1
|
Shevchenko A, Аkhelova A, Nokerbek S, Kaldybayeva A, Sagyndykova L, Raganina K, Dossymbekova R, Meldebekova A, Amirkhanova A, Ikhsanov Y, Sauranbayeva G, Kamalova M, Toregeldieva A. Phytochemistry, Pharmacological Potential, and Ethnomedicinal Relevance of Achillea nobilis and Its Subspecies: A Comprehensive Review. Molecules 2025; 30:2460. [PMID: 40509346 PMCID: PMC12156132 DOI: 10.3390/molecules30112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 06/18/2025] Open
Abstract
Achillea nobilis and its subspecies (A. nobilis subsp. neilreichii and A. nobilis subsp. sipylea) have been traditionally used in various ethnomedical systems across Eurasia. However, comprehensive studies on their phytochemical composition and pharmacological properties are still insufficient. This review aims to provide a critical synthesis of current knowledge regarding the botanical characteristics, geographic distribution, traditional applications, chemical constituents, and pharmacological effects of A. nobilis A structured search was conducted using eight scientific platforms, including Scopus, PubMed, Web of Science, Google Scholar, Science.gov, ScienceDirect, JSTOR, and BASE. Keywords related to phytochemistry, pharmacology, and ethnomedicine were applied, and a total of 28,000 records were initially retrieved. After a multi-stage screening process based on inclusion and exclusion criteria, 167 peer-reviewed publications from 1952 to 2023 were selected for detailed evaluation. Findings reveal a diverse range of bioactive compounds, such as flavonoids, monoterpenes, sesquiterpenes, and sesquiterpene lactones, which demonstrate antioxidant, antimicrobial, anti-inflammatory, antinociceptive, antispasmodic, and anticonvulsant activities. Most studies have focused on aerial parts and water-based extracts, while the root chemistry and organ-specific metabolite profiles remain largely unexplored. This review highlights the therapeutic potential of A. nobilis and underscores the need for future studies using multi-omics and advanced analytical techniques to support its development in pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Anastassiya Shevchenko
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan; (A.S.); (M.K.); (A.T.)
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Aiman Аkhelova
- Department of Pharmaceutical and Toxicological Chemistry, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (A.K.); (G.S.)
| | - Shamshabanu Nokerbek
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan;
| | - Aigul Kaldybayeva
- Department of Pharmaceutical and Toxicological Chemistry, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (A.K.); (G.S.)
| | - Lyazzat Sagyndykova
- Department of Pharmaceutical Disciplines, Astana Medical University, Saryarqa Ave., 33, Astana 010000, Kazakhstan;
| | - Karlygash Raganina
- Department of Pharmaceutical Technology, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan;
| | - Raushan Dossymbekova
- Department of Biochemistry, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan;
| | - Aliya Meldebekova
- Department of Biotechnology, Faculty of Biology and biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Akerke Amirkhanova
- Department of Pharmaceutical Technology, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan;
| | - Yerbol Ikhsanov
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Gulzhan Sauranbayeva
- Department of Pharmaceutical and Toxicological Chemistry, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (A.K.); (G.S.)
- Department of Biotechnology and General Chemical Engineering, School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan
| | - Manshuk Kamalova
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan; (A.S.); (M.K.); (A.T.)
| | - Aidana Toregeldieva
- Higher School of Medicine, Al-Farabi Kazakh National University, Tole-bi 96, Almaty 050040, Kazakhstan; (A.S.); (M.K.); (A.T.)
| |
Collapse
|
2
|
Mączka W, Juchniewicz K, Galek R, Grabarczyk M, Wińska K. Biotransformation of Carvone by Hylocereus undatus Shoots. Chem Biodivers 2025:e00475. [PMID: 40393447 DOI: 10.1002/cbdv.202500475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
The aim of the study was to assess the potential of in vitro cultures of Hylocereus undatus (pitaya; dragon fruit) to biotransform carvone and determine the products. Pitaya plants were used for their rich enzymatic system capable of complex biochemical reactions. Carvone enantiomers were chosen as model compounds. The biotransformation was conducted in liquid phosphate buffer under controlled laboratory conditions for two days. Samples were taken at 24 and 48 h and analyzed using gas chromatography. The reaction yield in both cases was approximately 17%. The reaction pathway for both isomers differed from previous reports. In both cases, the carbonyl group was first reduced, followed by the reduction of the double bond. The main transformation products of (R)-(-)-carvone included n-dihydrocarveol (13.47%), with minor amounts of trans-carveol (2.09%) and iso-dihydrocarveol (0.71%). Additionally, for the (S)-isomer, trans-dihydrocarvone formation was observed, indicating complex metabolic pathways. Biotransformation of the (S)-enantiomer resulted in a mixture of trans-carveol (0.64%), cis-carveol (6.43%), dihydrocarveol (5.74%), and trans-dihydrocarvone (4.43%). This study is the first to use pitaya for organic compound transformation, bridging research on tropical and temperate plants.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Kamil Juchniewicz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Science, Wroclaw, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
3
|
Haider L, Blank-Landeshammer B, Reiter N, Heckmann M, Iken M, Weghuber J, Röhrl C. Enhanced in-vitro bioavailability of curcumin, lutein and isoflavones through interaction with spearmint (Mentha spicata) via its bioactive component (R)-(-)-carvone. J Nutr Biochem 2025; 139:109868. [PMID: 39984059 DOI: 10.1016/j.jnutbio.2025.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Numerous dietary phytochemicals such as curcumin, lutein and isoflavones are associated with health beneficial activities, however their application is often limited by their low bioavailability. Therefore, bioenhancers represent a feasible approach to increase the absorption efficiency of bioactive compounds. Here, we combined uptake and transport studies in differentiated Caco-2 cells with high resolution analytics and fractionation to evaluate the impact of spearmint (Mentha spicata) on the cellular uptake of curcumin. Additionally, we utilized mechanistic studies in native and overexpressing cell systems to assess P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) efflux transporter activity as well as in-silico molecular docking simulations. We found significantly elevated intracellular curcuminoid levels mediated by spearmint. Fractionation and functional assays identified (R)-(-)-carvone as a putative candidate for the biologically active compound mediating increased curcumin uptake via BCRP inhibition. Inhibition of P-gp-mediated efflux might additionally be involved. Molecular docking simulations suggest a common binding site of curcumin and (R)-(-)-carvone in BCRP. Further, spearmint significantly increased cellular uptake of lutein and transintestinal transport of isoflavones in-vitro. In summary, spearmint was identified as a novel bioenhancer for curcumin, lutein and isoflavones. Our findings suggest that spearmint increases bioavailability of a wide range of nutrients and drugs at least partially due to interference with BCRP via its active compound (R)-(-)-carvone.
