1
|
Carter AM. Genomics, the diversification of mammals, and the evolution of placentation. Dev Biol 2024; 516:167-182. [PMID: 39173812 DOI: 10.1016/j.ydbio.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
When and why did variations in placental structure and function evolve? Such questions cannot be addressed without a reliable version of mammalian phylogeny. Twenty-five years ago, the mammalian tree was reshaped by molecular phylogenetics. Soon it was shown, in contrast to prevailing theories, that the common ancestor of placental mammals had invasive placentation. Subsequently, evolution of many other features of extraembryonic membranes was addressed. This endeavour stimulated research to fill gaps in our knowledge of placental morphology. Last year the mammalian tree was again revised based on a large set of genomic data. With that in mind, this review provides an update on placentation in the nineteen orders of placental mammals, incorporating much recent data. The principal features such as shape, interdigitation, the interhaemal barrier and the yolk sac are summarized in synoptic tables. The evolution of placental traits and its timing is then explored by reference to the revised mammalian tree. Examples are the early appearance of epitheliochorial placentation in the common ancestor of artiodactyls, perissodactyls, pangolins and carnivores (with reversion to invasive forms in the latter) and later refinements such as the binucleate trophoblast cells and placentomes of ruminants. In primates, the intervillous space gradually evolved from the more basic labyrinth whereas trophoblast invasion of the decidua was a late development in humans and great apes. Only seldom can we glimpse the "why" of placental evolution. The best examples concern placental hormones, including some striking examples of convergent evolution such as the chorionic gonadotropins of primates and equids. In concluding, I review current ideas about what drives placental evolution and identify significant gaps in our knowledge of placentation, including several relevant to the evolution of placentation in primates.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Carter AM. The shingled girl: Catherine Janet Hill and her contributions to embryology. J Morphol 2024; 285:e21674. [PMID: 38362646 DOI: 10.1002/jmor.21674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Catherine J. Hill is best remembered for her dedication to cataloguing the comprehensive embryological collection of her father J. P. Hill. Yet, her own research, during the interwar years, is little known. She made a significant contribution to interpreting the autonomic innervation of the gut, work that was presented to The Royal Society and earned her a PhD. Working in her father's laboratory, she then set about solving the sequence of secretions from the tubal epithelium and uterine glands that contributed the two layers of egg albumen and three shell layers of the monotreme egg. She was also the first to understand twinning in the marmoset and how two embryos came to share a single extraembryonic coelom, work that often is credited to J. P. Hill. Here. I explain how that happened and explore the context in which she and other female scientists worked at the time.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Mika K, Lynch VJ. Transposable Elements Continuously Remodel the Regulatory Landscape, Transcriptome, and Function of Decidual Stromal Cells. Genome Biol Evol 2022; 14:6845702. [PMID: 36423206 PMCID: PMC9732941 DOI: 10.1093/gbe/evac164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Gene expression evolution underlies the origin, divergence, and conservation of biological characters including cell-types, tissues, and organ systems. Previously we showed that large-scale gene expression changes in decidual stromal cells (DSCs) contributed to the origins of pregnancy in eutherians and the divergence of pregnancy traits in primates and that transposable elements likely contributed to these gene expression changes. Here we show that two large waves of TEs remodeled the transcriptome and regulatory landscape of DSCs, including a major wave in primates. Genes nearby TE-derived regulatory elements are among the most progesterone responsive in the genome and play essential roles in orchestrating progesterone responsiveness and the core function of decidual cells by donating progesterone receptor binding sites to the genome. We tested the regulatory abilities of 89 TE consensus sequences and found that nearly all of them acted as repressors in mammalian cells, but treatment with a histone deacetylase inhibitor unmasked latent enhancer functions. These data indicate that TEs have played an important role in the development, evolution, and function of primate DSCs and suggest a two-step model in which latent enhancer functions of TEs are unmasked after they lose primary repressor functions.
Collapse
Affiliation(s)
- Katelyn Mika
- Present address: Department of Organismal Biology and Anatomy, University of Chicago, 1025 E 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
4
|
Bačenková D, Trebuňová M, Čížková D, Hudák R, Dosedla E, Findrik-Balogová A, Živčák J. In Vitro Model of Human Trophoblast in Early Placentation. Biomedicines 2022; 10:biomedicines10040904. [PMID: 35453654 PMCID: PMC9029210 DOI: 10.3390/biomedicines10040904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
The complex process of placental implantation and development affects trophoblast progenitors and uterine cells through the regulation of transcription factors, cytokines, adhesion receptors and their ligands. Differentiation of trophoblast precursors in the trophectoderm of early ontogenesis, caused by the transcription factors, such as CDX2, TEAD4, Eomes and GATA3, leads to the formation of cytotrophoblast and syncytiotrophoblast populations. The molecular mechanisms involved in placental formation inside the human body along with the specification and differentiation of trophoblast cell lines are, mostly due to the lack of suitable cell models, not sufficiently elucidated. This review is an evaluation of current technologies, which are used to study the behavior of human trophoblasts and other placental cells, as well as their ability to represent physiological conditions both in vivo and in vitro. An in vitro 3D model with a characteristic phenotype is of great benefit for the study of placental physiology. At the same time, it provides great support for future modeling of placental disease.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
- Correspondence: ; Tel.: +42-1055-602-2380
| | - Marianna Trebuňová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Daša Čížková
- Centre for Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia;
| | - Radovan Hudák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Erik Dosedla
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafarik Univerzity Hospital AGEL Košice-Šaca, Pavol Jozef Šafarik University in Košice, 04015 Košice-Šaca, Slovakia;
| | - Alena Findrik-Balogová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Jozef Živčák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| |
Collapse
|
5
|
Bellofiore N, McKenna J, Ellery S, Temple-Smith P. The Spiny Mouse—A Menstruating Rodent to Build a Bridge From Bench to Bedside. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:784578. [PMID: 36303981 PMCID: PMC9580678 DOI: 10.3389/frph.2021.784578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Nadia Bellofiore
| | - Jarrod McKenna
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Mika K, Marinić M, Singh M, Muter J, Brosens JJ, Lynch VJ. Evolutionary transcriptomics implicates new genes and pathways in human pregnancy and adverse pregnancy outcomes. eLife 2021; 10:e69584. [PMID: 34623259 PMCID: PMC8660021 DOI: 10.7554/elife.69584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy. We found that hundreds of genes gained or lost endometrial expression in the human lineage. Among these are genes that may contribute to human-specific maternal-fetal communication (HTR2B) and maternal-fetal immunotolerance (PDCD1LG2) systems, as well as vascular remodeling and deep placental invasion (CORIN). These data suggest that explicit evolutionary studies of anatomical systems complement traditional methods for characterizing the genetic architecture of disease. We also anticipate our results will advance the emerging synthesis of evolution and medicine ('evolutionary medicine') and be a starting point for more sophisticated studies of the maternal-fetal interface. Furthermore, the gene expression changes we identified may contribute to the development of diagnostics and interventions for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Katelyn Mika
