1
|
Nelson JL, Lambert NC. The when, what, and where of naturally-acquired microchimerism. Semin Immunopathol 2025; 47:20. [PMID: 40067465 DOI: 10.1007/s00281-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Naturally acquired microchimerism (Mc) is increasingly recognized as an aspect of normal biology. Maternal-fetal bi-directional exchange during pregnancy creates a Mc legacy for the long-term in both individuals. Maternal Mc in her offspring and Mc of fetal origin in women with previous births are best studied. Other sources include from a known or vanished twin, miscarriage or pregnancy termination, older sibling, or previous maternal pregnancy loss. Mc is pleotropic and protean, present in diverse forms, and changing over time as other aspects of biology. Mc acquired from multiple sources, at different lifespan times, and taking on an array of diverse forms, creates a "forward, reverse, and horizontal inheritance" Mc landscape. Mc is found in adaptive and innate immune cells, as resident tissue-specific cells in a wide variety of human tissues, and among other forms as extracellular vesicles. HLA molecules function in a myriad of ways as key determinants for health and are of central importance in interactions between genetically disparate individuals. Studies of autoimmune disease have firmly established a primary role of HLA molecules. Studies of iatrogenic chimerism have established benefit of donor-recipient HLA-disparity against recurrent malignancy after transplantation. HLA molecules and HLA-relationships of families are therefore of particular interest in seeking to understand the role(s) of Mc at the interface of auto-immunity and healthy allo-immunity. This review will begin by providing perspective on Mc in biology followed by a primary focus on persistent Mc according to the human lifespan, in healthy individuals and with illustrative examples of autoimmune diseases.
Collapse
Affiliation(s)
- J Lee Nelson
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Translational Science and Therapeutics Fred Hutchinson Cancer Center, Seattle, USA.
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites, Microchimérisme et Inflammations (ARTHEMIS), Aix Marseille Université, Marseille, France.
| |
Collapse
|
2
|
Slaats E, Bramreiter B, Chua KJ, Quilang RC, Sallinger K, Eikmans M, Kroneis T. Maternal microchimeric cell trafficking and its biological consequences depend on the onset of inflammation at the feto-maternal interface. Semin Immunopathol 2025; 47:8. [PMID: 39820729 PMCID: PMC11742462 DOI: 10.1007/s00281-025-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood. Recently, the presence of inflammation at the feto-maternal interface has been linked with maternal microchimeric cells modulating organ development in the fetus. Here, we review the current literature and suggest that inflammatory processes at the feto-maternal interface tissues are a physiological prerequisite for the establishment of microchimerism. We further propose a spatio-temporal corridor of microchimeric cell migration to potentially explain some biological effects of microchimerism. Additionally, we elaborate on the possible consequences of a shift in this spatio-temporal corridor, potentially responsible for the development of pathologies in the neonate.
Collapse
Affiliation(s)
- Emiel Slaats
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Bernadette Bramreiter
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kristine J Chua
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Anthropology, University of Notre Dame, Notre Dame, CA, USA
| | - Rachel C Quilang
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Sallinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
3
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
4
|
Alkobtawi M, Ngô QT, Chapuis N, Fontaine RH, El Khoury M, Tihy M, Hachem N, Jary A, Calvez V, Fontenay M, Tsatsaris V, Aractingi S, Oulès B. Enhanced fetal hematopoiesis in response to symptomatic SARS-CoV-2 infection during pregnancy. COMMUNICATIONS MEDICINE 2023; 3:177. [PMID: 38082066 PMCID: PMC10713620 DOI: 10.1038/s43856-023-00406-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/15/2023] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Pregnant women and their fetuses are particularly susceptible to respiratory pathogens. How they respond to SARS-CoV-2 infection is still under investigation. METHODS We studied the transcriptome and phenotype of umbilical cord blood cells in pregnant women infected or not with SARS-CoV-2. RESULTS Here we show that symptomatic maternal COVID-19 is associated with a transcriptional erythroid cell signature as compared with asymptomatic and uninfected mothers. We observe an expansion of fetal hematopoietic multipotent progenitors skewed towards erythroid differentiation that display increased clonogenicity. There was no difference in inflammatory cytokines levels in the cord blood upon maternal SARS-CoV-2 infection. Interestingly, we show an activation of hypoxia pathway in cord blood cells from symptomatic COVID-19 mothers, suggesting that maternal hypoxia may be triggering this fetal stress hematopoiesis. CONCLUSIONS Overall, these results show a fetal hematopoietic response to symptomatic COVID-19 in pregnant mothers in the absence of vertically transmitted SARS-CoV-2 infection which is likely to be a mechanism of fetal adaptation to the maternal infection and reduced oxygen supply.