Collapse
Affiliation(s)
- Lisa Haider
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Bernhard Blank-Landeshammer
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria; Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Nadine Reiter
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Mara Heckmann
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
| | - Marcus Iken
- PM International AG, 5445, Schengen, Luxembourg
| | - Julian Weghuber
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Wels, Austria; Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.
| | - Clemens Röhrl
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria.
| |
Collapse
|
4
|
Mołdoch J, Agacka-Mołdoch M, Jóźwiak G, Wojtunik-Kulesza K. Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery. Molecules 2025; 30:1480. [PMID: 40286078 PMCID: PMC11990750 DOI: 10.3390/molecules30071480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
One of the most common strategies used in drug design is the molecular scaffold approach, which combines traditional medicine based on natural active compounds derived from plants with modern synthetic drug development. Designing new compounds based on natural skeletons enables extensive modifications of both bioavailability and biological activity. An excellent example of a natural molecular scaffold is the monoterpenes group, which serves as a core structure for building more complex molecules by attaching various chemical groups. Their ability to interact with biological targets, combined with structural versatility, makes them promising molecular scaffolds in pharmaceutical research and green chemistry applications. This review paper focuses on selected monoterpenes (carvacrol, carvone, citral, menthol, menthone, β-pinene, thymol, and verbenone), which are frequently used as molecular scaffolds. The newly designed derivatives exhibit various biological activities, including anticancer, antibacterial, antiviral, neuroprotective, and many others.
Collapse
Affiliation(s)
- Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland;
| | - Monika Agacka-Mołdoch
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| | - Grzegorz Jóźwiak
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | | |
Collapse
|
5
|
Silva PIC, Pantoja LVPS, Conceição BC, Barbosa MEO, Soares LFR, Prediger RD, Fontes-Júnior EA, Freitas JJS, Maia CSF. Unraveling the Neuropharmacological Properties of Lippia alba: A Scientometric Approach. Pharmaceuticals (Basel) 2025; 18:420. [PMID: 40143196 PMCID: PMC11945933 DOI: 10.3390/ph18030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Lippia alba (Verbenaceae) is popularly known as lemon balm or false melissa and is one of the most widely used plants in traditional medicine in the Amazon region. In this study, we conducted a comprehensive bibliometric analysis, with conventional metrics associated with a critical review based on the neuropharmacological activities, to identify potential medical applications and also gaps in knowledge that require further investigation. Fifty-two articles were included according to the eligibility criteria. In the country analysis, Brazil emerged as the main contributor to research with the highest number of publications and citations. Notably, nine of the ten main research institutions are Brazilian, with the Universidade Federal de Santa Maria standing out with 761 citations. The keywords "anesthesia", "Lippia alba", and "essential oil" were the most frequent, highlighting their importance in this field. Essential oils are the most common type of extraction, which linalool, citral, geraniol, carvone, and limonene were the main constituents identified. According to the type of study, preclinical studies presented the highest frequency, primarily through fish experimental models. The main neuropharmacological activities identified were sedative-anesthetic, anxiolytic, anticonvulsant, and analgesic, with mechanisms of action via the GABAergic pathway. This bibliometric review provided new evidence reinforcing the potential of L. alba as a promising alternative for the treatment of neuropsychiatric disorders. It also highlighted existing knowledge gaps, mainly related to the comparison of the actions of the different chemotypes of the species and the investigation of the mechanisms underlying their neuropharmacological properties. Additionally, there is a lack of knowledge in other emerging areas related to the central nervous system, such as mood and cognitive disorders.
