1
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
2
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Burton GJ. Fetal microchimerism, pregnancy epiphenomenon or kinship indicator? Proc Biol Sci 2023; 290:20231906. [PMID: 37817590 PMCID: PMC10565412 DOI: 10.1098/rspb.2023.1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Affiliation(s)
- Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
4
|
Nihranz CT, Helms AM, Tooker JF, Mescher MC, De Moraes CM, Stephenson AG. Adverse effects of inbreeding on the transgenerational expression of herbivore-induced defense traits in Solanum carolinense. PLoS One 2022; 17:e0274920. [PMID: 36282832 PMCID: PMC9595541 DOI: 10.1371/journal.pone.0274920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
5
|
Angiolini E, Sandovici I, Coan PM, Burton GJ, Sibley CP, Fowden AL, Constância M. Deletion of the Imprinted Phlda2 Gene Increases Placental Passive Permeability in the Mouse. Genes (Basel) 2021; 12:639. [PMID: 33922969 PMCID: PMC8146920 DOI: 10.3390/genes12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting, an epigenetic phenomenon that causes the expression of a small set of genes in a parent-of-origin-specific manner, is thought to have co-evolved with placentation. Many imprinted genes are expressed in the placenta, where they play diverse roles related to development and nutrient supply function. However, only a small number of imprinted genes have been functionally tested for a role in nutrient transfer capacity in relation to the structural characteristics of the exchange labyrinthine zone. Here, we examine the transfer capacity in a mouse model deficient for the maternally expressed Phlda2 gene, which results in placental overgrowth and a transient reduction in fetal growth. Using stereology, we show that the morphology of the labyrinthine zone in Phlda2-/+ mutants is normal at E16 and E19. In vivo placental transfer of radiolabeled solutes 14C-methyl-D-glucose and 14C-MeAIB remains unaffected at both gestational time points. However, placental passive permeability, as measured using two inert hydrophilic solutes (14C-mannitol; 14C-inulin), is significantly higher in mutants. Importantly, this increase in passive permeability is associated with fetal catch-up growth. Our findings uncover a key role played by the imprinted Phlda2 gene in modifying placental passive permeability that may be important for determining fetal growth.
Collapse
Affiliation(s)
- Emily Angiolini
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (E.A.); (I.S.)
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (E.A.); (I.S.)
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (P.M.C.); (G.J.B.); (A.L.F.)
| | - Philip M. Coan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (P.M.C.); (G.J.B.); (A.L.F.)
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (P.M.C.); (G.J.B.); (A.L.F.)
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9WL, UK;
- Manchester Academic Health Science Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Abigail L. Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (P.M.C.); (G.J.B.); (A.L.F.)
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (E.A.); (I.S.)
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0SW, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (P.M.C.); (G.J.B.); (A.L.F.)
| |
Collapse
|
6
|
Ingram GC. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Res 2020; 9. [PMID: 32055398 PMCID: PMC6961419 DOI: 10.12688/f1000research.21527.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
The zygotic embryos of angiosperms develop buried deep within seeds and surrounded by two main extra-embryonic tissues: the maternally derived seed coat tissues and the zygotic endosperm. Generally, these tissues are considered to play an important role in nurturing the developing embryo by acting as conduits for maternally derived nutrients. They are also critical for key seed traits (dormancy establishment and control, longevity, and physical resistance) and thus for seed and seedling survival. However, recent studies have highlighted the fact that extra-embryonic tissues in the seed also physically and metabolically limit embryonic development and that unique mechanisms may have evolved to overcome specific developmental and genetic constraints associated with the seed habit in angiosperms. The aim of this review is to illustrate how these studies have begun to reveal the highly complex physical and physiological relationship between extra-embryonic tissues and the developing embryo. Where possible I focus on Arabidopsis because of space constraints, but other systems will be cited where relevant.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| |
Collapse
|
7
|
Consistent Reanalysis of Genome-wide Imprinting Studies in Plants Using Generalized Linear Models Increases Concordance across Datasets. Sci Rep 2019; 9:1320. [PMID: 30718537 PMCID: PMC6362150 DOI: 10.1038/s41598-018-36768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
Genomic imprinting leads to different expression levels of maternally and paternally derived alleles. Over the last years, major progress has been made in identifying novel imprinted candidate genes in plants, owing to affordable next-generation sequencing technologies. However, reports on sequencing the transcriptome of hybrid F1 seed tissues strongly disagree about how many and which genes are imprinted. This raises questions about the relative impact of biological, environmental, technical, and analytic differences or biases. Here, we adopt a statistical approach, frequently used in RNA-seq data analysis, which properly models count overdispersion and considers replicate information of reciprocal crosses. We show that our statistical pipeline outperforms other methods in identifying imprinted genes in simulated and real data. Accordingly, reanalysis of genome-wide imprinting studies in Arabidopsis and maize shows that, at least for Arabidopsis, an increased agreement across datasets could be observed. For maize, however, consistent reanalysis did not yield a larger overlap between the datasets. This suggests that the discrepancy across publications might be partially due to different analysis pipelines but that technical, biological, and environmental factors underlie much of the discrepancy between datasets. Finally, we show that the set of genes that can be characterized regarding allelic bias by all studies with minimal confidence is small (~8,000/27,416 genes for Arabidopsis and ~12,000/39,469 for maize). In conclusion, we propose to use biologically replicated reciprocal crosses, high sequence coverage, and a generalized linear model approach to identify differentially expressed alleles in developing seeds.
