1
|
Brooks L, Ryan M, McCosham E, Loganathan D. Further Investigation Into an Environmental Source for Aminorex. Drug Test Anal 2024. [PMID: 39696754 DOI: 10.1002/dta.3820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/20/2024]
Abstract
In 2009, levamisole was identified as a source for several aminorex positives reported in postrace equine samples in Canada. Since then, unexplained detections of aminorex continue to be identified in equine samples where there is no evidence to link these detections to a levamisole administration. Previous studies identified a compound named barbarin in some species of plants from the Brassicaceae family and suggested that barbarin may be a possible precursor for aminorex. The objectives of this study were to (1) investigate the link between barbarin and aminorex and (2) identify other biomarkers of plant origin. Methods were developed and validated for the detection of aminorex, barbarin, glucobarbarin, and other associated compounds. Aminorex was administered to one horse, and barbarin was not detected in any plasma and urine samples. Barbarea stricta and Barbarea orthoceras were administered to two horses, and aminorex was detected in all plasma and urine samples collected. Barbarin was detected in some plasma but not in urine samples. Resedine was observed in retrospective examination of chromatograms of the plant material and from all plants postadministration plasma and urine samples from the two horses. Resedine was administered to one horse and was detected in plasma and urine samples, but aminorex was only detected in urine samples. These results provide evidence that resedine is an intermediary compound between barbarin and aminorex in horses and that resedine can be used as a biomarker to eliminate the reporting of aminorex positives originating from the ingestion of plants from the Brassicaceae family.
Collapse
Affiliation(s)
- Lydia Brooks
- Agriculture & Agri Food Canada, Canadian Pari-Mutuel Agency Research & Reference Laboratory, Ottawa, Ontario, Canada
| | - Michael Ryan
- Agriculture & Agri Food Canada, Canadian Pari-Mutuel Agency Research & Reference Laboratory, Ottawa, Ontario, Canada
| | - Erin McCosham
- Agriculture & Agri Food Canada, Canadian Pari-Mutuel Agency Research & Reference Laboratory, Ottawa, Ontario, Canada
| | - Devan Loganathan
- Forensic Equine Drug Testing, Bureau Veritas Laboratories, Burnaby, British Columbia, Canada
| |
Collapse
|
2
|
Jeong S, Schütz V, Demir F, Preusche M, Huesgen P, Bigler L, Kovacic F, Gutbrod K, Dörmann P, Schulz M. Cyclic Isothiocyanate Goitrin Impairs Lotus japonicus Nodulation, Affects the Proteomes of Nodules and Free Mesorhizobium loti, and Induces the Formation of Caffeic Acid Derivatives in Bacterial Cultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:2897. [PMID: 39458844 PMCID: PMC11511026 DOI: 10.3390/plants13202897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission.
Collapse
Affiliation(s)
- Seungwoo Jeong
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Vadim Schütz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Matthias Preusche
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrueck, 49090 Osnabrueck, Germany
| | - Pitter Huesgen
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Katharina Gutbrod
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Peter Dörmann
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Margot Schulz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| |
Collapse
|
3
|
Cárdenas PD, Landtved JP, Larsen SH, Lindegaard N, Wøhlk S, Jensen KR, Pattison DI, Burow M, Bak S, Crocoll C, Agerbirk N. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. PHYTOCHEMISTRY 2023; 213:113742. [PMID: 37269935 DOI: 10.1016/j.phytochem.2023.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.
