(s)
- Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Lekha T Pazhamala
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Hyderabad, India
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India; School of Plant Biology and Institute of Agriculture, The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
13
|
Harrigan GG, Skogerson K, MacIsaac S, Bickel A, Perez T, Li X. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4690-7. [PMID: 25940152 DOI: 10.1021/acs.jafc.5b01069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
(1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.
Collapse
Affiliation(s)
- George G Harrigan
- †Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kirsten Skogerson
- †Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Susan MacIsaac
- §150 North Research Campus Drive, Kannapolis, North Carolina 28081, United States
| | - Anna Bickel
- †Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Tim Perez
- †Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Xin Li
- †Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
14
|
Aliferis KA, Faubert D, Jabaji S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 2014; 9:e111930. [PMID: 25369450 PMCID: PMC4219818 DOI: 10.1371/journal.pone.0111930] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.
Collapse
Affiliation(s)
- Konstantinos A. Aliferis
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
15
|
Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014; 159:253-66. [PMID: 25284151 DOI: 10.1016/j.cell.2014.09.008] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/13/2014] [Accepted: 09/03/2014] [Indexed: 11/23/2022]
Abstract
To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.
Collapse
|
16
|
Changes in L-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with Sclerotinia sclerotiorum. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSoybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.
Collapse
|
17
|
Sato D, Akashi H, Sugimoto M, Tomita M, Soga T. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 925:95-103. [PMID: 23523883 DOI: 10.1016/j.jchromb.2013.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/31/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Aphid infection reduces soybean (Glycine max [L.] Merr.) yield. Consequently, cultivation of aphid-resistant strains is a promising approach to pest control, and understanding the resistance mechanism is of importance. Here, we characterized the resistance of soybeans to foxglove aphid, Aulacorthum solani Kaltenbach, at the metabolite level. First, we evaluated aphid mortality and settlement rates on the leaves of two soybean strains, 'Tohoku149' and 'Suzuyutaka', and found that the former had strong resistance soon after introduction of the aphids. The metabolomic response to aphid introduction was analyzed using capillary electrophoresis-time-of-flight mass spectrometry. We found the following three features in the profiles: (1) concentrations of citrate, amino acids, and their intermediates were intrinsically higher for Tohoku149 than Suzuyutaka, (2) concentrations of several metabolites producing secondary metabolites, such as flavonoids and alkaloids, drastically changed 6h after aphid introduction, and (3) concentrations of TCA cycle metabolites increased in Tohoku149 48 h after aphid introduction. We also profiled free amino acids in aphids reared on both soybean strains and under starvation, and found that the profile of the aphids on Tohoku149 was similar to that of the starved aphids, but different to that of aphids on Suzuyutaka. These tests confirmed that aphids suck phloem sap even from Tohoku149. This study demonstrates the metabolomic profiles of both soybean strains and aphids, which will contribute to the molecular level understanding of mechanisms of soybean resistance to aphids.
Collapse
Affiliation(s)
- Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan.
| | | | | | | | | |
Collapse
|
18
|
Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013; 339:548-54. [PMID: 23363771 PMCID: PMC3667500 DOI: 10.1126/science.1229000] [Citation(s) in RCA: 859] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor.
Collapse
Affiliation(s)
- Michelle I. Smith
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tanya Yatsunenko
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Mark J. Manary
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63108, USA and the Departments of Community Health, and Pediatrics and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
- USDA Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Indi Trehan
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63108, USA and the Departments of Community Health, and Pediatrics and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Rajhab Mkakosya
- Department of Microbiology, College of Medicine, University of Malawi, P/B 360, Chichiri, Blantyre 3, Malawi
| | - Jiye Cheng
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew L. Kau
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22904, USA
| | - Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22904, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Jia V. Li
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Elaine Holmes
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Jeremy Nicholson
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Dan Knights
- Department of Computer Science, Univ. of Colorado, Boulder, CO 80309, USA
- Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Luke K. Ursell
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Computer Science, Univ. of Colorado, Boulder, CO 80309, USA
- Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, Univ. of Colorado, Boulder, CO 80309, USA
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
19
|
Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 2013; 39:333-47. [PMID: 23355015 PMCID: PMC3589630 DOI: 10.1007/s10886-013-0240-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 11/05/2022]
Abstract
For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances the probability of success. Generally, compounds with the same mode of action generate similar responses with a particular omics method. Stress and detoxification responses to phytotoxins can be much clearer than effects directly related to the target site. Clues to new modes of action must be validated with in vitro enzyme effects or genetic approaches. Thus far, the only new phytotoxin target site discovered with omics approaches (metabolomics and physionomics) is that of cinmethylin and structurally related 5-benzyloxymethyl-1,2-isoxazolines. These omics approaches pointed to tyrosine amino-transferase as the target, which was verified by enzyme assays and genetic methods. In addition to being a useful tool of mode of action discovery, omics methods provide detailed information on genetic and biochemical impacts of phytotoxins. Such information can be useful in understanding the full impact of natural phytotoxins in both agricultural and natural ecosystems.