Collapse
Affiliation(s)
- Mansour Alkobtawi
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Qui Trung Ngô
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Normal and Pathological Hematopoiesis Lab, Paris, France
- Laboratory of Hematology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Romain H Fontaine
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
| | - Mira El Khoury
- Sorbonne University, INSERM UMR-S 938, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Matthieu Tihy
- Department of Pathology, Hôpitaux Universitaires Genève, Genève, Switzerland
| | - Nawa Hachem
- Sorbonne University, INSERM UMR-S 938, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Aude Jary
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | - Michaela Fontenay
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Normal and Pathological Hematopoiesis Lab, Paris, France
- Laboratory of Hematology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetrics, Maternité Port Royal, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
- FHU PREMA, Paris, France
- Université Paris Cité, INSERM U1139, Pathophysiology & Pharmacotoxicology of the Human Placenta, Paris, France
| | - Sélim Aractingi
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France.
- Department of Dermatology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France.
| | - Bénédicte Oulès
- Université Paris Cité, CNRS UMR 8104, INSERM U1016, Institut Cochin, Cutaneous Biology Lab, Paris, France
- Department of Dermatology, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Zawadzka A, Cieślik M, Adamczyk A. The Role of Maternal Immune Activation in the Pathogenesis of Autism: A Review of the Evidence, Proposed Mechanisms and Implications for Treatment. Int J Mol Sci 2021; 22:ijms222111516. [PMID: 34768946 PMCID: PMC8584025 DOI: 10.3390/ijms222111516] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease that is characterized by a deficit in social interactions and communication, as well as repetitive and restrictive behaviors. Increasing lines of evidence suggest an important role for immune dysregulation and/or inflammation in the development of ASD. Recently, a relationship between inflammation, oxidative stress, and mitochondrial dysfunction has been reported in the brain tissue of individuals with ASD. Some recent studies have also reported oxidative stress and mitochondrial abnormalities in animal models of maternal immune activation (MIA). This review is focused on the hypothesis that MIA induces microglial activation, oxidative stress, and mitochondrial dysfunction, a deleterious trio in the brain that can lead to neuroinflammation and neurodevelopmental pathologies in offspring. Infection during pregnancy activates the mother’s immune system to release proinflammatory cytokines, such as IL-6, TNF-α, and others. Furthermore, these cytokines can directly cross the placenta and enter the fetal circulation, or activate resident immune cells, resulting in an increased production of proinflammatory cytokines, including IL-6. Proinflammatory cytokines that cross the blood–brain barrier (BBB) may initiate a neuroinflammation cascade, starting with the activation of the microglia. Inflammatory processes induce oxidative stress and mitochondrial dysfunction that, in turn, may exacerbate oxidative stress in a self-perpetuating vicious cycle that can lead to downstream abnormalities in brain development and behavior.