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Mirna Marinić
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell UniversityChicagoUnited States
| | - Joanne Muter
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Jan Joris Brosens
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
7
|
Carter AM. Unique Aspects of Human Placentation. Int J Mol Sci 2021; 22:8099. [PMID: 34360862 PMCID: PMC8347521 DOI: 10.3390/ijms22158099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Human placentation differs from that of other mammals. A suite of characteristics is shared with haplorrhine primates, including early development of the embryonic membranes and placental hormones such as chorionic gonadotrophin and placental lactogen. A comparable architecture of the intervillous space is found only in Old World monkeys and apes. The routes of trophoblast invasion and the precise role of extravillous trophoblast in uterine artery transformation is similar in chimpanzee and gorilla. Extended parental care is shared with the great apes, and though human babies are rather helpless at birth, they are well developed (precocial) in other respects. Primates and rodents last shared a common ancestor in the Cretaceous period, and their placentation has evolved independently for some 80 million years. This is reflected in many aspects of their placentation. Some apparent resemblances such as interstitial implantation and placental lactogens are the result of convergent evolution. For rodent models such as the mouse, the differences are compounded by short gestations leading to the delivery of poorly developed (altricial) young.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
8
|
Rosenkrantz JL, Gaffney JE, Roberts VHJ, Carbone L, Chavez SL. Transcriptomic analysis of primate placentas and novel rhesus trophoblast cell lines informs investigations of human placentation. BMC Biol 2021; 19:127. [PMID: 34154587 PMCID: PMC8218487 DOI: 10.1186/s12915-021-01056-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Proper placentation, including trophoblast differentiation and function, is essential for the health and well-being of both the mother and baby throughout pregnancy. Placental abnormalities that occur during the early stages of development are thought to contribute to preeclampsia and other placenta-related pregnancy complications. However, relatively little is known about these stages in humans due to obvious ethical and technical limitations. Rhesus macaques are considered an ideal surrogate for studying human placentation, but the unclear translatability of known human placental markers and lack of accessible rhesus trophoblast cell lines can impede the use of this animal model. RESULTS Here, we performed a cross-species transcriptomic comparison of human and rhesus placenta and determined that while the majority of human placental marker genes (HPGs) were similarly expressed, 952 differentially expressed genes (DEGs) were identified between the two species. Functional enrichment analysis of the 447 human-upregulated DEGs, including ADAM12, ERVW-1, KISS1, LGALS13, PAPPA2, PGF, and SIGLEC6, revealed over-representation of genes implicated in preeclampsia and other pregnancy disorders. Additionally, to enable in vitro functional studies of early placentation, we generated and thoroughly characterized two highly pure first trimester telomerase (TERT) immortalized rhesus trophoblast cell lines (iRP-D26 and iRP-D28A) that retained crucial features of isolated primary trophoblasts. CONCLUSIONS Overall, our findings help elucidate the molecular translatability between human and rhesus placenta and reveal notable expression differences in several HPGs and genes implicated in pregnancy complications that should be considered when using the rhesus animal model to study normal and pathological human placentation.
Collapse
Affiliation(s)
- Jimi L. Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Jessica E. Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| | - Lucia Carbone
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Shawn L. Chavez
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239 USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
- Department of Biomedical Engineering, Oregon Health and Science University School of Medicine, Portland, OR 97239 USA
| |
Collapse
|
9
|
Burton GJ, Jauniaux E. Placentation in the Human and Higher Primates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:223-254. [PMID: 34694484 DOI: 10.1007/978-3-030-77360-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Placentation in humans is precocious and highly invasive compared to other mammals. Implantation is interstitial, with the conceptus becoming completely embedded within the endometrium towards the end of the second week post-fertilization. Villi initially form over the entire surface of the chorionic sac, stimulated by histotrophic secretions from the endometrial glands. The secondary yolk sac never makes contact with the chorion, and a choriovitelline placenta is never established. However, recent morphological and transcriptomic analyses suggest that the yolk sac plays an important role in the uptake of nutrients from the coelomic fluid. Measurements performed in vivo demonstrate that early development takes place in a physiological, low-oxygen environment that protects against teratogenic free radicals and maintains stem cells in a multipotent state. The maternal arterial circulation to the placenta is only fully established around 10-12 weeks of gestation. By then, villi have regressed over the superficial, abembryonic pole, leaving the definitive discoid placenta, which is of the villous, hemochorial type. Remodeling of the maternal spiral arteries is essential to ensure a high-volume but low-velocity inflow into the mature placenta. Extravillous trophoblast cells migrate from anchoring villi and surround the arteries. Their interactions with maternal immune cells release cytokines and proteases that are key to remodeling, and a successful pregnancy.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Eric Jauniaux
- Faculty of Population Health Sciences, EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
10
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
11
|
Treissman J, Yuan V, Baltayeva J, Le HT, Castellana B, Robinson WP, Beristain AG. Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development 2020; 147:dev.181263. [PMID: 31871275 DOI: 10.1242/dev.181263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Early placental development and the establishment of the invasive trophoblast lineage take place within a low oxygen environment. However, conflicting and inconsistent findings have obscured the role of oxygen in regulating invasive trophoblast differentiation. In this study, the effect of hypoxic, normoxic and atmospheric oxygen on invasive extravillous pathway progression was examined using a human placental explant model. Here, we show that exposure to low oxygen enhances extravillous column outgrowth and promotes the expression of genes that align with extravillous trophoblast (EVT) lineage commitment. By contrast, supra-physiological atmospheric levels of oxygen promote trophoblast proliferation while simultaneously stalling EVT progression. Low oxygen-induced EVT differentiation coincided with elevated transcriptomic levels of lysyl oxidase (LOX) in trophoblast anchoring columns, in which functional experiments established a role for LOX activity in promoting EVT column outgrowth. The findings of this work support a role for low oxygen in potentiating the differentiation of trophoblasts along the extravillous pathway. In addition, these findings generate insight into new molecular processes controlled by oxygen during early placental development.