Collapse
Affiliation(s)
- Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jonas P Landtved
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Signe H Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nicolai Lindegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sebastian Wøhlk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Glucosinolates in Wild-Growing Reseda spp. from Croatia. Molecules 2023; 28:molecules28041753. [PMID: 36838744 PMCID: PMC9959328 DOI: 10.3390/molecules28041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL profiles of three Resedaceae species, Reseda alba, R. lutea, and R. phyteuma, were examined qualitatively and quantitatively with respect to their desulfo-counterparts utilizing UHPLC-DAD-MS/MS. In addition, NMR analysis of isolated 2-hydroxy-2-methylpropyl desulfoGSL (d31) was performed. Three Phe-derived GSLs were found in R. lutea, including glucotropaeolin (11) (0.6-106.69 mol g-1 DW), 2-(α-L-ramnopyranosyloxy)benzyl GSL (109) (8.10-57.89 μmol g-1 DW), glucolepigramin (22) (8.66 μmol g-1 DW in flower), and Trp-derived glucobrassicin (43) (0.76-5.92 μmol g-1 DW). The Phe-derived GSLs 109 (50.79-164.37 μmol g-1 DW), gluconasturtiin (105) (1.97 μmol g-1 DW), and 11 (tr), as well as the Trp-derived GSL glucobrassicin (43) (3.13-11.26 μmol g-1 DW), were all present in R. phyteuma. R. alba also contained Phe-derived 105 (0.10-107.77 μmol g-1 DW), followed by Trp-derived 43 (0.85-3.50 μmol g-1 DW) and neoglucobrassicin (47) (0.23-2.74 μmol g-1 DW). However, regarding the GSLs in R. alba, which originated from Leu biosynthesis, 31 was the major GSL (6.48 to 52.72 μmol g-1 DW) and isobutyl GSL (62) was the minor GSL (0.13 to 1.13 μmol g-1 DW). The discovered Reseda profiles, along with new evidence provided by GSL characterizations, were studied in the context of the current knowledge on GLSs in the Resedaceae family. With the exception of R. alba, the aliphatic GSLs of which were outliers among the Resedaceae species studied, this family typically contains GSLs derived primarily from Trp and Phe biosynthesis, which modifications resulted in GSLs unique to this family, implying presence of the specific genes. responsible for this diversification.
Collapse
|
5
|
Andernach L, Witzel K, Hanschen FS. Glucosinolate-derived amine formation in Brassica oleracea vegetables. Food Chem 2022; 405:134907. [DOI: 10.1016/j.foodchem.2022.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
6
|
Abstract
Specialized (secondary) metabolites have been largely considered bioactive “end” products synthesized from primary metabolites. We report biochemical evidence of a retrograde flow of sulfur atoms from specialized metabolites (glucosinolates) to primary metabolites (cysteine) in Arabidopsis thaliana. The reaction begins with glucosinolate breakdown by specific beta-glucosidases, which facilitates sulfur deficiency tolerance, demonstrating a physiological advantage of utilizing specialized metabolites as nutrient reservoirs. Our findings address the breadth of turnover systems in nature and enhance our understanding of how plants coordinate primary and specialized metabolism under different environmental conditions. Specialized (secondary) metabolic pathways in plants have long been considered one-way routes of leading primary metabolite precursors to bioactive end products. Conversely, endogenous degradation of such “end” products in plant tissues has been observed following environmental stimuli, including nutrition stress. Therefore, it is of general interest whether specialized metabolites can be reintegrated into primary metabolism to recover the invested resources, especially in the case of nitrogen- or sulfur-rich compounds. Here, we demonstrate that endogenous glucosinolates (GLs), a class of sulfur-rich plant metabolites, are exploited as a sulfur source by the reallocation of sulfur atoms to primary metabolites such as cysteine in Arabidopsis thaliana. Tracer experiments using 34S- or deuterium-labeled GLs depicted the catabolic processing of GL breakdown products in which sulfur is mobilized from the thioglucoside group in GL molecules, potentially accompanied by the release of the sulfate group. Moreover, we reveal that beta-glucosidases BGLU28 and BGLU30 are the major myrosinases that initiate sulfur reallocation by hydrolyzing particular GL species, conferring sulfur deficiency tolerance in A. thaliana, especially during early development. The results delineate the physiological function of GL as a sulfur reservoir, in addition to their well-known functions as defense chemicals. Overall, our findings demonstrate the bidirectional interaction between primary and specialized metabolism, which enhances our understanding of the underlying metabolic mechanisms via which plants adapt to their environments.