Collapse
|
8
|
Maternal Environment Effect of Warming and Eutrophication on the Emergence of Curled Pondweed, Potamogeton crispus L. WATER 2018. [DOI: 10.3390/w10091285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maternal effects may play an important role in life history and offspring performance of aquatic plants. Performance and response of maternal and offspring aquatic plants can affect population dynamics and community composition. Understanding maternal effect can help to fill a gap in the knowledge of aquatic plant life cycles, and provide important insights for species’ responses to climate change and eutrophication. This study showed that maternal warming and eutrophication significantly affected the early life stages of curled pondweed, Potamogeton crispus, a submerged macrophyte. Propagule in warmed condition had higher germination percentages and a shorter mean germination time than those under ambient conditions. However, propagule germination in phosphorus addition treatment was inhibited due to the negative effect of eutrophication, e.g., phytoplankton competition and deteriorated underwater light. Meanwhile, elevated temperature led to a decrease of total nitrogen concentrations and an increase of carbon: nitrogen ratios in plant tissues, which may suggest that P. crispus will allocate more nutrients to propagules in order to resist the adverse effects of high temperature. A subsequent germination experiment in the same ambient condition showed that maternal warming promoted seedling emergence in contrast to maternal phosphorus addition. Consequently, global warming could modify population growth via maternal environmental effects on early life histories, while increased anthropogenic nutrient inputs may result in a decreased submerged macrophyte. These maternal effects on offspring performance may change competition and the survival of early life-history stages under climate warming and eutrophication through changing the ecological stoichiometry of plant tissue.
Collapse
|
9
|
Fort A, Tuteja R, Braud M, McKeown PC, Spillane C. Parental-genome dosage effects on the transcriptome of F1 hybrid triploid embryos of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1044-1058. [PMID: 29024088 DOI: 10.1111/tpj.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Genomic imprinting in the seed endosperm could be due to unequal parental-genome contribution effects in triploid endosperm tissue that trigger parent-of-origin specific activation and/or silencing of loci prone to genomic imprinting. To determine whether genomic imprinting is triggered by unequal parental-genome contribution effects, we generated a whole-genome transcriptome dataset of F1 hybrid triploid embryos (as mimics of F1 hybrid triploid endosperm). For the vast majority of genes, the parental contributions to their expression levels in the F1 triploid hybrid embryos follow a biallelic and linear expression pattern. While allele-specific expression (ASE) bias was detected, such effects were predominantly parent-of-origin independent. We demonstrate that genomic imprinting is largely absent from F1 triploid embryos, strongly suggesting that neither triploidy nor unequal parental-genome contribution are key triggers of genomic imprinting in plants. However, extensive parental-genome dosage effects on gene expression were observed between the reciprocal F1 hybrid embryos, particularly for genes involved in defence response and nutrient reservoir activity, potentially leading to the seed size differences between reciprocal triploids. We further determined that unequal parental-genome contribution in F1 triploids can lead to overexpression effects that are parent-of-origin dependent, and which are not observed in diploid or tetraploid embryos in which the parental-genome dosage is balanced. Overall, our study demonstrates that neither triploidy nor unequal parental-genome contribution is sufficient to trigger imprinting in plant tissues, suggesting that genomic imprinting is an intrinsic and unique feature of the triploid seed endosperm.