Collapse
Affiliation(s)
- Jenna Treissman
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Victor Yuan
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Jennet Baltayeva
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Hoa T Le
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Barbara Castellana
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Wendy P Robinson
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada .,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| |
Collapse
|
12
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
13
|
Placenta Accreta in an Oragnutan (Pongo abelii) and a Chimpanzee (Pan troglodytes). J Comp Pathol 2019; 174:13-17. [PMID: 31955798 DOI: 10.1016/j.jcpa.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 10/19/2019] [Indexed: 11/21/2022]
Abstract
Placenta accreta is defined as abnormal adherence of the placenta to the uterine wall. Placenta accreta is recognized as a common problem in human medicine, but has apparently not been reported previously in great apes, despite similarity in their reproductive biology. A 36-year-old multiparous female Sumatran orangutan (Pongo abelii) and a 20-year-old nulliparous female chimpanzee (Pan troglodytes), with gross uterine and histological uterine vascular changes that are characteristic of placenta accreta, are presented.
Collapse
|
14
|
Le HT, Atif J, Mara DL, Castellana B, Treissman J, Baltayeva J, Beristain AG. ADAM8 localizes to extravillous trophoblasts within the maternal-fetal interface and potentiates trophoblast cell line migration through a β1 integrin-mediated mechanism. Mol Hum Reprod 2019; 24:495-509. [PMID: 30124911 DOI: 10.1093/molehr/gay034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does A Disintegrin And Metalloproteinase 8 (ADAM8) control extravillous trophoblast (EVT) differentiation and migration in early human placental development? SUMMARY ANSWER ADAM8 mRNA preferentially localizes to invasive HLA-G-positive trophoblasts, associates with the acquirement of an EVT phenotype and promotes trophoblast migration through a mechanism requiring β1-integrin. WHAT IS KNOWN ALREADY Placental establishment in the first trimester of pregnancy requires the differentiation of progenitor trophoblasts into invasive EVTs that produce a diverse repertoire of proteases that facilitate matrix remodeling and activation of signaling pathways important in controlling cell migration. While multiple ADAM proteases, including ADAM8, are highly expressed by invasive trophoblasts, the role of ADAM8 in controlling EVT-related processes is unknown. STUDY DESIGN, SIZE, DURATION First trimester placental villi and decidua (6-12 weeks' gestation), primary trophoblasts and trophoblastic cell lines (JEG3, JAR, Bewo, HTR8/SVNeo) were used to examine ADAM8 expression, localization and function. All experiments were performed on at least three independent occasions (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS Placental villi and primary trophoblasts derived from IRB approved first trimester placental (n = 24) and decidual (n = 4) were used to examine ADAM8 localization and expression by in situ RNAScope hybridization, flow cytometry, quantitative PCR and immunoblot analyses. Primary trophoblasts were differentiated into EVT-like cells by plating on fibronectin and were assessed by immunofluorescence microscopy and immunoblot analysis of keratin-7, vimentin, epidermal growth factor receptor (EGFR), HLA-G and ADAM8. ADAM8 function was examined in primary EVTs and trophoblastic cell lines utilizing siRNA-directed silencing and over-expression strategies. Trophoblast migration was assessed using Transwell chambers, cell-matrix binding was tested using fibronectin-adhesion assays, and ADAM8-β1-integrin interactions were determined by immunofluorescence microscopy, co-immunoprecipitation experiments and function-promoting/inhibiting antibodies. MAIN RESULTS AND THE ROLE OF CHANCE Within first trimester placental tissues, ADAM8 preferentially localized to HLA-G+ trophoblasts residing within anchoring columns and decidua. Functional experiments in primary trophoblasts and trophoblastic cell lines show that ADAM8 promotes trophoblast migration through a mechanism independent of intrinsic protease activity. We show that ADAM8 localizes to peri-nuclear and cell-membrane actin-rich structures during cell-matrix attachment and promotes trophoblast binding to fibronectin matrix. Moreover, ADAM8 potentiates β1-integrin activation and promotes cell migration through a mechanism dependent on β1-integrin function. LIMITATIONS, REASONS FOR CAUTION The primary limitation of this study was the use of in vitro experiments in examining ADAM8 function, as well as the implementation of immortalized trophoblastic cell lines. Histological localization of ADAM8 within placental and decidual tissue sections was limited to mRNA level analysis. Further, patient information corresponding to tissues obtained by elective terminations was not available. WIDER IMPLICATIONS OF THE FINDINGS The novel non-proteolytic pro-migratory role for ADAM8 in controlling trophoblast migration revealed by this study sheds insight into the importance of ADAM8 in EVT biology and placental development. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC-Discovery Grant) and the Canadian Institutes of Health Research (CIHR-Open Operating Grant). There are no conflicts or competing interests. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- H T Le
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Atif
- Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - D L Mara
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada
| | - B Castellana
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Treissman
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Baltayeva
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - A G Beristain
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| |
Collapse
|
15
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
16
|
Liu J, Dong P, Wang S, Li J. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes. Biochem Biophys Res Commun 2018; 508:354-360. [PMID: 30503343 DOI: 10.1016/j.bbrc.2018.11.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
PROBLEM Recurrent spontaneous abortion (RSA) is associated with immune imbalance at the maternal-fetal interface. Decidual immune cells and cytokines expressed at this interface regulate the response of the maternal immune system to the fetus. However, the populations and cytokine expression levels of these lymphocytes in miscarriage with normal and abnormal chromosome karyotypes remain unclear. METHODS We assessed the populations and cytokine expression levels of Natural Killer (NK), Natural Killer T (NKT), Helper T (Th) and Cytotoxic T (Tc) cells in the decidua of RSA by flow cytometry and simultaneously analyzed the fetal chromosome karyotypes of these miscarriages. RESULTS Flow cytometry showed no significant difference between RSA and normal pregnancy in the percentages of Th, Tc, NK, and NKT cells. Type-1 cells decreased significantly in the decidua of normal pregnancy, and NK2 and NKT2 cells increased significantly in the normal pregnancy group. We also found no difference in the lymphocyte composition and the proportion of types 1 and 2 subsets of the four lymphocytes in the decidua between RSA with abnormal chromosome karyotypes of villous trophoblasts (RSA-A) and RSA with normal chromosome karyotypes of villous trophoblasts (RSA-N), but the proportion of type-1 cells in both groups was significantly higher than that in normal pregnancy. CONCLUSION No difference existed between the type-1 immune response of RSA in normal and abnormal chromosome karyotypes of villous trophoblasts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Dong