Collapse
|
7
|
Bell L, Kitsopanou E, Oloyede OO, Lignou S. Important Odorants of Four Brassicaceae Species, and Discrepancies between Glucosinolate Profiles and Observed Hydrolysis Products. Foods 2021; 10:foods10051055. [PMID: 34064846 PMCID: PMC8150828 DOI: 10.3390/foods10051055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is widely accepted that the distinctive aroma and flavour traits of Brassicaceae crops are produced by glucosinolate (GSL) hydrolysis products (GHPs) with other non-GSL derived compounds also reported to contribute significantly to their aromas. This study investigated the flavour profile and glucosinolate content of four Brassicaceae species (salad rocket, horseradish, wasabi, and watercress). Solid-phase microextraction followed by gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to determine the volatile compounds and odorants present in the four species. Liquid chromatography-mass spectrometry was used to determine the glucosinolate composition, respectively. A total of 113 compounds and 107 odour-active components were identified in the headspace of the four species. Of the compounds identified, 19 are newly reported for ‘salad’ rocket, 26 for watercress, 30 for wasabi, and 38 for horseradish, marking a significant step forward in understanding and characterising aroma generation in these species. There were several non-glucosinolate derived compounds contributing to the ‘pungent’ aroma profile of the species, indicating that the glucosinolate-derived compounds are not the only source of these sensations in Brassicaceae species. Several discrepancies between observed glucosinolates and hydrolysis products were observed, and we discuss the implications of this for future studies.
Collapse
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6AR, UK;
| | - Eva Kitsopanou
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
| | - Omobolanle O. Oloyede
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
| | - Stella Lignou
- Sensory Science Centre, Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (E.K.); (O.O.O.)
- Correspondence: ; Tel.: +44-(0)118-378-8717
| |
Collapse
|
8
|
Agerbirk N, Hansen CC, Olsen CE, Kiefer C, Hauser TP, Christensen S, Jensen KR, Ørgaard M, Pattison DI, Lange CBA, Cipollini D, Koch MA. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates. PHYTOCHEMISTRY 2021; 185:112658. [PMID: 33744557 DOI: 10.1016/j.phytochem.2021.112658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stina Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Agerbirk N, Hansen CC, Kiefer C, Hauser TP, Ørgaard M, Asmussen Lange CB, Cipollini D, Koch MA. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps. PHYTOCHEMISTRY 2021; 185:112668. [PMID: 33743499 DOI: 10.1016/j.phytochem.2021.112668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
We review glucosinolate (GSL) diversity and analyze phylogeny in the crucifer tribe Cardamineae as well as selected species from Brassicaceae (tribe Brassiceae) and Resedaceae. Some GSLs occur widely, while there is a scattered distribution of many less common GSLs, tentatively sorted into three classes: ancient, intermediate and more recently evolved. The number of conclusively identified GSLs in the tribe (53 GSLs) constitute 60% of all GSLs known with certainty from any plant (89 GSLs) and apparently unique GSLs in the tribe constitute 10 of those GSLs conclusively identified (19%). Intraspecific, qualitative GSL polymorphism is known from at least four species in the tribe. The most ancient GSL biosynthesis in Brassicales probably involved biosynthesis from Phe, Val, Leu, Ile and possibly Trp, and hydroxylation at the β-position. From a broad comparison of families in Brassicales and tribes in Brassicaceae, we estimate that a common ancestor of the tribe Cardamineae and the family Brassicaceae exhibited GSL biosynthesis from Phe, Val, Ile, Leu, possibly Tyr, Trp and homoPhe (ancient GSLs), as well as homologs of Met and possibly homoIle (intermediate age GSLs). From the comparison of phylogeny and GSL diversity, we also suggest that hydroxylation and subsequent methylation of indole GSLs and usual modifications of Met-derived GSLs (formation of sulfinyls, sulfonyls and alkenyls) occur due to conserved biochemical mechanisms and was present in a common ancestor of the family. Apparent loss of homologs of Met as biosynthetic precursors was deduced in the entire genus Barbarea and was frequent in Cardamine (e.g. C. pratensis, C. diphylla, C. concatenata, possibly C. amara). The loss was often associated with appearance of significant levels of unique or rare GSLs as well as recapitulation of ancient types of GSLs. Biosynthetic traits interpreted as de novo evolution included hydroxylation at rare positions, acylation at the thioglucose and use of dihomoIle and possibly homoIle as biosynthetic precursors. Biochemical aspects of the deduced evolution are discussed and testable hypotheses proposed. Biosyntheses from Val, Leu, Ile, Phe, Trp, homoPhe and homologs of Met are increasingly well understood, while GSL biosynthesis from mono- and dihomoIle is poorly understood. Overall, interpretation of known diversity suggests that evolution of GSL biosynthesis often seems to recapitulate ancient biosynthesis. In contrast, unprecedented GSL biosynthetic innovation seems to be rare.