Collapse
Affiliation(s)
- Pedro I. C. Silva
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
- Centro de Estudos Pré-Clínicos da Amazônia, Universidade do Estado do Pará, Belém 66087-662, PA, Brazil
| | - Lucas V. P. S. Pantoja
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Brenda C. Conceição
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (P.I.C.S.); (L.V.P.S.P.); (B.C.C.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Marta E. O. Barbosa
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66075-900, PA, Brazil
| | - Luiza F. R. Soares
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| | - Rui Daniel Prediger
- Laboratório Experimental de Doenças Neurodegenerativas, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88049-900, SC, Brazil;
| | - Enéas A. Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| | - Jofre J. S. Freitas
- Centro de Estudos Pré-Clínicos da Amazônia, Universidade do Estado do Pará, Belém 66087-662, PA, Brazil
| | - Cristiane S. F. Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-900, PA, Brazil; (M.E.O.B.); (L.F.R.S.); (E.A.F.-J.)
| |
Collapse
|
6
|
Wu Y, Liang M, Xian Y, Chen R, Hu J, Dai H, Liu C, Hou X. Dispersive liquid-liquid microextraction with a deep eutectic solvent coupled with GC-MS for the determination of chiral carvone in herbaceous plants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2171-2180. [PMID: 39960457 DOI: 10.1039/d4ay02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Carvone is an important flavoring substance and widely used in the food and chemical industries. Carvone has two optical isomers (L-carvone and D-carvone), which have different aroma characteristics. However, the green extraction of natural carvone and isolation of chiral carvone present challenges, leading to its limited application. In this study, a deep eutectic solvent (DES) was prepared and used as a green extraction solvent for the extraction of carvone from herbaceous plants, and then a chiral chromatography column combined with GC-MS was used for the separation and detection of L-carvone and D-carvone. Response surface methodology was used to optimize the extraction conditions including the volume of DES, extraction time and extraction temperature. The results showed that the extraction recoveries and intra-day precision (n = 6) were 83.5-101.3% and 3.2-6.1% when the volume of DES was 5 mL, and the extraction time and temperature were 25 min and 51 °C, respectively. The MLOD and MLOQ of L-carvone and D-carvone were 8.0 mg kg-1 and 25.0 mg kg-1, respectively. The real sample detection results revealed that about 235.8-1600.0 mg kg-1 of L-carvone was detected in Mentha spicata L., and 6658.5-9788.6 mg kg-1 of D-carvone in Anethum graveolens L. seeds. The established method can be an effective method for the detection of chiral carvone in herbaceous plants.
Collapse
Affiliation(s)
- Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Hang Dai
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Chenghao Liu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Collaborative Innovation Center for NQI-Quality Safety of Guangzhou, Guangzhou 511447, China.
| |
Collapse
|
7
|
de Oliveira DAB, Dos Santos Niculau E. Theoretical study of the formation of inclusion complexes with some terpenes using different solvating models. J Mol Model 2025; 31:95. [PMID: 39992416 DOI: 10.1007/s00894-025-06316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
CONTEXT Essential oil molecules have various nutritional and medical uses. However, their applications are limited by their low polarity and high volatility. Inclusion complexes provide a way to overcome these limitations. Cyclodextrins are cyclic oligosaccharides composed of macrocyclic rings of glucose units linked by α-1,4 glycosidic bonds, which are used to prepare inclusion complexes with essential oils. Experiments on the formation of inclusion complexes show that essential oil molecules can bind to cyclodextrins in various ways. Electronic structure calculations help to understand why some essential oil molecules bind more effectively than others in the formation of inclusion complexes with cyclodextrins. METHODS Our study employed theoretical calculations to investigate the interaction between beta-cyclodextrin and six essential oil molecules. The selected essential oil molecules were carvacrol, carvone, eugenol, limonene, p-cymene, and thymol. Molecular docking between the essential oil molecules and cyclodextrin resulted in both complexed structures and non-complexed structures, with some molecules positioned outside the cyclodextrin cavity. The interaction energies, calculated using the AutoDock Vina program, indicated that the complexed essential oil molecules exhibit the lowest energy. Electronic structure calculations were performed using the Gaussian16 program to analyze the structures obtained from the docking process. DFT calculations employing the ωB97XD functional to describe the inclusion complex and PM7 to describe the solvent model in the ONIOM approach revealed that molecules containing hydroxyl groups form hydrogen bonds with cyclodextrin, resulting in more stable structures compared to those lacking this functional group. Additionally, the use of explicit solvent facilitates the inclusion of essential oil molecules by altering the deformation energies of cyclodextrin. These theoretical results explain the advantage of using solvents in the preparation of experimental inclusion complexes.
Collapse
Affiliation(s)
- Daniel Augusto Barra de Oliveira
- Department of Chemistry, Federal University of North of Tocantins, Araguaína, Brazil.