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shijun Wang
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod 2018; 33:1430-1441. [DOI: 10.1093/humrep/dey225] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rojan Saghian
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rebecca Perwick
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
19
|
|
20
|
Vercruysse L, Carter AM, Pijnenborg R. The role of the placenta in the initiation of spiral artery remodelling in an early pregnant chimpanzee uterus. Placenta 2017; 53:83-91. [PMID: 28487026 DOI: 10.1016/j.placenta.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In this study we evaluated the full extent of placental bed changes (centre to periphery) in a pregnant chimpanzee uterus, kept at the Museum for Central Africa in Tervuren, Belgium. According to placental size the specimen was equivalent to an 8 weeks pregnant human uterus. METHODS Histological sections from central to peripheral tissue blocks of the placental bed were stained to reveal the presence of trophoblast, endothelium, vascular smooth muscle and elastic laminae. As an indicator for early arterial remodelling, we evaluated endothelial nuclear rounding and subendothelial vascular changes within the maternal vasculature in decidua and adjacent inner myometrium. RESULTS While interstitially invading trophoblasts were present, endovascular trophoblast invasion seemed about to start into one spiral artery outlet at the centre of the placental bed, confirming our previous impression of a later onset of endovascular trophoblast invasion as compared to the human. An early sign of spiral artery remodelling was rounding of the endothelial nuclei. This phenomenon was not related to the local presence of interstitial trophoblast. DISCUSSION Endothelial nuclear rounding turned out to be a feature of the placental bed as a whole, being significantly less prominent in the adjacent non-placental bed part of the uterus, indicating an effect of the presence of the placenta. The different time-course of early spiral artery remodelling in the chimpanzee as compared to the human may have had a significant impact upon our evolution.
Collapse
Affiliation(s)
- L Vercruysse
- Department of Woman & Child, University Hospital Leuven, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - A M Carter
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Pijnenborg
- Department of Woman & Child, University Hospital Leuven, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Hollegaard B, Lykke JA, Boomsma JJ. Time from pre-eclampsia diagnosis to delivery affects future health prospects of children. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:53-66. [PMID: 28421136 PMCID: PMC5387983 DOI: 10.1093/emph/eox004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Background and objectives Pre-eclampsia often has detrimental health effects for pregnant women and their fetuses, but whether exposure in the womb has long-term health-consequences for children as they grow up remains poorly understood. We assessed overall morbidity of children following exposure to either mild or severe pre-eclampsia up to 30 years after birth and related disease risks to duration of exposure, i.e. the time from diagnosis to delivery. Methodology We did a registry-based retrospective cohort study in Denmark covering the years 1979–2009, using the separate diagnoses of mild and severe pre-eclampsia and the duration of exposure as predictor variables for specific and overall risks of later disease. We analysed 3 537 525 diagnoses for 14 disease groups, accumulated by 758 524 singleton children, after subdividing deliveries in six gestational age categories, partialing out effects of eight potentially confounding factors. Results Exposure to mild pre-eclampsia appeared to have consistent negative effects on health later in life, although only a few specific disease cases remained significant after corrections for multiple testing. Morbidity risks associated with mild pre-eclampsia were of similar magnitude as those associated with severe pre-eclampsia. Apart from this overall trend in number of diagnoses incurred across disease groups, hazard ratios for several disorders also increased with the duration of exposure, including disorders related to the metabolic syndrome. Conclusions and implications Maternal pre-eclampsia has lasting effects on offspring health and differences between exposure to severe and mild pre-eclampsia appear to be less than previously assumed. Our results suggest that it would be prudent to include the long-term health prospects of children in the complex clinical management of mild pre-eclampsia.
Collapse
Affiliation(s)
- Birgitte Hollegaard
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Lykke
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Grigsby PL. Animal Models to Study Placental Development and Function throughout Normal and Dysfunctional Human Pregnancy. Semin Reprod Med 2016; 34:11-6. [PMID: 26752715 DOI: 10.1055/s-0035-1570031] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abnormalities of placental development and function are known to underlie many pathologies of pregnancy, including spontaneous preterm birth, fetal growth restriction, and preeclampsia. A growing body of evidence also underscores the importance of placental dysfunction in the lifelong health of both mother and offspring. However, our knowledge regarding placental structure and function throughout pregnancy remains limited. Understanding the temporal growth and functionality of the human placenta throughout the entirety of gestation is important if we are to gain a better understanding of placental dysfunction. The utilization of new technologies and imaging techniques that could enable safe monitoring of placental growth and function in vivo has become a major focus area for the National Institutes of Child Health and Human Development, as evident by the establishment of the "Human Placenta Project." Many of the objectives of the Human Placenta Project will necessitate preclinical studies and testing in appropriately designed animal models that can be readily translated to the clinical setting. This review will describe the advantages and limitations of relevant animals such as the guinea pig, sheep, and nonhuman primate models that have been used to study the role of the placenta in fetal growth disorders, preeclampsia, or other maternal diseases during pregnancy.