Collapse
Affiliation(s)
- Antoine Fort
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Reetu Tuteja
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Martin Braud
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
10
|
Arena R, Zacchini F, Toschi P, Palazzese L, Czernik M, Ptak GE. Developmental peculiarities in placentae of ovine uniparental conceptuses. PLoS One 2017; 12:e0188278. [PMID: 29190766 PMCID: PMC5708791 DOI: 10.1371/journal.pone.0188278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon regulating mono-allelic expression of genes depending on their parental origin. Defective genomic imprinting is involved in several placental disorders, such as intrauterine growth restriction and pre-eclampsia. Uniparental embryos, having maternal-only or paternal-only genomes (parthenogenotes [PAR] and androgenotes [AND], respectively), are useful models to study placentation. The aim of this work was to reveal the effect of parental genome (maternal and paternal) on placentation. To do this, uniparental (AND and PAR) and biparental (CTR) in vitro produced sheep embryos transferred to recipient females were collected at day 20 of pregnancy and their placentae were analyzed. qPCR analysis showed that imprinted genes (H19, IGF2R and DLK1) were expressed accordingly to their parental origin while the expression f DNA methyltransferases () was disregulated, especially in PAR (P < 0.05). AND placentae were significantly hypomethylated compared to both PAR and CTR (P = 0.023). Chorion-allantoid of AND showed impaired development of vessels and reduced mRNA expression of vasculogenetic factors (ANG2 P = 0.05; VEGFR2 P< 0.001; TIE2 P < 0.001). Morphologically, PAR placentae were characterized by abnormal structure of the trophoectodermal epithelium and reduced total number (P<0.03) of Trophoblastic Binucleate Cells. A reduced implantation rate of both classes of uniparental embryos (P<0.03) was also noted. Our results provide new insights into the characterization of uniparental embryos and demonstrate the complementary role of parental genomes for the correct establishment of pregnancy. Thus, our findings may suggest new targets to improve our understanding of the origin of imprinting-related placental dysfunction.
Collapse
Affiliation(s)
- Roberta Arena
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Federica Zacchini
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paola Toschi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Palazzese
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Marta Czernik
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Grażyna Ewa Ptak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
11
|
Barr KL. Vertical transmission of positive-sense single-stranded RNA viruses in plants as a model for arboviral induced teratogenesis. Curr Opin Virol 2017; 27:42-47. [PMID: 29172070 DOI: 10.1016/j.coviro.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
Teratogenic viruses have increased public health importance with the emergence of Zika virus and a recent decline in rubella virus vaccination. Of the seven viruses known to cause birth defects in humans, three are mosquito-borne pathogens. Ethical oversight, compliance, rising costs, and the need for specialized training slow the pace of study of these human pathogens compared to study of similar teratogenic viruses in plants. Plant viruses have served as models for human viruses which can be applied to animal systems. This review describes the similar features of plant and animal teratogenic arboviruses and the common systems and barriers that are encountered during vertical transmission in the host.
Collapse
Affiliation(s)
- Kelli L Barr
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, United States.
| |
Collapse
|
12
|
Abstract
Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Gonzalez PN, Gasperowicz M, Barbeito-Andrés J, Klenin N, Cross JC, Hallgrímsson B. Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth. PLoS One 2016; 11:e0152227. [PMID: 27018791 PMCID: PMC4809512 DOI: 10.1371/journal.pone.0152227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 01/08/2023] Open
Abstract
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.
Collapse
Affiliation(s)
- Paula N. Gonzalez
- Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina
- de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Malgorzata Gasperowicz
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jimena Barbeito-Andrés
- Instituto de Genética Veterinaria, CCT-CONICET, La Plata, Argentina
- de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Natasha Klenin
- Department Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - James C. Cross
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, and the Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (BH); (JC)
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, Alberta Children’s Hospital Research Institute, and McCaig Institute for Bone and Joint Health. University of Calgary, Calgary, Alberta, Canada
- * E-mail: (BH); (JC)
| |
Collapse
|
14
|
Green BB, Kappil M, Lambertini L, Armstrong DA, Guerin DJ, Sharp AJ, Lester BM, Chen J, Marsit CJ. Expression of imprinted genes in placenta is associated with infant neurobehavioral development. Epigenetics 2015. [PMID: 26198301 DOI: 10.1080/15592294.2015.1073880] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genomic imprinting disorders often exhibit delayed neurobehavioral development, suggesting this unique mechanism of epigenetic regulation plays a role in mental and neurological health. While major errors in imprinting have been linked to adverse health outcomes, there has been little research conducted on how moderate variability in imprinted gene expression within a population contributes to differences in neurobehavioral outcomes, particularly at birth. Here, we profiled the expression of 108 known and putative imprinted genes in human placenta samples from 615 infants assessed by the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). Data reduction identified 10 genes (DLX5, DHCR24, VTRNA2-1, PHLDA2, NPAP1, FAM50B, GNAS-AS1, PAX8-AS1, SHANK2, and COPG2IT1) whose expression could distinguish between newborn neurobehavioral profiles derived from the NNNS. Clustering infants based on the expression pattern of these genes identified 2 groups of infants characterized by reduced quality of movement, increased signs of asymmetrical and non-optimal reflexes, and increased odds of demonstrating increased signs of physiologic stress and abstinence. Overall, these results suggest that common variation in placental imprinted gene expression is linked to suboptimal performance on scales of neurological functioning as well as with increased signs of physiologic stress, highlighting the central importance of the control of expression of these genes in the placenta for neurobehavioral development.