Collapse
|
20
|
|
21
|
Simons R, Gruppen H, Bovee TFH, Verbruggen MA, Vincken JP. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 2012; 3:810-27. [PMID: 22684228 DOI: 10.1039/c2fo10290k] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than that of estradiol. Dietary intake of these so-called phytoestrogens has been associated with positive effects on menopausal complaints, hormone-related cancers, and osteoporosis. Therefore, phytoestrogens are used as nutraceuticals in functional foods or food supplements. Most of the isoflavonoids show agonistic activity towards both hERα and hERβ, the extent of which is modulated by the substitution pattern of their skeleton (i.e.-OH, -OCH(3)). Interestingly, substitutions consisting of a five-carbon prenyl group often seem to result in an antiestrogenic activity. There is growing evidence that the action of some of these prenylated isoflavonoids is tissue-specific, suggesting that they act like selective estrogen receptor modulators (SERMs), such as the well-known chemically synthesized raloxifene and tamoxifen. These so-called phytoSERMS might have high potential for realizing new food and pharma applications. In this review, the structural features of isoflavonoids (i.e. the kind of skeleton and prenylation (e.g. chain or pyran), position of the prenyl group on the skeleton, and the extent of prenylation (single, double)) are discussed in relation to their estrogenic activity. Anti-estrogenic and SERM activity of isoflavonoids was always associated with prenylation, but these activities did not seem to be confined to one particular kind/position of prenylation or isoflavonoid subclass. Few estrogens with agonistic activity were prenylated, but these were not tested for antagonistic activity; possibly, these molecules will turn out to be phytoSERMs as well. Furthermore, the data on the dietary occurrence, bioavailability and metabolism of prenylated isoflavonoids are discussed.
Collapse
Affiliation(s)
- Rudy Simons
- Laboratory of Food Chemistry, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
22
|
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM. Leveraging proteomics to understand plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2012; 3:44. [PMID: 22645586 PMCID: PMC3355735 DOI: 10.3389/fpls.2012.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 05/20/2023]
Abstract
Understanding the interactions of plants with beneficial and pathogenic microbes is a promising avenue to improve crop productivity and agriculture sustainability. Proteomic techniques provide a unique angle to describe these intricate interactions and test hypotheses. The various approaches for proteomic analysis generally include protein/peptide separation and identification, but can also provide quantification and the characterization of post-translational modifications. In this review, we discuss how these techniques have been applied to the study of plant-microbe interactions. We also present some areas where this field of study would benefit from the utilization of newly developed methods that overcome previous limitations. Finally, we reinforce the need for expanding, integrating, and curating protein databases, as well as the benefits of combining protein-level datasets with those from genetic analyses and other high-throughput large-scale approaches for a systems-level view of plant-microbe interactions.
Collapse
Affiliation(s)
| | - Kari L. Forshey
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- Department of Genetics, University of Wisconsin MadisonMadison, WI, USA
| | - Paul A. Grimsrud
- Department of Biochemistry, University of Wisconsin MadisonMadison, WI, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin MadisonMadison, WI, USA
- *Correspondence: Jean-Michel Ané, Department of Agronomy, University of Wisconsin Madison, 1575 Linden Drive, Madison, WI 53706, USA. e-mail:
| |
Collapse
|