- Department of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| | - Edenilson Dos Santos Niculau
- Department of Chemistry, Federal University of North of Tocantins, Araguaína, Brazil
- Department of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
8
|
Yao Y, Zhou C, Guo X, Ding J, Si T, Yang B. Preparation, characterization and heat release behavior of inclusion complexes formed between carvone or limonene and acyclic cucurbit[n]urils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:682-691. [PMID: 39279681 DOI: 10.1002/jsfa.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Carvone and limonene are naturally occurring monoterpenoids with unique aromas, making them valuable substances in synthetic fragrance production. However, their application is limited due to low stability and rapid volatilization. To address this challenge, host-guest complexes offer a promising solution. RESULTS In this study, two acyclic cucurbit[n]urils were synthesized to form inclusion complexes with carvone and limonene, aiming to enhance their thermal stability and achieve excellent heat release properties. The binding behavior of the complexes was investigated using NMR, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and molecular bonding analyses, confirming the formation of host-guest inclusion complexes. CONCLUSION Our study successfully prepared four inclusion complexes (M1/CA, M2/CA, M1/LI, M2/LI) and characterized them using NMR, XRD and FTIR techniques. These complexes exhibited a 1:1 stoichiometric ratio, and their binding constants were determined through fluorescence titration. The thermal controlled release experiment shows that the degree of carvone and limonene release is different with a change of temperature, indicating that the inclusion complexes have good thermally controlled release performance, and the thermal release retention rate has a certain correlation with KS value. The larger the KS value, the higher the thermal release retention rate of the inclusion complexes, the lower the volatilization of the inclusion complexes, the longer the retention time and the better the thermal stability. This study presents a novel approach for developing carvone- and limonene-based fragrances, expanding their application potential in various industries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Yao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chao Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xue Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jiawei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian Si
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Alberts A, Moldoveanu ET, Niculescu AG, Grumezescu AM. Nigella sativa: A Comprehensive Review of Its Therapeutic Potential, Pharmacological Properties, and Clinical Applications. Int J Mol Sci 2024; 25:13410. [PMID: 39769174 PMCID: PMC11677364 DOI: 10.3390/ijms252413410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Nigella sativa (NS) is an annual herb belonging to the Ranunculaceae family, also known as black cumin or black seed. This plant has been used since ancient times due to its therapeutic properties and has proven effective in gastrointestinal, respiratory, cardiovascular, infectious, and inflammatory conditions. In this review, the aim is to highlight the therapeutic effects of the plant known in Arab countries as "the plant that cures any disease", which are provided by the phytochemical compounds in its composition, such as thymoquinone, p-cymene, α-thujene, longifolene, β-pinene, α-pinene, and carvacrol. These compounds confer an antioxidant effect to the seeds, leading to a significant decrease in ROS and a potent anti-inflammatory effect. Also, in this review, the aim is to highlight that NS seeds may have a synergistic effect with other drugs, such as chemotherapeutic agents or antibiotics, which may lead to a reduction in the therapeutic dose, may have an improved effect, and could lead to overcoming obstacles such as drug resistance. The studies provided in this review showed that NS has the potential to be a therapeutic agent both as a monotherapy and as an adjuvant. Although there are studies demonstrating the therapeutic properties of NS, there is a need for much more extensive research and more clinical trials with clearly established objectives so that the mechanism of action of the active substances in NS is much better understood. With the data provided so far, NS can be used in food and drug production in small quantities and can be administered for short periods. Further investigations may lead to an understanding of the therapeutic profile and the most effective mode of administration, as well as a clearer perspective on the toxicological profile of NS.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
10
|
Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, Liu JZ. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chem X 2024; 23:101631. [PMID: 39130723 PMCID: PMC11315122 DOI: 10.1016/j.fochx.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
Collapse
Affiliation(s)
| | | | | | - Xiao-Li Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Ju-Zhao Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| |
Collapse
|
11
|
da Silva Frazão O, Brito MC, Macêdo CAF, Ribeiro TF, França JMG, Carvalho BAG, de Queiroz DB, Menezes PMN, de Almeida Ribeiro FP, Silva FS. (-)-Carvone Inhibits Oxytocin-induced Writhing Via Uterine Relaxation in Rodents. Reprod Sci 2024; 31:3039-3048. [PMID: 39090333 DOI: 10.1007/s43032-024-01663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
(-)-Carvone, a ketone monoterpene, is the main component of essential oils from several medicinal plants and has been reported to have anti-arthriric, anticonvulsive, antidiabetic, anti-inflammatory, anticancer, and immunomodulatory effects. Therefore, this study aimed to investigate the spasmolytic activity of (-)-carvone in rodent models. The isolated virgin rat uterus was mounted in an organ bath apparatus, and the relaxing effect of ( -)-carvone and its mechanism of action were evaluated in tonic contractions induced by carbachol, KCl, PGF2α, or oxytocin. The animal model of primary dysmenorrhea was replicated with the injection of estradiol benzoate in female mice for three consecutive days, followed by intraperitoneal administration of oxytocin. Non-clinical acute toxicity evaluation was also performed. (-)-Carvone potency and effectiveness were larger in carbachol (pEC50 = 5.41 ± 0.14 and Emax = 92.63 ± 1.90% at 10-3 M) or oxytocin (pEC50 = 4.29 ± 0.17 and Emax = 86.69 ± 1.56% at 10-3 M) contractions. The effect of ( -)-carvone was altered in the presence of 4-aminopyridine, glibenclamide, L-NAME, or methylene blue. Mice pre-treated with (-)-carvone at a dose of 100 mg/kg showed a significant reduction in the number of writhing after oxytocin administration. No toxicity was observed after oral administration of 1 g/kg ( -)-carvone. Taken together, we showed that (-)-carvone reduced writhing by a spasmolytic effect, probably through the participation of KV and KATP channels and the nitric oxide pathway.