Collapse
Affiliation(s)
- Peta L Grigsby
- Division of Reproductive and Developmental Sciences, Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, Oregon
| |
Collapse
|
23
|
Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140070. [PMID: 25602074 DOI: 10.1098/rstb.2014.0070] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We here review the evolution of invasive placentation in primates towards the deep penetration of the endometrium and its arteries in hominoids. The strepsirrhine primates (lemurs and lorises) have non-invasive, epitheliochorial placentation, although this is thought to be derived from a more invasive type. In haplorhine primates, there is differentiation of trophoblast at the blastocyst stage into syncytial and cellular trophoblast. Implantation involves syncytiotrophoblast that first removes the uterine epithelium then consolidates at the basal lamina before continuing into the stroma. In later stages of pregnancy, especially in Old World monkeys and apes, cytotrophoblast plays a greater role in the invasive process. Columns of trophoblast cells advance to the base of the implantation site where they spread out to form a cytotrophoblastic shell. In addition, cytotrophoblasts advance into the lumen of the spiral arteries. They are responsible for remodelling these vessels to form wide, low-resistance conduits. In human and great apes, there is additional invasion of the endometrium and its vessels by trophoblasts originating from the base of the anchoring villi. Deep trophoblast invasion that extends remodelling of the spiral arteries to segments in the inner myometrium evolved in the common ancestor of gorilla, chimp and human.
Collapse
Affiliation(s)
- Anthony M Carter
- Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Allen C Enders
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Robert Pijnenborg
- Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Clark GF. Functional glycosylation in the human and mammalian uterus. FERTILITY RESEARCH AND PRACTICE 2015; 1:17. [PMID: 28620522 PMCID: PMC5424290 DOI: 10.1186/s40738-015-0007-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Background Glycosylation is the most common and structurally diverse of all the post-translational modifications of proteins. Lipids and extracellular matrices are also often glycosylated. The mammalian uterus is highly enriched in glycoconjugates that are associated with the apical surfaces of epithelial cells and the secretions released by both epithelial and stromal cells. These glycoconjugates interact primarily with sperm, the implanting embryo, the fetus, and any pathogen that happens to gain entry into the uterus. Secretions of the endometrial glands increase substantially during the luteal phase of the menstrual cycle. These secretions are highly enriched in glycoproteins and mucins that promote specific uterine functions. Findings Lectins and antibodies have been employed in the majority of the studies focused on uterine glycosylation have employed to define the expression of carbohydrate sequences. However, while these studies provide insight about potential glycosylation, precise information about glycan structure is lacking. Direct sequencing studies that employ biochemical or mass spectrometric methods are far more definitive, but have rarely been employed with uterine glycoproteins. Both lectin/antibody binding and direct carbohydrate sequencing studies that have been focused on the mammalian uterus are reviewed. The primary functional role of the eutherian uterus is to facilitate fertilization and nurture the developing embryo/fetus. Trophoblasts are the primary cells that mediate the binding of the embryo and placenta to the uterine lining. In mammals that utilize hemochorial placentation, they invade the decidua, the specialized endometrial lining that forms during pregnancy. Trophoblasts have also been analyzed for their lectin/antibody binding as a complement to the analysis of the uterine cells and tissues. They will also be reviewed here. Conclusions The functional roles of the glycans linked to uterine and trophoblast glycoconjugates remain enigmatic. Another major question in the human is whether defects in placental or uterine glycosylation play a role in the development the Great Obstetrical Syndromes. More recent findings indicate that changes in glycosylation occur in trophoblasts obtained from patients that develop preeclampsia and preterm birth. The functional significance of these changes remain to be defined. Whether such shifts happen during the development of other types of obstetrical syndromes remains to be determined.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 1 Hospital Drive HSC M658, Columbia, MO 65211 USA
| |
Collapse
|
25
|
Chen CP, Piao L, Chen X, Yu J, Masch R, Schatz F, Lockwood CJ, Huang SJ. Expression of Interferon γ by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reprod Sci 2015; 22:1461-7. [PMID: 25963913 DOI: 10.1177/1933719115585148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human first-trimester decidual cells (FTDCs) chemoattract CXCR3-expressing circulating CD56(bright)CD16(-) natural killer (NK) cells, which increase uteroplacental blood flow by remodeling spiral arteries and arterioles. This recruitment reflects elevated FTDC expression of NK cell-recruiting induced protein 10 and interferon (IFN)-inducible T-cell-α chemoattractant produced in response to the synergistic effects of tumor necrosis factor α (TNF-α) and IFN-γ stimulation. Decidual macrophages express TNF-α, whereas the cellular origin of IFN-γ is unclear. Therefore, this study aims to identify the cell source(s) of IFN-γ in human first trimester decidua. Immunostaining of decidual sections revealed that both FTDCs and decidual NK (dNK) cells express IFN-γ. Although individual dNK cells express higher IFN-γ levels, the more numerous FTDCs account for greater proportion of total IFN-γ immunostaining. Freshly isolated FTDCs express greater IFN-γ staining than dNK cells as measured by flow cytometry, whereas incubation of dNK cells with documented NK cell activators significantly increases IFN-γ above FTDC levels. Confluent FTDCs intrinsically produce, but paradoxically respond to, exogenous IFN-γ.
Collapse
Affiliation(s)
- Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Longzhu Piao
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Xilin Chen
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jianhua Yu
- Department of Hematology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachel Masch
- Department of Obstetrics and Gynecology, Beth Israel Medical Center, New York, NY, USA
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
26
|
ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion. Cell Death Differ 2015; 22:1970-84. [PMID: 25909890 DOI: 10.1038/cdd.2015.44] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development.