Collapse
Affiliation(s)
- Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christiane Kiefer
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Thure P Hauser
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Conny Bruun Asmussen Lange
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Don Cipollini
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insect pests represent a major global challenge to important agricultural crops. Insecticides are often applied to combat such pests, but their use has caused additional challenges such as environmental contamination and human health issues. Over millions of years, plants have evolved natural defense mechanisms to overcome insect pests and pathogens. One such mechanism is the production of natural repellents or specialized metabolites like glucosinolates. There are three types of glucosinolates produced in the order Brassicales: aliphatic, indole, and benzenic glucosinolates. Upon insect herbivory, a “mustard oil bomb” consisting of glucosinolates and their hydrolyzing enzymes (myrosinases) is triggered to release toxic degradation products that act as insect deterrents. This review aims to provide a comprehensive summary of glucosinolate biosynthesis, the “mustard oil bomb”, and how these metabolites function in plant defense against pathogens and insects. Understanding these defense mechanisms will not only allow us to harness the benefits of this group of natural metabolites for enhancing pest control in Brassicales crops but also to transfer the “mustard oil bomb” to non-glucosinolate producing crops to boost their defense and thereby reduce the use of chemical pesticides.
Collapse
|
11
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
12
|
Pagnotta E, Montaut S, Matteo R, Rollin P, Nuzillard JM, Lazzeri L, Bagatta M. Glucosinolates in Reseda lutea L.: Distribution in plant tissues during flowering time. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Prieto MA, López CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:305-350. [PMID: 31445598 DOI: 10.1016/bs.afnr.2019.02.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Glucosinolates are a large group of plant secondary metabolites with nutritional effects and biologically active compounds. Glucosinolates are mainly found in cruciferous plants such as Brassicaceae family, including common edible plants such as broccoli (Brassica oleracea var. italica), cabbage (B. oleracea var. capitata f. alba), cauliflower (B. oleracea var. botrytis), rapeseed (Brassica napus), mustard (Brassica nigra), and horseradish (Armoracia rusticana). If cruciferous plants are consumed without processing, myrosinase enzyme will hydrolyze the glucosinolates to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. On the other hand, when cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. This review paper summarizes the glucosinolate molecular breakdown, their genetic aspects from biosynthesis to precursors, their bioavailability (assimilation, absorption, and elimination of these molecules), their sensory properties, identified healthy and adverse effects, as well as the impact of processing on their bioavailability.
Collapse
Affiliation(s)
- M A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Cecilia Jiménez López
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, Vigo, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain.
| |
Collapse
|
15
|
Sugiyama R, Hirai MY. Atypical Myrosinase as a Mediator of Glucosinolate Functions in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1008. [PMID: 31447873 PMCID: PMC6691170 DOI: 10.3389/fpls.2019.01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/18/2019] [Indexed: 05/04/2023]
Abstract
Glucosinolates (GLSs) are a well-known class of specialized plant metabolites, distributed mostly in the order Brassicales. A vast research field in basic and applied sciences has grown up around GLSs owing to their presence in important agricultural crops and the model plant Arabidopsis thaliana, and their broad range of bioactivities beneficial to human health. The major purpose of GLSs in plants has been considered their function as a chemical defense against predators. GLSs are physically separated from a specialized class of beta-thioglucosidases called myrosinases, at the tissue level or at the single-cell level. They are brought together as a consequence of tissue damage, primarily triggered by herbivores, and their interaction results in the release of toxic volatile chemicals including isothiocyanates. In addition, recent studies have suggested that plants may adopt other strategies independent of tissue disruption for initiating GLS breakdown to cope with certain biotic/abiotic stresses. This hypothesis has been further supported by the discovery of an atypical class of GLS-hydrolyzing enzymes possessing features that are distinct from those of the classical myrosinases. Nevertheless, there is only little information on the physiological importance of atypical myrosinases. In this review, we focus on the broad diversity of the beta-glucosidase subclasses containing known atypical myrosinases in A. thaliana to discuss the hypothesis that numerous members of these subclasses can hydrolyze GLSs to regulate their diverse functions in plants. Also, the increasingly broadening functional repertoires of known atypical/classical myrosinases are described with reference to recent findings. Assessment of independent insights gained from A. thaliana with respect to (1) the phenotype of mutants lacking genes in the GLS metabolic/breakdown pathways, (2) fluctuation in GLS contents/metabolism under specific conditions, and (3) the response of plants to exogenous GLSs or their hydrolytic products, will enable us to reconsider the physiological importance of GLS breakdown in particular situations, which is likely to be regulated by specific beta-glucosidases.