Collapse
Affiliation(s)
| | - Magdalena Cieślik
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| | - Agata Adamczyk
- Correspondence: (M.C.); (A.A.); Tel.: +48-22-6086420 (M.C.); +48-22-6086572 (A.A.)
| |
Collapse
|
7
|
Murrieta-Coxca JM, Aengenheister L, Schmidt A, Markert UR, Buerki-Thurnherr T, Morales-Prieto DM. Addressing microchimerism in pregnancy by ex vivo human placenta perfusion. Placenta 2021; 117:78-86. [PMID: 34773744 DOI: 10.1016/j.placenta.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
The physical connection of mother and offspring during pregnancy allows the bi-directional exchange of a small number of cells through the placenta. These cells, which can persist long-term in the recipient individual are genetically foreign to it and therefore fulfill the principle of microchimerism. Over the last years, pioneer research on microchimeric cells revealed their role in immune adaptation during pregnancy and priming of tolerogenic responses in the progeny. However, the mechanisms involved in cell transfer across the placenta barrier remain poorly investigated. In this review, we summarize the evidence of fetomaternal microchimerism, propose a mechanism for cell trafficking through the placenta and discuss the different models and techniques available for its analysis. Likewise, we aim to generate interest in the use of ex vivo placenta perfusion to investigate microchimerism in physiological and pathological settings.
Collapse
Affiliation(s)
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | |
Collapse
|
8
|
Parisi F, Milazzo R, Savasi VM, Cetin I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int J Mol Sci 2021; 22:ijms22041732. [PMID: 33572203 PMCID: PMC7914818 DOI: 10.3390/ijms22041732] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity during pregnancy have been associated with increased birth weight, childhood obesity, and noncommunicable diseases in the offspring, leading to a vicious transgenerational perpetuating of metabolic derangements. Key components in intrauterine developmental programming still remain to be identified. Obesity involves chronic low-grade systemic inflammation that, in addition to physiological adaptations to pregnancy, may potentially expand to the placental interface and lead to intrauterine derangements with a threshold effect. Animal models, where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS) resembling the obesity-induced immune profile, showed increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. Cytokine levels might be specifically important for the metabolic imprinting, as cytokines are transferable from maternal to fetal circulation and have the capability to modulate placental nutrient transfer. Maternal inflammation may induce metabolic reprogramming at several levels, starting from the periconceptional period with effects on the oocyte going through early stages of embryonic and placental development. Given the potential to reduce inflammation through inexpensive, widely available therapies, examinations of the impact of chronic inflammation on reproductive and pregnancy outcomes, as well as preventive interventions, are now needed.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Correspondence:
| | - Roberta Milazzo
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| | - Valeria M. Savasi
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Department of Woman, Mother and Neonate, ‘L. Sacco’ Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Irene Cetin
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
9
|
Cosgrove C, Dellacecca ER, van den Berg JH, Haanen JB, Nishimura MI, Le Poole IC, Bergmans HEN. Transgenerational transfer of gene-modified T cells. J Immunother Cancer 2019; 7:186. [PMID: 31307533 PMCID: PMC6631543 DOI: 10.1186/s40425-019-0657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/27/2019] [Indexed: 01/05/2023] Open
Abstract
Tumor immunotherapy using gene-modified T cells has already met with considerable success in the treatment of metastatic melanoma and B cell lymphoma. With improving patient prognoses, new questions arise. In particular, the long-term consequences of treatment among individuals of childbearing age could now be considered. Former patients can carry a cohort of transgenic memory T cells long after treatment has ceased and the effector T cell population has contracted. When patients become parents well after treatment is completed, expectant mothers may still pass transgenic T cells to their unborn children. Consequences should be more measurable if the mother also breastfeeds the baby. Maternal T cells may shape immune responses in the child, can tolerize the child to maternal antigens, and might cause either beneficial or adverse effects in the offspring. The hypothesis put forth is that transgenic T cells transferred from mother to child during and after pregnancy might have consequences that have not been adequately considered to date. Depending on the targeted antigen and the MHC eventually required to present it, such transfer may be beneficial, uneventful or even damaging. Such potential consequences are addressed in this paper. The transgenic T cells might form a pocket of memory T cells in secondary lymphoid organs of the child, expand upon antigen stimulation, and react. However, simple measures might be devised to avoid any reason for concern. These considerations provide ample incentive to probe transgenerational transfer of transgenic T cells.