Collapse
|
27
|
Are animal models useful or confusing in understanding the human feto-maternal relationship? A debate. J Reprod Immunol 2015; 108:56-64. [DOI: 10.1016/j.jri.2014.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
|
28
|
Gundling WE, Wildman DE. A review of inter- and intraspecific variation in the eutherian placenta. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140072. [PMID: 25602076 PMCID: PMC4305173 DOI: 10.1098/rstb.2014.0072] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is one of the most morphologically variable mammalian organs. Four major characteristics are typically discussed when comparing the placentas of different eutherian species: placental shape, maternal-fetal interdigitation, intimacy of the maternal-fetal interface and the pattern of maternal-fetal blood flow. Here, we describe the evolution of three of these features as well as other key aspects of eutherian placentation. In addition to interspecific anatomical variation, there is also variation in placental anatomy and function within a single species. Much of this intraspecific variation occurs in response to different environmental conditions such as altitude and poor maternal nutrition. Examinations of variation in the placenta from both intra- and interspecies perspectives elucidate different aspects of placental function and dysfunction at the maternal-fetal interface. Comparisons within species identify candidate mechanisms that are activated in response to environmental stressors ultimately contributing to the aetiology of obstetric syndromes such as pre-eclampsia. Comparisons above the species level identify the evolutionary lineages on which the potential for the development of obstetric syndromes emerged.
Collapse
Affiliation(s)
- William E Gundling
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Derek E Wildman
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
29
|
Browne VA, Julian CG, Toledo-Jaldin L, Cioffi-Ragan D, Vargas E, Moore LG. Uterine artery blood flow, fetal hypoxia and fetal growth. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140068. [PMID: 25602072 PMCID: PMC4305169 DOI: 10.1098/rstb.2014.0068] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100-4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success.
Collapse
Affiliation(s)
- Vaughn A Browne
- Department of Emergency Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Colleen G Julian
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | - Darleen Cioffi-Ragan
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Enrique Vargas
- Instituto Boliviano de Biología de Altura, La Paz, Bolivia
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, Leavitt R, Chung TH, El-Azzamy H, LaJeunesse C, Wang B, Balogh A, Szalai G, Land S, Dong Z, Hassan SS, Chaiworapongsa T, Krispin M, Kim CJ, Tarca AL, Papp Z, Bohn H. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 2014; 35:855-65. [PMID: 25266889 PMCID: PMC4203431 DOI: 10.1016/j.placenta.2014.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The dysregulation of maternal-fetal immune tolerance is one of the proposed mechanisms leading to preeclampsia. Galectins are key regulator proteins of the immune response in vertebrates and maternal-fetal immune tolerance in eutherian mammals. Previously we found that three genes in a Chr19 cluster encoding for human placental galectin-13 (PP13), galectin-14 and galectin-16 emerged during primate evolution and may confer immune tolerance to the semi-allogeneic fetus. MATERIALS AND METHODS This study involved various methodologies for gene and protein expression profiling, genomic DNA methylation analyses, functional assays on differentiating trophoblasts including gene silencing, luciferase reporter and methylation assays. These methods were applied on placental specimens, umbilical cord blood cells, primary trophoblasts and BeWo cells. Genomic DNA sequences were analyzed for transposable elements, transcription factor binding sites and evolutionary conservation. RESULTS AND DISCUSSION The villous trophoblastic expression of Chr19 cluster galectin genes is developmentally regulated by DNA methylation and induced by key transcription factors of villous placental development during trophoblast fusion and differentiation. This latter mechanism arose via the co-option of binding sites for these transcription factors through promoter evolution and the insertion of an anthropoid-specific L1PREC2 transposable element into the 5' untranslated region of an ancestral gene followed by gene duplication events. Among placental Chr19 cluster galectin genes, the expression of LGALS13 and LGALS14 is down-regulated in preterm severe preeclampsia associated with SGA. We reveal that this phenomenon is partly originated from the dysregulated expression of key transcription factors controlling trophoblastic functions and galectin gene expression. In addition, the differential DNA methylation of these genes was also observed in preterm preeclampsia irrespective of SGA. CONCLUSIONS These findings reveal the evolutionary origins of the placental expression of Chr19 cluster galectins. The complex dysregulation of these genes in preeclampsia may alter immune tolerance mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
- N G Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - R Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.
| | - Y Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - O Erez
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Z Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - G Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - R Leavitt
- Zymo Research Corporation, Irvine, CA, USA
| | - T H Chung
- Zymo Research Corporation, Irvine, CA, USA
| | - H El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - C LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - B Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - A Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - G Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - T Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - M Krispin
- Zymo Research Corporation, Irvine, CA, USA
| | - C J Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - A L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - H Bohn
- Behringwerke AG, Marburg/Lahn, Germany
| |
Collapse
|
31
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|
32
|
Than NG, Balogh A, Romero R, Kárpáti E, Erez O, Szilágyi A, Kovalszky I, Sammar M, Gizurarson S, Matkó J, Závodszky P, Papp Z, Meiri H. Placental Protein 13 (PP13) - A Placental Immunoregulatory Galectin Protecting Pregnancy. Front Immunol 2014; 5:348. [PMID: 25191322 PMCID: PMC4138504 DOI: 10.3389/fimmu.2014.00348] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022] Open
Abstract
Galectins are glycan-binding proteins that regulate innate and adaptive immune responses, and some confer maternal-fetal immune tolerance in eutherian mammals. A chromosome 19 cluster of galectins has emerged in anthropoid primates, species with deep placentation and long gestation. Three of the five human cluster galectins are solely expressed in the placenta, where they may confer additional immunoregulatory functions to enable deep placentation. One of these is galectin-13, also known as Placental Protein 13 (PP13). It has a "jelly-roll" fold, carbohydrate-recognition domain and sugar-binding preference resembling other mammalian galectins. PP13 is predominantly expressed by the syncytiotrophoblast and released from the placenta into the maternal circulation. Its ability to induce apoptosis of activated T cells in vitro, and to divert and kill T cells as well as macrophages in the maternal decidua in situ, suggests important immune functions. Indeed, mutations in the promoter and an exon of LGALS13 presumably leading to altered or non-functional protein expression are associated with a higher frequency of preeclampsia and other obstetrical syndromes, which involve immune dysregulation. Moreover, decreased placental expression of PP13 and its low concentrations in first trimester maternal sera are associated with elevated risk of preeclampsia. Indeed, PP13 turned to be a good early biomarker to assess maternal risk for the subsequent development of pregnancy complications caused by impaired placentation. Due to the ischemic placental stress in preterm preeclampsia, there is increased trophoblastic shedding of PP13 immunopositive microvesicles starting in the second trimester, which leads to high maternal blood PP13 concentrations. Our meta-analysis suggests that this phenomenon may enable the potential use of PP13 in directing patient management near to or at the time of delivery. Recent findings on the beneficial effects of PP13 on decreasing blood pressure due to vasodilatation in pregnant animals suggest its therapeutic potential in preeclampsia.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda, MD, and Detroit, MI , USA ; Department of Obstetrics and Gynecology, Wayne State University School of Medicine , Detroit, MI , USA ; Maternity Private Department, Kútvölgyi Clinical Block, Semmelweis University , Budapest , Hungary ; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Andrea Balogh
- Department of Immunology, Eötvös Loránd University , Budapest , Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda, MD, and Detroit, MI , USA
| | - Eva Kárpáti
- Department of Immunology, Eötvös Loránd University , Budapest , Hungary
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - András Szilágyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University , Budapest , Hungary
| | - Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel , Israel
| | - Sveinbjorn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland , Reykjavik , Iceland
| | - János Matkó
- Department of Immunology, Eötvös Loránd University , Budapest , Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Zoltán Papp
- Maternity Private Department, Kútvölgyi Clinical Block, Semmelweis University , Budapest , Hungary
| | - Hamutal Meiri
- TeleMarpe Ltd. , Tel Aviv , Israel ; Hylabs Ltd. , Rehovot , Israel
| |
Collapse
|
33
|
Clark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod 2014; 20:185-99. [PMID: 24043694 PMCID: PMC3925329 DOI: 10.1093/molehr/gat064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.