Collapse
|
16
|
Müller C, Schulz M, Pagnotta E, Ugolini L, Yang T, Matthes A, Lazzeri L, Agerbirk N. The Role of the Glucosinolate-Myrosinase System in Mediating Greater Resistance of Barbarea verna than B. vulgaris to Mamestra brassicae Larvae. J Chem Ecol 2018; 44:1190-1205. [PMID: 30218254 DOI: 10.1007/s10886-018-1016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/26/2023]
Abstract
We investigated the influences of two structurally similar glucosinolates, phenethylglucosinolate (gluconasturtiin, NAS) and its (S)-2-hydroxyl derivative glucobarbarin (BAR), as well as their hydrolysis products on larvae of the generalist Mamestra brassicae (Lepidoptera: Noctuidae). Previous results suggested a higher defensive activity of BAR than NAS based on resistance toward M. brassicae larvae of natural plant genotypes of Barbarea vulgaris R. Br. (Brassicaceae) dominated by BAR. In the present study, the hypothesis of a higher defensive activity of BAR than NAS was tested by comparing two Barbarea species similarly dominated either by BAR or by NAS and by testing effects of isolated BAR and NAS on larval survival and feeding preferences. Larvae reared on leaf disks of B. verna (Mill.) Asch. had a lower survival than those reared on B. vulgaris P- and G-chemotypes. Leaves of B. verna were dominated by NAS, whereas B. vulgaris chemotypes were dominated by BAR or its epimer. In addition, B. verna leaves showed a threefold higher activity of the glucosinolate-activating myrosinase enzymes. The main product of NAS from breakdown by endogenous enzymes including myrosinases ("autolysis") in B. verna leaves was phenethyl isothiocyanate, while the main products of BAR in autolyzed B. vulgaris leaves were a cyclized isothiocyanate product, namely an oxazolidine-2-thione, and a downstream metabolite, an oxazolidin-2-one. The glucosinolates BAR and NAS were isolated and offered to larvae on disks of cabbage. Both glucosinolates exerted similar negative effects on larval survival but effects of NAS tended to be more detrimental. Low concentrations of BAR, but not of NAS, stimulated larval feeding, whereas high BAR concentrations acted deterrent. NAS only tended to be deterrent at the highest concentration, but the difference was not significant. Recoveries of NAS and BAR on cabbage leaf disks were similar, and when hydrolyzed by mechanical leaf damage, the same isothiocyanate-type products as in Barbarea plants were formed with further conversion of BAR to cyclic products, (R)-5-phenyloxazolidine-2-thione [(R)-barbarin] and (R)-5-phenyloxazolidin-2-one [(R)-resedine]. We conclude that a previously proposed generally higher defensive activity of BAR than NAS to M. brassicae larvae could not be confirmed. Indeed, the higher resistance of NAS-containing B. verna plants may be due to a combined effect of rather high concentrations of NAS and a relatively high myrosinase activity or other plant traits not investigated yet.
Collapse
Affiliation(s)
- Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Monique Schulz
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Eleonora Pagnotta
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Luisa Ugolini
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Ting Yang
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Annemarie Matthes
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Luca Lazzeri
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Niels Agerbirk
- Copenhagen Plant Science Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|