Collapse
Affiliation(s)
- Cormac Cosgrove
- Department of Dermatology/ Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Emilia R Dellacecca
- Department of Dermatology/ Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Joost H van den Berg
- Division of Molecular Oncology & Immunology/ Netherlands Cancer Institute, Amsterdam, Netherlands
| | - John B Haanen
- Division of Molecular Oncology & Immunology/ Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - I Caroline Le Poole
- Departments of Dermatology, Microbiology and Immunology, Northwestern University at Chicago, Lurie Comprehensive Cancer Center, Rm 3-121, 303 East Superior Street, Chicago, IL, 60611, USA.
| | - Hans E N Bergmans
- National Institute for Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
10
|
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2018; 41:137-151. [DOI: 10.1007/s00281-018-0713-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
11
|
Abstract
Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
12
|
Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol 2017; 17:483-494. [PMID: 28480895 PMCID: PMC5532073 DOI: 10.1038/nri.2017.38] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing non-inherited, familially relevant antigenic traits are not accidental 'souvenirs' of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. In this Review, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active 'microchiome' of genetically foreign cells.
Collapse
Affiliation(s)
- Jeremy M. Kinder
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| | - Ina A. Stelzer
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sing Sing Way
- Division of Infectious Disease and Perinatal Institute, Cincinnati Children’s Hospital. Cincinnati, Ohio 45229 USA
| |
Collapse
|
13
|
Cord blood T cell subpopulations and associations with maternal cadmium and arsenic exposures. PLoS One 2017; 12:e0179606. [PMID: 28662050 PMCID: PMC5491028 DOI: 10.1371/journal.pone.0179606] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
Background Arsenic and cadmium are environmental pollutants, and although the evidence for adverse immune effects after prenatal arsenic and cadmium exposures is increasing, little is known about the underlying immunological mechanisms. Methods We investigated the relationship between prenatal arsenic and cadmium exposures and a variety of T cell subpopulations measured in cord blood for 63 participants in the New Hampshire Birth Cohort Study. Post-partum toenail concentrations of arsenic and cadmium were used as an estimate of maternal exposure during pregnancy. The characteristics of cord blood proportions of T lymphocytes and subpopulations (expression of markers for Th1, Th2, Th17, Th1Th17, induced and natural regulatory T cells and NKTs) are presented. Results In regression analyses, maternal arsenic exposure levels were inversely associated with cord blood T helper memory cells (-21%, 95% CI: -36%, -3%) and the association was found to be stronger in females. They were also inversely associated with activated T helper memory cells, particularly in males (-26%, 95% CI: -43%, -3%). Similarly, inverse associations were observed between cadmium exposure levels and activated T helper memory cells (-16%, 95% CI: -30%, -1%) and also for T helper memory cells in females (-20%, 95% CI: -35%, -3%). Conclusion The results suggest that prenatal exposures to relatively low levels of arsenic and cadmium may contribute to altered distribution of T cell populations at birth. These changes in theory, could have contributed to the previously reported immunosuppressive effects observed later in infancy/childhood.