Collapse
Affiliation(s)
- Gary F. Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive and Perinatal Research and Division of Reproductive Medicine and Fertility, University of Missouri School of Medicine, Columbia, MO 65211, USA
| |
Collapse
|
34
|
Aghababaei M, Perdu S, Irvine K, Beristain AG. A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development. Mol Hum Reprod 2013; 20:235-49. [PMID: 24243624 DOI: 10.1093/molehr/gat084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During pregnancy, stromal- and vascular-remodeling trophoblasts serve critical roles in directing placental development acquiring pro-invasive characteristics. The A Disintegrin and Metalloproteinase (ADAM) family of multifunctional proteins direct cellular processes across multiple organ systems via their intrinsic catalytic, cell adhesive and intracellular signaling properties. ADAM12, existing as two distinct splice variants (ADAM12L and ADAM12S), is highly expressed in the human placenta and promotes cell migration and invasion in several tumor cell lines; however, its role in trophoblast biology is unknown. In this study, ADAM12 was localized to anchoring trophoblast columns in first trimester placentas and to highly invasive extracellular matrix-degrading trophoblasts in placental villous explants. The importance of ADAM12 in directing trophoblast invasion was tested using loss-of and gain-of-function strategies, where siRNA-directed knockdown of ADAM12 inhibited trophoblast cell invasion while over-expression promoted migration and invasion in two trophoblastic cell models. In placental villous explant cultures, siRNA-directed loss of ADAM12 significantly dampened trophoblast column outgrowth. Additionally, we provide functional evidence for the ADAM12S variant in promoting trophoblast invasion and column outgrowth through a mechanism requiring its catalytic activity. This is the first study to assign a function for ADAM12 in trophoblast biology, where ADAM12 may play a central role regulating the behavior of invasive trophoblast subsets in early pregnancy. This study also underlines the importance of ADAM12L and ADAM12S in directing cell motility in normal developmental processes outside of cancer, specifically highlighting a potentially important function of ADAM12S in directing early placental development.
Collapse
Affiliation(s)
- M Aghababaei
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
35
|
Chuong EB, Hannibal RL, Green SL, Baker JC. Evolutionary perspectives into placental biology and disease. Appl Transl Genom 2013; 2:64-69. [PMID: 27896057 PMCID: PMC5121266 DOI: 10.1016/j.atg.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/29/2022]
Abstract
In all mammals including humans, development takes place within the protective environment of the maternal womb. Throughout gestation, nutrients and waste products are continuously exchanged between mother and fetus through the placenta. Despite the clear importance of the placenta to successful pregnancy and the health of both mother and offspring, relatively little is understood about the biology of the placenta and its role in pregnancy-related diseases. Given that pre- and peri-natal diseases involving the placenta affect millions of women and their newborns worldwide, there is an urgent need to understand placenta biology and development. Here, we suggest that the placenta is an organ under unique selective pressures that have driven its rapid diversification throughout mammalian evolution. The high divergence of the placenta complicates the use of non-human animal models and necessitates an evolutionary perspective when studying its biology and role in disease. We suggest that diversifying evolution of the placenta is primarily driven by intraspecies evolutionary conflict between mother and fetus, and that many pregnancy diseases are a consequence of this evolutionary force. Understanding how maternal-fetal conflict shapes both basic placental and reproductive biology - in all species - will provide key insights into diseases of pregnancy.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roberta L Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Crosley E, Elliot M, Christians J, Crespi B. Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: Evidence from genome-wide analyses. Placenta 2013; 34:127-32. [DOI: 10.1016/j.placenta.2012.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/23/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022]
|
37
|
Abrams ET, Rutherford JN. Framing postpartum hemorrhage as a consequence of human placental biology: an evolutionary and comparative perspective. AMERICAN ANTHROPOLOGIST 2012; 113:417-30. [PMID: 21909154 DOI: 10.1111/j.1548-1433.2011.01351.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Postpartum hemorrhage (PPH), the leading cause of maternal mortality worldwide, is responsible for 35 percent of maternal deaths. Proximately, PPH results from the failure of the placenta to separate from the uterine wall properly, most often because of impairment of uterine muscle contraction. Despite its prevalence and its well-described clinical manifestations, the ultimate causes of PPH are not known and have not been investigated through an evolutionary lens. We argue that vulnerability to PPH stems from the intensely invasive nature of human placentation. The human placenta causes uterine vessels to undergo transformation to provide the developing fetus with a high plane of maternal resources; the degree of this transformation in humans is extensive. We argue that the particularly invasive nature of the human placenta increases the possibility of increased blood loss at parturition. We review evidence suggesting PPH and other placental disorders represent an evolutionarily novel condition in hominins.