Collapse
Affiliation(s)
- Olivaneide da Silva Frazão
- Postgraduate Program in Biosciences, Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Mariana Coelho Brito
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Cícero André Ferreira Macêdo
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
- Graduate Program in Biotechnology - State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Tiago Feitosa Ribeiro
- Northeast Biotechnology Network, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Jennifer Milene Gomes França
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Bárbara Artimis Gonçalves Carvalho
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | | | - Pedro Modesto Nascimento Menezes
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Fernanda Pires de Almeida Ribeiro
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil
| | - Fabrício Souza Silva
- Postgraduate Program in Biosciences, Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil.
- Laboratory of Experimental Pharmacology, College of Pharmacy - Federal University of San Francisco Valley (UNIVASF), Av. José de Maniçoba S/N, Centro, Petrolina, PE, CEP: 56304-917, Brazil.
- Graduate Program in Biotechnology - State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil.
| |
Collapse
|
12
|
Ma J, Huang W, Huang X, Yang N, Gong J, Xie Z, Li G, Liao Q, Chen Y. Construction of dual-chiral covalent organic frameworks for enantioselective separation. J Chromatogr A 2024; 1728:465014. [PMID: 38797135 DOI: 10.1016/j.chroma.2024.465014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Developing novel chiral stationary phases (CSPs) with versatility is of great importance in enantiomer separation. This study fabricated a dual-chiral covalent organic framework (PA-CA COF) via successive post-synthetic modifications. The chiral trans-1,2-cyclohexanediamine (CA) and (D)-penicillamine (PA) groups were periodically aligned within nanochannels of the COF, allowing selective recognition of enantiomers through intermolecular interactions. It can be a versatile high-performance liquid chromatography (HPLC) CSP for separating a wide range of enantiomers, including chiral pharmaceutical intermediates and chiral drugs. With separation performance comparable to commercial chiral columns and even greater versatility, the PA-CA COF@SiO2 column held promise for practical applications. Chiral separation results combined with molecular simulation indicated that the mixed mode of PA and CA resulted in the broad separation capability of PA-CA COF. The introduction of the dual-chiral COFs concept opens up a new avenue for chiral recognition and separation, holding great potential for practical enantiomer separation.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Irshad R, Batool F, Raj N, Karim S, Alkreathy HM, Manzoor N, Husain M. Multi-targeted effects of D-carvone against Non-Small Cell Lung Cancer (NSCLC): A network pharmacology-based study. Toxicol Appl Pharmacol 2024; 487:116978. [PMID: 38795847 DOI: 10.1016/j.taap.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a complex malignancy with a high degree of heterogeneity, representing approximately 85% of all lung cancer cases. The treatment landscape for NSCLC has been revolutionised by incorporating targeted and immunotherapies; however, novel therapeutic modalities are consistently needed to enhance the treatment outcomes. Indeed, alternative anti-cancer therapies involving natural products have drawn the attention of clinicians and scientists owing to their remarkable chemopreventive potential, often displaying minimal toxicity. D-carvone (CN) is one such natural product that has exhibited numerous promising therapeutic benefits, yet its efficacy against NSCLC remains enigmatic. In the present study, network pharmacological studies and molecular docking in conjunction with in-vitro validation were used to elucidate the underlying mechanism of action of CN comprehensively. Different databases revealed a total of 77 putative anti-NSCLC targets of CN. The identified core targets were utilised to construct a "Compound- Target- Disease" network by Cytoscape (v3.9.0). Further analysis identified 5 core/ hub targets of CN including JAK2, ERK1, ESR1, GSK3B and HSP90AA1. Molecular docking indicated a strong binding interaction of the compound with these core targets. Also, Gene Ontology and KEGG analysis validated the involvement of multiple biological processes. Additionally, CN significantly inhibited cell proliferation, clonogenicity, and wound healing potential while promoting apoptosis in a dose-dependent manner in H1299 and A549 cell lines as examined by flow cytometry, morphological assessment, and western blotting. In conclusion, this study delineates the therapeutic effects of CN on NSCLC, thus highlighting CN as a putative drug candidate for further analysis.
Collapse
Affiliation(s)
- Rasha Irshad
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Faiqah Batool
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Nafis Raj
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Husain
- Virology and Oncology Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Hleba L, Hlebová M, Charousová I. In Vitro Evaluation of Synergistic Essential Oils Combination for Enhanced Antifungal Activity against Candida spp. Life (Basel) 2024; 14:693. [PMID: 38929677 PMCID: PMC11204509 DOI: 10.3390/life14060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, a significant number of infections have been attributed to non-albicidal Candida species (NAC), mainly due to the increasing resistance of NAC to antifungal agents. As only a few antifungal agents are available (azoles, echinocandins, polyenes, allylamines and nucleoside analogues), it is very important to look for possible alternatives to inhibit resistant fungi. One possibility could be essential oils (EOs), which have been shown to have significant antifungal and antibacterial activity. Therefore, in this study, the efficacy of 12 EOs and their combinations was evaluated against four yeasts of the genus Candida (C. albicas, C. glabrata, C. tropicalis and C. parapsilosis). GC-MS and GC-MS FID techniques were used for the chemical analysis of all EOs. VITEK-2XL was used to determine the antifungal susceptibility of the tested Candida spp. strains. The agar disc diffusion method was used for primary screening of the efficacy of the tested EOs. The broth dilution method was used to determine the minimum inhibitory concentrations (MICs) of the most potent EOs. After MIC cultivation, the minimum fungicidal concentration (MFC) was determined on Petri dishes (60 mm). The synergistic effect of combined EOs was evaluated using the checkerboard method and expressed as a fractional inhibitory concentration index (FICI). The results showed that ginger > ho-sho > absinth > dill > fennel > star anise > and cardamom were the most effective EOs. For all Candida species tested, the synergy was mainly observed in these combinations: ginger/fennel for C. albicans FICI 0.25 and C. glabrata, C. tropicalis and C. parapsilosis FICI 0.5 and absinth/fennel for C. albicans FICI 0.3125, C. tropicalis FICI 0.3125 and C. parapsilosis FICI 0.375. Our results suggest that the resistance of fungal pathogens to available antifungals could be reduced by combining appropriate EOs.