Collapse
|
14
|
Impact of parental obesity on neonatal markers of inflammation and immune response. Int J Obes (Lond) 2016; 41:30-37. [PMID: 27780976 PMCID: PMC5209273 DOI: 10.1038/ijo.2016.187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/25/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Background/Objectives Maternal obesity may influence neonatal and childhood morbidities through increased inflammation and/or altered immune response. Less is known about paternal obesity. We hypothesized that excessive parental weight contributes to elevated inflammation and altered immunoglobulin (Ig) profiles in neonates. Subjects/Methods In the Upstate KIDS Study maternal pre-pregnancy body mass index (BMI) was obtained from vital records and paternal BMI from maternal report. Biomarkers were measured from newborn dried blood spots (DBS) among neonates whose parents provided consent. Inflammatory scores were calculated by assigning one point for each of 5 pro-inflammatory biomarkers above the median and one point for an anti-inflammatory cytokine below the median. Linear regression models and generalized estimating equations were used to estimate mean differences (β) and 95% confidence intervals (CI) in the inflammatory score and Ig levels by parental overweight/obesity status compared to normal weight. Results Among 2974 pregnancies, 51% were complicated by excessive maternal weight (BMI>25), 73% by excessive paternal weight, and 28% by excessive gestational weight gain. Maternal BMI categories of overweight (BMI 25.0-29.9) and obese class II/III (BMI≥35) were associated with increased neonatal inflammation scores (β=0.12, 95% CI: 0.02, 0.21; p=0.02, and β=0.13, CI: −0.002, 0.26; p=0.05, respectively) but no increase was observed in the obese class I group (BMI 30-34.9). Mothers with class I and class II/III obesity had newborns with increased IgM levels (β=0.11, CI: 0.04, 0.17; p=0.001 and β=0.12, CI: 0.05, 0.19); p<0.001, respectively). Paternal groups of overweight, obese class I and obese class II/III had decreased neonatal IgM levels (β=−0.08, CI: −0.13,-0.03, p=0.001; β=−0.07, CI: −0.13, −0.01, p=0.029 and β=−0.11, CI:−0.19,-0.04, p=0.003, respectively). Conclusions Excessive maternal weight was generally associated with increased inflammation and IgM supporting previous observations of maternal obesity and immune dysregulation in offspring. The role of paternal obesity requires further study.
Collapse
|
15
|
Altfeld M, Bunders MJ. Impact of HIV-1 infection on the feto-maternal crosstalk and consequences for pregnancy outcome and infant health. Semin Immunopathol 2016; 38:727-738. [PMID: 27392971 DOI: 10.1007/s00281-016-0578-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Adaptation of the maternal immune system to establish maternal/fetal equilibrium is required for a successful pregnancy. Viral infections, including HIV-1 infection, can alter this maternal/fetal equilibrium, with significant consequences for pregnancy outcome, including miscarriages, impaired fetal growth, and premature delivery. Furthermore, maternal HIV-1 infection has been shown to have a long-term impact on the developing fetal immune system also when the infant is not infected with the virus. In this review, we discuss the consequences of maternal HIV-1 infection and antiretroviral therapy on pregnancy outcome and the health of the uninfected HIV-1-exposed infant.
Collapse
Affiliation(s)
- Marcus Altfeld
- Department of Virus Immunology, Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Madeleine J Bunders
- Department of Virus Immunology, Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany. .,Department of Experimental Immunology, University of Amsterdam (UvA), Academic Medical Center (AMC), Amsterdam, The Netherlands. .,Emma Childrens Hospital,UvA, AMC, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Ingvorsen C, Brix S, Ozanne SE, Hellgren LI. The effect of maternal Inflammation on foetal programming of metabolic disease. Acta Physiol (Oxf) 2015; 214:440-9. [PMID: 26011013 DOI: 10.1111/apha.12533] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 02/02/2023]
Abstract
Maternal obesity during pregnancy increases the child's risk of developing obesity and obesity-related diseases later in life. Key components in foetal programming of metabolic risk remain to be identified; however, chronic low-grade inflammation associated with obesity might be responsible for metabolic imprinting in the offspring. We have therefore surveyed the literature to evaluate the role of maternal obesity-induced inflammation in foetal programming of obesity and related diseases. The literature on this topic is limited, so this review also includes animal models where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS). An LPS challenge results in an immunological response that resembles the obesity-induced immune profile, although LPS injections provoke a stronger response than the subclinical obesity-associated response. Maternal LPS or cytokine exposures result in increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. The cytokine levels might be specifically important for the metabolic imprinting, as cytokines are both transferable from maternal to foetal circulation and have the capability to modulate placental nutrient transfer. However, the immune response associated with obesity is moderate and therefore potentially weakened by the pregnancy-driven immune modulation, dominated by anti-inflammatory Treg and Th2 cells. We know from other low-grade inflammatory diseases, such as rheumatoid arthritis, that pregnancy can improve disease state. If pregnancy is also capable of suppressing the obesity-associated inflammation, the immunological markers might be less likely to affect metabolic programming in the developing foetus than otherwise implied.