Collapse
|
38
|
Carter AM. Evolution of Placental Function in Mammals: The Molecular Basis of Gas and Nutrient Transfer, Hormone Secretion, and Immune Responses. Physiol Rev 2012; 92:1543-76. [DOI: 10.1152/physrev.00040.2011] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Placenta has a wide range of functions. Some are supported by novel genes that have evolved following gene duplication events while others require acquisition of gene expression by the trophoblast. Although not expressed in the placenta, high-affinity fetal hemoglobins play a key role in placental gas exchange. They evolved following duplications within the beta-globin gene family with convergent evolution occurring in ruminants and primates. In primates there was also an interesting rearrangement of a cassette of genes in relation to an upstream locus control region. Substrate transfer from mother to fetus is maintained by expression of classic sugar and amino acid transporters at the trophoblast microvillous and basal membranes. In contrast, placental peptide hormones have arisen largely by gene duplication, yielding for example chorionic gonadotropins from the luteinizing hormone gene and placental lactogens from the growth hormone and prolactin genes. There has been a remarkable degree of convergent evolution with placental lactogens emerging separately in the ruminant, rodent, and primate lineages and chorionic gonadotropins evolving separately in equids and higher primates. Finally, coevolution in the primate lineage of killer immunoglobulin-like receptors and human leukocyte antigens can be linked to the deep invasion of the uterus by trophoblast that is a characteristic feature of human placentation.
Collapse
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Than NG. PP13, decidual zones of necrosis, and spiral artery remodeling--preeclampsia revisited? Reprod Sci 2012; 19:14-5. [PMID: 22228738 DOI: 10.1177/1933719111431678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA.
| |
Collapse
|
40
|
Fonseca BM, Correia-da-Silva G, Teixeira NA. The rat as an animal model for fetoplacental development: a reappraisal of the post-implantation period. Reprod Biol 2012; 12:97-118. [DOI: 10.1016/s1642-431x(12)60080-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Brosens I, Kunz G, Benagiano G. Is adenomyosis the neglected phenotype of an endomyometrial dysfunction syndrome? GYNECOLOGICAL SURGERY 2012; 9:131-137. [PMID: 22611349 PMCID: PMC3338914 DOI: 10.1007/s10397-011-0723-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/24/2011] [Indexed: 11/03/2022]
Abstract
Since the dissociation between adenomyoma and endometriosis in the 1920s and the laparoscopic progress in the diagnosis and surgery of endometriosis, the literature has been greatly focused on the disease endometriosis. The study of adenomyosis, on the other hand, has been neglected as the diagnosis remained based on hysterectomy specimens. However, since the introduction of magnetic resonance and sonographic imaging techniques in the 1980s, the myometrial junctional zone has been identified as a third uterine zone and interest in adenomyosis was renewed. This has also been the start for the interest in the role of the myometrial junctional zone dysfunction and adenomyosis in reproductive and obstetrical disorders.
Collapse
Affiliation(s)
- Ivo Brosens
- Leuven Institute for Fertility and Embryology, Leuven, Belgium
| | - Georg Kunz
- Department of Obstetrics and Gynaecology, St-Johannes-Hospital, Dortmund, Germany
| | - Giuseppe Benagiano
- Department of Gynaecology, Obstetrics and Urology, University of Rome, Sapienza, Italy
| |
Collapse
|
42
|
James JL, Carter AM, Chamley LW. Human placentation from nidation to 5 weeks of gestation. Part II: Tools to model the crucial first days. Placenta 2012; 33:335-42. [PMID: 22365889 DOI: 10.1016/j.placenta.2012.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 01/30/2012] [Indexed: 12/21/2022]
Abstract
Human pregnancy is unusual with respect to monthly spontaneous decidualisation as well as the degree of placental invasion and interaction with the decidualised endometrial stroma. This review covers in vivo animal models and in vitro cell culture models that have been used to study the earliest stages of human implantation and placentation from nidation to 5 weeks of gestation. The field has expanded rapidly in recent years due to the generation of human embryonic stem cell lines and the ability of some scientists to culture human blastocysts. These models have enabled researchers to begin to elucidate the interactions involved in human blastocyst apposition, adhesion and implantation. However, we still understand very little about the differentiation processes involved in the formation of the placenta. Continued improvements to current models, including the potential isolation of a human trophoblast stem cell, will significantly enhance our ability to define the molecular and structural events occurring during human implantation and early placental development.
Collapse
Affiliation(s)
- J L James
- Department of Obstetrics and Gynecology, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand.
| | | | | |
Collapse
|
43
|
Pijnenborg R, Vercruysse L, Carter AM. Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla. Placenta 2011; 32:586-91. [PMID: 21705078 DOI: 10.1016/j.placenta.2011.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
In contrast to baboon or rhesus macaque, trophoblast invasion in the human placental bed occurs by the interstitial as well as the endovascular route and reaches as deep as the inner myometrium. We here describe two rare specimens of gorilla placenta. In the light of recent findings in the chimpanzee, we postulated the occurrence of deep invasion in gorilla pregnancy. Tissues were processed for histology (PAS, orcein), lectin staining (Ulex europaeus agglutinin 1) and immunohistochemistry (cytokeratin 7/17, α-actin). A specimen of young but undetermined gestational age included deep placental bed tissue, showing interstitial and spiral artery invasion of the inner myometrium as well as the decidua. The cell density and depth of trophoblast invasion was equivalent to a human placental bed of 10-14 weeks. Intraluminal trophoblasts were not seen in any of the invaded vessels, allowing no definite conclusions about the origin of the intramural trophoblast and the time-course of spiral artery invasion. A different late second trimester placenta specimen showed scattered extravillous trophoblast in the basal plate and underlying decidua, as well as a remodelled spiral artery containing intramural trophoblast. Absence of inner myometrial tissue precluded assessment of invasion depth in this later specimen. Despite the limited material we can conclude that key aspects of trophoblast invasion are shared by the three hominid species: gorilla, chimpanzee and human.
Collapse
Affiliation(s)
- R Pijnenborg
- Department of Woman & Child, University Hospital Leuven, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | |
Collapse
|