Collapse
Affiliation(s)
- Benjamin B Green
- a Department of Epidemiology and Department of Pharmacology and Toxicology ; Geisel School of Medicine at Dartmouth College ; Hanover , NH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Madon-Simon M, Cowley M, Garfield AS, Moorwood K, Bauer SR, Ward A. Antagonistic roles in fetal development and adult physiology for the oppositely imprinted Grb10 and Dlk1 genes. BMC Biol 2014; 12:771. [PMID: 25551289 PMCID: PMC4280702 DOI: 10.1186/s12915-014-0099-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Background Despite being a fundamental biological problem the control of body size and proportions during development remains poorly understood, although it is accepted that the insulin-like growth factor (IGF) pathway has a central role in growth regulation, probably in all animals. The involvement of imprinted genes has also attracted much attention, not least because two of the earliest discovered were shown to be oppositely imprinted and antagonistic in their regulation of growth. The Igf2 gene encodes a paternally expressed ligand that promotes growth, while maternally expressed Igf2r encodes a cell surface receptor that restricts growth by sequestering Igf2 and targeting it for lysosomal degradation. There are now over 150 imprinted genes known in mammals, but no other clear examples of antagonistic gene pairs have been identified. The delta-like 1 gene (Dlk1) encodes a putative ligand that promotes fetal growth and in adults restricts adipose deposition. Conversely, Grb10 encodes an intracellular signalling adaptor protein that, when expressed from the maternal allele, acts to restrict fetal growth and is permissive for adipose deposition in adulthood. Results Here, using knockout mice, we present genetic and physiological evidence that these two factors exert their opposite effects on growth and physiology through a common signalling pathway. The major effects are on body size (particularly growth during early life), lean:adipose proportions, glucose regulated metabolism and lipid storage in the liver. A biochemical pathway linking the two cell signalling factors remains to be defined. Conclusions We propose that Dlk1 and Grb10 define a mammalian growth axis that is separate from the IGF pathway, yet also features an antagonistic imprinted gene pair. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0099-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Ward
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Building 4 South, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
16
|
Bloomfield JA, Rose TJ, King GJ. Sustainable harvest: managing plasticity for resilient crops. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:517-33. [PMID: 24891039 PMCID: PMC4207195 DOI: 10.1111/pbi.12198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/14/2014] [Indexed: 05/18/2023]
Abstract
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Justin A Bloomfield
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
17
|
Frésard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud N, Vignoles F, Bed'hom B, Coville JL, Hormozdiari F, Beaumont C, Zerjal T, Vignal A, Morisson M, Lagarrigue S, Pitel F. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res 2014; 42:3768-82. [PMID: 24452801 PMCID: PMC3973300 DOI: 10.1093/nar/gkt1390] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan F-31326, France, ENVT, UMR444 Laboratoire de Génétique Cellulaire, Toulouse F-31076, France, INRA, PEAT Pôle d'Expérimentation Avicole de Tours, Nouzilly F- 37380, France, INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan F-31326, France, INRA, GeT-PlaGe Genotoul, Castanet-Tolosan F-31326, France, INRA, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, Department of Computer Sciences, University of California, Los Angeles, CA 90095, USA, INRA, UR83 Recherche Avicoles, Nouzilly F- 37380, France and Agrocampus Ouest, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Animal Genetics Laboratory, Rennes F-35000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci U S A 2013; 110:19639-44. [PMID: 24218619 PMCID: PMC3845156 DOI: 10.1073/pnas.1309182110] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize.
Collapse
Affiliation(s)
- Amanda J. Waters
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| | | | - Steven R. Eichten
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas–Austin, Austin TX 78758
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences and
- The Genome Center and Center for Population Biology, University of California, Davis, CA 95616
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142; and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
19
|
Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10. Mamm Genome 2013; 25:87-93. [PMID: 23974804 DOI: 10.1007/s00335-013-9472-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
Abstract
Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key "imprinting hot spots" in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.
Collapse
|