Collapse
Affiliation(s)
- C Ingvorsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| | - S Brix
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - S E Ozanne
- Metabolic Research Laboratories, University of Cambridge, UK
| | - L I Hellgren
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark.,Center for Fetal Programming, Copenhagen, Denmark
| |
Collapse
|
17
|
Maternal microchimerism: lessons learned from murine models. J Reprod Immunol 2015; 108:12-25. [DOI: 10.1016/j.jri.2014.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 11/20/2022]
|
18
|
Solano ME, Thiele K, Stelzer IA, Mittrücker HW, Arck PC. Advancing the detection of maternal haematopoietic microchimeric cells in fetal immune organs in mice by flow cytometry. CHIMERISM 2014; 5:99-102. [PMID: 25483743 PMCID: PMC5063069 DOI: 10.4161/19381956.2014.959827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Maternal microchimerism, which occurs naturally during gestation in hemochorial placental mammals upon transplacental migration of maternal cells into the fetus, is suggested to significantly influence the fetal immune system. In our previous publication, we explored the sensitivity of quantitative polymerase chain reaction and flow cytometry to detect cellular microchimerism. With that purpose, we created mixed cells suspensions in vitro containing reciprocal frequencies of wild type cells and cells positive for enhanced green fluorescent protein or CD45.1+, respectively. Here, we now introduce the H-2 complex, which defines the major histocompatibility complex in mice and is homologous to HLA in human, as an additional target to detect maternal microchimerism among fetal haploidentical cells. We envision that this advanced approach to detect maternal microchimeric cells by flow cytometry facilitates the pursuit of phenotypic, gene expression and functional analysis of microchimeric cells in future studies.
Collapse
Affiliation(s)
- Maria Emilia Solano
- a Laboratory for Experimental Feto-maternal Medicine; Department of Obstetrics and Fetal Medicine ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Kristin Thiele
- a Laboratory for Experimental Feto-maternal Medicine; Department of Obstetrics and Fetal Medicine ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Ina Annelies Stelzer
- a Laboratory for Experimental Feto-maternal Medicine; Department of Obstetrics and Fetal Medicine ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Hans-Willi Mittrücker
- b Department of Immunology ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Petra Clara Arck
- a Laboratory for Experimental Feto-maternal Medicine; Department of Obstetrics and Fetal Medicine ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| |
Collapse
|
19
|
Comparative sensitivity analyses of quantitative polymerase chain reaction and flow cytometry in detecting cellular microchimerism in murine tissues. J Immunol Methods 2014; 406:74-82. [PMID: 24657636 DOI: 10.1016/j.jim.2014.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/30/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
Abstract
Cellular microchimerism is defined as the presence of small populations of cells from one individual in another genetically distinct individual. The pivotal role of cellular microchimerism in a variety of immune settings is increasingly recognized, e.g. in context of pregnancy, transplantation and cancer. However, the detection of chimeric cells is overshadowed by technical limitations. This study aimed to overcome these limitations by testing the sensitivity and detection limit of a molecular biology approach (quantitative polymerase chain reaction, qPCR) and a cellular approach (flow cytometry) in order to identify experimentally induced cellular microchimerism in mice. Leukocytes isolated from lymph nodes or spleens of transgenic enhanced green fluorescent protein (eGFP) and CD45.1 mice respectively were used as targets to be detected as microchimeric cells among wild type (wt) or haploidentical cells. The detection limit of microchimeric cells by flow cytometry was 0.05% or lower for the respective eGFP(+) or CD45.1(+) cell subsets, which equals 48 cells or fewer per 1×10(5) wt cells. The detection limit of CD45.1(+) and CD45.2(+) cells among haploidentical CD45.1(+)2(+) cells by flow cytometry was 48 cells (0.05%) and 198 cells (0.2%), respectively. Using qPCR, a detection limit of 198 eGFP(+) cells per 1×10(5) wt cells, respective 0.2%, could be achieved. We here introduce two technical approaches to reliably detect low number of chimeric cells at a low detection limit and high sensitivity in transgenic mouse systems.
