1
|
Xiao Y, Ma J, Li Z, Gou H, Chen X, Zhou Y, Shen M, Li L, Xu Y. NAMPT Impairs Vascular Permeability in Periodontitis by Influencing FASN-mediated Lipogenesis. Int J Biol Sci 2025; 21:2707-2724. [PMID: 40303304 PMCID: PMC12035901 DOI: 10.7150/ijbs.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Vascular abnormalities promote tissue inflammation and bone loss. Although vascular abnormalities in periodontitis have been studied, underlying pathogenic mechanisms remain unclear. This study aimed to investigate key molecules regulating endothelial cell permeability and explore their role in the progression of periodontitis. Single-cell RNA sequencing revealed leukocyte transendothelial migration in periodontitis is associated with endothelial cells. Moreover, increased vascular permeability was observed in both human and mouse periodontitis tissues. Nicotinamide phosphoribosyltransferase (NAMPT) protein expression was significantly upregulated in endothelial cells within periodontitis tissues, with levels increasing as the disease progressed. NAMPT gain-of-function decreased VE-cadherin expression and membrane potential, increased HUVEC permeability, and promoted leukocyte trans-endothelial migration. Mechanically, NAMPT elevated levels of triglycerides and free fatty acids, leading to lipid droplet accumulation in HUVEC. Fatty acid synthase (FASN), an enzyme that catalyzes the biosynthesis of fatty acids, is also raised with NAMPT. NAMPT promoted NADPH pool which is utilized in FASN-mediated lipogenesis. FASN inhibitor orlistat reversed lipogenesis and endothelial permeability induced by NAMPT. Furthermore, orlistat administration reduced periodontal vascular permeability and further reversed bone resorption in periodontitis mice. This study demonstrated that increased NAMPT in periodontitis promotes endothelial permeability by modulating FASN-mediated lipogenesis, thereby contributing to bone loss in periodontitis.
Collapse
Affiliation(s)
- Yijing Xiao
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiahui Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zirui Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Huiqing Gou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xu Chen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ming Shen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
2
|
Liu JC, Zeng Q, Duan YG, Yeung WSB, Li RHW, Ng EHY, Cheung KW, Zhang Q, Chiu PCN. B cells: roles in physiology and pathology of pregnancy. Front Immunol 2024; 15:1456171. [PMID: 39434884 PMCID: PMC11491347 DOI: 10.3389/fimmu.2024.1456171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
B cells constitute a diverse and adaptable immune cell population with functions that can vary according to the environment and circumstances. The involvement of B cells in pregnancy, as well as the associated molecular pathways, has yet to be investigated. This review consolidates current knowledge on B cell activities and regulation during pregnancy, with a particular focus on the roles of various B cell subsets and the effects of B cell-derived factors on pregnancy outcomes. Moreover, the review examines the significance of B cell-associated autoantibodies, cytokines, and signaling pathways in relation to pregnancy complications such as pregnancy loss, preeclampsia, and preterm birth.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ka-Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Annie L, Pankaj PP, Kharwar RK, Singh A, Roy VK. Status of visfatin in female reproductive function under normal and pathological conditions: a mini review. Mol Biol Rep 2024; 51:631. [PMID: 38722405 DOI: 10.1007/s11033-024-09461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/20/2024] [Indexed: 02/06/2025]
Abstract
Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Lalrawngbawli Annie
- Department of Zoology, Banaras Hindu University, Varanasi, U.P., 221005, India.
| | - Pranay Punj Pankaj
- Department of Zoology, Nagaland University, Lumami, Nagaland, 798627, India.
| | | | - Ajit Singh
- Department of Zoology, Banaras Hindu University, Varanasi, U.P., 221005, India.
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Tanhril, Mizoram, 796004, India.
| |
Collapse
|
5
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
6
|
Shamkhi Al- Ghazali B, Ali Mohammed A, Muhi Fahad A. The association of serum visfatin in women with polycystic ovary syndrome: A case-control study. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrinopathy among women of reproductive age. Visfatin is an adipokine secreted by fat tissue and macrophages involved in regulating glucose homeostasis, adipose tissue inflammation, chronic systemic inflammation, cardiovascular disease and endothelial dysfunction. The study sample (100 patients) includes 50 PCOS women and 50 control matched for age and body mass index (BMI). The women with PCOS were divided into obese or overweighed according to BMI ≥ 25 Kg/m2 and non-obese BMI ≤ 25 Kg/m2. The control group was also divided into obese and non-obese. The results showed that serum visfatin was significantly increased in obese women with POCS compared to obese control (5.61 ± 1.27 ng/mL vs. 0.48 ±0.28 ng/mL) and in non-obese women with polycystic ovarian syndrome compared to non-obese control (5.22± 1.36 ng/mL vs. 0.33± 0.26 ng/mL). These findings might suggest that visfatin could play a role in pathogenesis and the long-term consequences of PCOS.