Collapse
Affiliation(s)
- Lukáš Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Hlebová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Ivana Charousová
- Clinical Microbiology Laboratory, Unilabs Slovensko, s.r.o., J. Bellu 66, SK-03495 Likavka, Slovakia
| |
Collapse
|
15
|
Li B, Duan W, Lin G, Ma X, Wen R, Zhang Z. An Effective and Promising Strategy for Plant Protection: Synthesis of L-Carvone-Based Thiazolinone-Hydrazone/Nanochitosan Complexes with Antifungal Activity and Sustained Releasing Performance. Int J Mol Sci 2024; 25:4595. [PMID: 38731815 PMCID: PMC11083649 DOI: 10.3390/ijms25094595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.
Collapse
Affiliation(s)
- Baoyu Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Guishan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Xianli Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Rongzhu Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| | - Zhaolei Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; (B.L.); (X.M.); (R.W.); (Z.Z.)
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, China
| |
Collapse
|
16
|
Assaggaf H, Jeddi M, Mrabti HN, Ez-Zoubi A, Qasem A, Attar A, Goh BH, Tan SL, Bouyahya A, Goh KW, Hachlafi NE. Design of three-component essential oil extract mixture from Cymbopogon flexuosus, Carum carvi, and Acorus calamus with enhanced antioxidant activity. Sci Rep 2024; 14:9195. [PMID: 38649707 PMCID: PMC11035653 DOI: 10.1038/s41598-024-59708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The development of novel antioxidant compounds with high efficacy and low toxicity is of utmost importance in the medicine and food industries. Moreover, with increasing concerns about the safety of synthetic components, scientists are beginning to search for natural sources of antioxidants, especially essential oils (EOs). The combination of EOs may produce a higher scavenging profile than a single oil due to better chemical diversity in the mixture. Therefore, this exploratory study aims to assess the antioxidant activity of three EOs extracted from Cymbopogon flexuosus, Carum carvi, and Acorus calamus in individual and combined forms using the augmented-simplex design methodology. The in vitro antioxidant assays were performed using DPPH and ABTS radical scavenging approaches. The results of the Chromatography Gas-Mass spectrometry (CG-MS) characterization showed that citral (29.62%) and niral (27.32%) are the main components for C. flexuosus, while D-carvone (62.09%) and D-limonene (29.58%) are the most dominant substances in C. carvi. By contrast, β-asarone (69.11%) was identified as the principal component of A. calamus (30.2%). The individual EO exhibits variable scavenging activities against ABTS and DPPH radicals. These effects were enhanced through the mixture of the three EOs. The optimal antioxidant formulation consisted of 20% C. flexuosus, 53% C. carvi, and 27% A. calamus for DPPHIC50. Whereas 17% C. flexuosus, 43% C. carvi, and 40% A. calamus is the best combination leading to the highest scavenging activity against ABTS radical. These findings suggest a new research avenue for EOs combinations to be developed as novel natural formulations useful in food and biopharmaceutical products.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| | - Hanae Naceiri Mrabti
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, 30000, Fez, Morocco
| | - Amine Ez-Zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sang Loon Tan
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, BP 1014, Rabat, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, P.O. Box 2202, Fez, Morocco
| |
Collapse
|
17
|
Ali U, Saima, Qaisrani SN, Mahmud A, Hayat Z, Toyomizu M. Effects of Supplemented Coriander, Ajwain, and Dill Seed Essential Oils on Growth Performance, Carcass Characteristics, Gut Health, Meat Quality, and Immune Status in Broilers. J Poult Sci 2024; 61:2024006. [PMID: 38405017 PMCID: PMC10878721 DOI: 10.2141/jpsa.2024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Numerous studies have assessed the benefits and optimal dosage of supplementation with essential oils (EOs), including extracts from plants of the Apiaceae family, as an alternative to antibiotic growth promoters (AGPs) in broilers. However, little consideration has been given to the actual chemical composition of the evaluated EOs when drawing critical conclusions, even though EO composition can vary with different extraction conditions and plant characteristics. Therefore, the present study was conducted to evaluate the effects of EOs from seeds of plants of the Apiaceae family: coriander (CEO), ajwain (AjEO), and dill (DEO), containing 56.8% linalool, 68.2% thymol, and 41.1% carvone, respectively, on the growth performance, gut health, and immune status of broilers. In total, 660 one-day-old broiler chicks were divided into 11 experimental diet groups and fed for 35 days with either the control diet, basal diet with added AGP (lincomycin, 500 mg/kg), or one of nine EO diets supplemented with CEO, AjEO, or DEO at 200, 400, and 600 mg/kg. Final body weights were improved by supplementation with not only AGP but also any EO except AjEO at 600 mg/kg; within each EO, supplementation of CEO at 400 mg/kg, AjEO at 200 mg/kg, and DEO at 200 mg/kg afforded the best growth performance. EO supplementation had beneficial effects on gut morphology, such as increased villus height in the duodenum, jejunum, and ileum, and against harmful microbiota, such as reduction of Escherichia coli and Salmonella spp. populations. Furthermore, EOs enhanced humoral immunity and improved meat quality by reducing drip loss, likely consequent to their antioxidant properties. Overall, this study presents evidence that CEO, AjEO, and DEO can each play a pivotal role in replacing AGPs, as well as providing information regarding optimal doses for broilers.