Collapse
|
20
|
Putintseva EV, Britanova OV, Staroverov DB, Merzlyak EM, Turchaninova MA, Shugay M, Bolotin DA, Pogorelyy MV, Mamedov IZ, Bobrynina V, Maschan M, Lebedev YB, Chudakov DM. Mother and child T cell receptor repertoires: deep profiling study. Front Immunol 2013; 4:463. [PMID: 24400004 PMCID: PMC3872299 DOI: 10.3389/fimmu.2013.00463] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/03/2013] [Indexed: 12/03/2022] Open
Abstract
The relationship between maternal and child immunity has been actively studied in the context of complications during pregnancy, autoimmune diseases, and haploidentical transplantation of hematopoietic stem cells and solid organs. Here, we have for the first time used high-throughput Illumina HiSeq sequencing to perform deep quantitative profiling of T cell receptor (TCR) repertoires for peripheral blood samples of three mothers and their six children. Advanced technology allowed accurate identification of 5 × 105 to 2 × 106 TCR beta clonotypes per individual. We performed comparative analysis of these TCR repertoires with the aim of revealing characteristic features that distinguish related mother-child pairs, such as relative TCR beta variable segment usage frequency and relative overlap of TCR beta complementarity-determining region 3 (CDR3) repertoires. We show that thymic selection essentially and similarly shapes the initial output of the TCR recombination machinery in both related and unrelated pairs, with minor effect from inherited differences. The achieved depth of TCR profiling also allowed us to test the hypothesis that mature T cells transferred across the placenta during pregnancy can expand and persist as functional microchimeric clones in their new host, using characteristic TCR beta CDR3 variants as clonal identifiers.
Collapse
Affiliation(s)
- Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Vlasta Bobrynina
- Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russia
| | - Mikhail Maschan
- Federal Scientific Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , Russia
| | - Yuri B Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science , Moscow , Russia ; Central European Institute of Technology (CEITEC), Masaryk University , Brno , Czech Republic
| |
Collapse
|
21
|
Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med 2013; 19:548-56. [PMID: 23652115 DOI: 10.1038/nm.3160] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 03/06/2013] [Indexed: 12/12/2022]
|
22
|
Karniychuk UU, Van Breedam W, Van Roy N, Rogel-Gaillard C, Nauwynck HJ. Demonstration of microchimerism in pregnant sows and effects of congenital PRRSV infection. Vet Res 2012; 43:19. [PMID: 22423651 PMCID: PMC3368719 DOI: 10.1186/1297-9716-43-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 03/16/2012] [Indexed: 11/16/2022] Open
Abstract
The presence of foreign cells within the tissue/circulation of an individual is described as microchimerism. The main purpose of the present investigation was to study if microchimerism occurs in healthy sows/fetuses and if porcine reproductive and respiratory syndrome virus (PRRSV) infection influences this phenomenon. Six dams were inoculated intranasally with PRRSV and three non-inoculated dams served as controls. Male DNA was detected in female fetal sera of all dams via PCR. Male DNA was also detected in the maternal circulation. Sex-typing FISH showed the presence of male cells in the female fetal organs and vice versa. PRRSV infection did not influence microchimerism, but might misuse maternal and sibling microchimeric cells to enter fetuses.
Collapse
Affiliation(s)
- Uladzimir U Karniychuk
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|