Collapse
Affiliation(s)
- Usman Ali
- Department of Animal Nutrition, Faculty of Animal Production
and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Saima
- Department of Animal Nutrition, Faculty of Animal Production
and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Shafqat Nawaz Qaisrani
- Department of Animal Nutrition, Faculty of Animal Production
and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Athar Mahmud
- Department of Poultry Production, Faculty of Animal
Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000,
Pakistan
| | - Zafar Hayat
- Department of Animal Sciences, Faculty of Agriculture,
University of Sargodha, Sargodha 40100, Pakistan
| | - Masaaki Toyomizu
- Department of Animal Nutrition, Faculty of Animal Production
and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Animal Nutrition, Life Sciences, Graduate School of
Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
18
|
Sha Y, Liu X, He Y, Zhao S, Hu J, Wang J, Li W, Shao P, Wang F, Chen X, Yang W, Xie Z. Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages. Front Microbiol 2024; 15:1339889. [PMID: 38414776 PMCID: PMC10896911 DOI: 10.3389/fmicb.2024.1339889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
The rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Chen J, Hao X, Tan R, Li Y, Wang B, Pan J, Ma W, Ma L. Functional Study on Cytochrome P450 in Response to L(-)-Carvone Stress in Bursaphelenchus xylophilus. Genes (Basel) 2022; 13:1956. [PMID: 36360193 PMCID: PMC9689654 DOI: 10.3390/genes13111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Bursaphelenchus xylophilus (PWN) causes pine wilt disease (PWD), which is one of the most devastating pine diseases worldwide. Cytochrome P450 (CYP) catalyzes the biosynthetic metabolism of terpenoids and plays an important role in the modification of secondary metabolites in all living organisms. We investigated the molecular characteristics and biological functions of Bx-cyp29A3 in B. xylophilus. The bioinformatics analysis results indicated that Bx-cyp29A3 has a transmembrane domain and could dock with L(-)-carvone. The gene expression pattern indicated that Bx-cyp29A3 was expressed in 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL L(-)-carvone solutions. The Bx-cyp29A3 expression increased in a dose-dependent manner and peaked at 24 h of exposure when the L(-)-carvone solution concentration was 0.8 mg/mL. However, the gene expression peaked at 0.6 mg/mL after 36 h. Furthermore, RNA interference (RNAi) indicated that Bx-cyp29A3 played an essential role in the response to L(-)-carvone. The mortality rates of the Bx-cyp29A3 knockdown groups were higher than those of the control groups in the 0.4, 0.6, 0.8, and 1.0 mg/mL carvone solutions after 24 h of exposure or 36 h of exposure. In summary, bioinformatics provided the structural characteristics and conserved sequence properties of Bx-cyp29A3 and its encoded protein, which provided a target gene for the study of the P450 family of B. xylophilus. Gene silencing experiments clarified the function of Bx-cyp29A3 in the immune defense of B. xylophilus. This study provides a basis for the screening of new molecular targets for the prevention and management of B. xylophilus.
Collapse
Affiliation(s)
- Jie Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Plant Science, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Xin Hao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ruina Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bowen Wang
- School of Art and Archaeology, Zhejiang University, Zhejiang University, Hangzhou 310028, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Wei Ma
- College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ling Ma
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
20
|
Kowalczyk A, Kuś P, Marijanović Z, Tuberoso CIG, Fecka I, Jerković I. Headspace Solid-Phase Micro-Extraction Versus Hydrodistillation of Volatile Compounds from Leaves of Cultivated Mentha Taxa: Markers of Safe Chemotypes. Molecules 2022; 27:6561. [PMID: 36235112 PMCID: PMC9570583 DOI: 10.3390/molecules27196561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Various mint taxa are widely cultivated and are used not only for medicinal purposes but also in cosmetic and industrial applications. The development of new varieties or cultivars of mint generates difficulties in their correct identification and safe use. Volatile organic compounds (VOCs) from the leaves of seven different taxa of the genus Mentha obtained by hydrodistillation (HD) and headspace solid-phase microextraction (HS-SPME) were analyzed using gas chromatography-mass spectrometry (GC-MS). Principal component analysis (PCA) was also performed. Comparative GC-MS analysis of the obtained extracts showed similarity in the major compounds. PCA data allowed the separation of two groups of chemotypes among the analyzed mints, characterized by the abundance of piperitenone oxide and carvone. Two out of seven analyzed taxa were not previously examined for VOC profile, one was examined only for patent application purposes, and six out of seven were investigated for the first time using the HS-SPME technique. The presented analysis provides new data on the abundance and qualitative characterization of VOCs in the studied mint plants and on the safety of their use, related to the possibility of the presence of potentially toxic components. HS-SPME is a valuable method to extend the characterization of the VOC profile obtained by hydrodistillation.
Collapse
Affiliation(s)
- Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Kuś
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Zvonimir Marijanović
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Carlo I. G. Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, CA, Italy
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| |
Collapse
|
21
|
Benali T, Jaouadi I, Ghchime R, El Omari N, Harboul K, Hammani K, Rebezov M, Shariati MA, Mubarak MS, Simal-Gandara J, Zengin G, Park MN, Kim B, Mahmud S, Lee LH, Bouyahya A. The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:1842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P. 133, Kenitra 14000, Morocco
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Rabat Institute, Ibn Sina University Hospital, Rabat 10056, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Kaoutar Harboul
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109316 Moscow, Russia
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St., 127550 Moscow, Russia
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, 42130 Konya, Turkey
| | - Moon-Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
22
|
Sousa C, Mendes AF. Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules 2022; 12:921. [PMID: 35883477 PMCID: PMC9313249 DOI: 10.3390/biom12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sirtuin 1 (SIRT) is a class III, NAD+-dependent histone deacetylase that also modulates the activity of numerous non-histone proteins through deacylation. SIRT1 plays critical roles in regulating and integrating cellular energy metabolism, response to stress, and circadian rhythm by modulating epigenetic and transcriptional regulation, mitochondrial homeostasis, proteostasis, telomere maintenance, inflammation, and the response to hypoxia. SIRT1 expression and activity decrease with aging, and enhancing its activity extends life span in various organisms, including mammals, and improves many age-related diseases, including cancer, metabolic, cardiovascular, neurodegenerative, respiratory, musculoskeletal, and renal diseases, but the opposite, that is, aggravation of various diseases, such as some cancers and neurodegenerative diseases, has also been reported. Accordingly, many natural and synthetic SIRT1 activators and inhibitors have been developed. Known SIRT1 activators of natural origin are mainly polyphenols. Nonetheless, various classes of non-polyphenolic monoterpenoids have been identified as inducers of SIRT1 expression and/or activity. This narrative review discusses current information on the evidence that supports the role of those compounds as SIRT1 activators and their potential both as tools for research and as pharmaceuticals for therapeutic application in age-related diseases.
Collapse
Affiliation(s)
- Cátia Sousa
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandrina Ferreira Mendes
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-548 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
23
|
Castro-Restrepo D, Dominguez MI, Gaviria-Gutiérrez B, Osorio E, Sierra K. Biotization of Endophytes Trichoderma asperellum and Bacillus subtilis in Mentha spicata Microplants to Promote Growth, Pathogen Tolerance and Specialized Plant Metabolites. PLANTS (BASEL, SWITZERLAND) 2022; 11:1474. [PMID: 35684247 PMCID: PMC9182777 DOI: 10.3390/plants11111474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the effect of biotization of Mentha spicata microplants with Trichoderma asperellum and Bacillus subtilis on growth, Rhizoctonia sp., incidence, and specialized metabolites content was evaluated. Analyses of root tissues of the microplants showed 100% endophytism with both microorganisms. During the acclimatization phase, plants with the endophytes T. asperellum and B. subtilis had a survival rate of 95% and 93%, respectively, compared to 75% for control plants. Then, under greenhouse conditions, a trial was carried out with biotized plants with or without Rhizoctonia sp. inoculation, plants inoculated with Rhizoctonia sp., and endophyte- and pathogen-free control. Biotized plants with the endophytes showed higher dry biomass and the incidence of Rhizoctonia was lower (8% for T. asperellum and 10% for B. subtilis) compared to plants inoculated with the pathogen (82%). In addition, plants with T. asperellum had the highest contents of total polyphenols (280 GAE/100 mg sample) and rosmarinic acid (28 mg RA/100 g sample). Thus, this study shows the potential of the technique of using the endophytes T. asperellum and B. subtilis on M. spicata microplants to improve plant survival and growth, decrease the incidence of Rhizoctonia sp., and improve the contents of specialized metabolites, which can contribute to the sustainable management of this crop.
Collapse
Affiliation(s)
- Dagoberto Castro-Restrepo
- Unidad de Biotecnología Vegetal, Facultad de Ciencias Agropecuarias, Universidad Católica de Oriente, Cr46-40 B-50, Rionegro 054040, Colombia;
| | - Maria Isabel Dominguez
- Unidad de Biotecnología Vegetal, Facultad de Ciencias Agropecuarias, Universidad Católica de Oriente, Cr46-40 B-50, Rionegro 054040, Colombia;
| | - Bertha Gaviria-Gutiérrez
- Grupo de Investigación Sanidad Vegetal, Facultad de Ciencias Agropecuarias, Universidad Católica de Oriente, Rionegro 054040, Colombia;
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (E.O.); (K.S.)
| | - Karina Sierra
- Grupo de Investigación en Sustancias Bioactivas GISB, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (E.O.); (K.S.)
| |
Collapse
|
24
|
D-Carvone Attenuates CCl 4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. BIOLOGY 2022; 11:biology11050739. [PMID: 35625467 PMCID: PMC9138456 DOI: 10.3390/biology11050739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-β1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-β1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted.
Collapse
|