Keywords: visfatin; polycystic ovarian syndrome; body mass index; obese women
Collapse
Affiliation(s)
| | - Ayyam Ali Mohammed
- Department of Gynecology and Obstetrics, Al-Najaf Health Directorate, Ministry of Health, Al-Najaf, Iraq
| | - Ahmed Muhi Fahad
- Department of Cardiothoracic and Vascular Surgery, Al-Sadder Teaching Medical City, Al-Najaf Health Directorate, Ministry of Health, Al-Najaf, Iraq
| |
Collapse
|
7
|
Saito Reis CA, Ng PK, Kurashima CK, Padron J, Kendal-Wright CE. Fetal DNA Causes Sex-Specific Inflammation From Human Fetal Membranes. Front Physiol 2022; 13:901726. [PMID: 35812324 PMCID: PMC9257279 DOI: 10.3389/fphys.2022.901726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is central to the mechanisms of parturition, but the lack of understanding of how it is controlled in normal parturition hampers our ability to understand how it may diverge resulting in preterm birth. Cell-free fetal DNA is found in the amniotic fluid, and it is thought to be able to activate inflammation as a danger-associated molecular pattern. Although its levels increases with gestational age, its effect has not been studied on the human fetal membranes. Thus, the aim of this study was to determine if the fetal DNA can trigger inflammation in the human fetal membranes and, thus, potentially contribute to the inflammatory load. Isolated human amniotic epithelial cells and fetal membrane explants were treated apically with fetal DNA causing the translocation of NF-KB into the nucleus of cells and throughout the cells of the explant layers with time. Fetal membrane explants were treated apically with either small or larger fragments of fetal DNA. IL-6, TNFα, and GM-CSF secretion was measured by ELISA, and pro-MMP2 and pro-MMP9 activity was measured by zymography from apical and basal media. Increased apical IL-6 secretion and basal pro-MMP2 activity was seen with small fragments of fetal DNA. When the data were disaggregated based on fetal sex, males had significant increases in IL-6 secretion and basal increased activity in pro-MMP2 and 9, whereas females had significantly increased basal secretion of TNFα. This was caused by the smaller fragments of fetal DNA, whereas the larger fragments did not cause any significant increases. Male fetal DNA had significantly lower percentages of methylation than females. Thus, when the cytokine and pro-MMP activity data were correlated with methylation percentage, IL-6 secretion significantly correlated negatively, whereas GM-CSF secretion positively correlated. These data support the role of fetal DNA as an inflammatory stimulus in the FM, as measured by increased NF-κB translocation, cytokine secretion, and increased pro-MMP activity. However, the data also suggested that the responses are different from FM tissues of male and female fetuses, and both the fragment size and methylation status of the fetal DNA can influence the magnitude and type of molecule secreted.
Collapse
Affiliation(s)
- Chelsea A. Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Po’okela K. Ng
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | | | - Justin Padron
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Claire Enid Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- *Correspondence: Claire Enid Kendal-Wright,
| |
Collapse
|
8
|
Shokrollahi B, Shang JH, Saadati N, Ahmad HI, Yang CY. Reproductive roles of novel adipokines apelin, visfatin, and irisin in farm animals. Theriogenology 2021; 172:178-186. [PMID: 34175524 DOI: 10.1016/j.theriogenology.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
The adipose tissue has a substantial impact on reproduction in mammals, specifically in females. As an energy depository organ, it is precisely associated with the reproductive success of mammals. Adipose tissue secretes many single molecules that are called 'adipokines' which mainly act as endocrine hormones. Adipokines homeostasis is fundamental to energy regulation, metabolic and cardiovascular diseases. The endocrine function of adipokines is influential for the long-term control of energy metabolism and performs an important function in metabolic state and fertility modulation. During the last years, new roles for adipokines have been appearing in the field of fertility. The adipokines have functions in reproduction at levels of the hypothalamus, the pituitary, and the gonads in humans, rodents, and other animals. Normal levels of adipokines are indispensable to protect the integrity of the hypothalamus-hypophysis-gonadal axis, regular ovulatory processes, and successful embryo implantation. Leptin and adiponectin are the most studied adipokines, but also the novel adipokines; apelin, visfatin, and irisin are important adipokines having several functions within the reproductive tract. Due to the known and unknown effects of these novel adipokines in the reproduction of farm animals, in this review, we will highlight the reproductive functions of apelin, visfatin, and irisin and summarize the known reproductive effects in farm animals to introduce the gaps for future studies in farm animals.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nazila Saadati
- Department of Plant Biotechnology, Faculty of Agriculture, Kurdistan University, Sanandaj, Kurdistan province, Iran
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| |
Collapse
|
9
|
Kaminski T, Kiezun M, Zaobidna E, Dobrzyn K, Wasilewska B, Mlyczynska E, Rytelewska E, Kisielewska K, Gudelska M, Bors K, Kopij G, Szymanska K, Kaminska B, Rak A, Smolinska N. Plasma level and expression of visfatin in the porcine hypothalamus during the estrous cycle and early pregnancy. Sci Rep 2021; 11:8698. [PMID: 33888798 PMCID: PMC8062436 DOI: 10.1038/s41598-021-88103-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Visfatin appears to be an energy sensor involved in the regulation of female fertility, which creates a hormonal link integrating the control of energy homeostasis and reproduction. This study evaluates the expression levels of visfatin gene and protein in selected areas of the porcine hypothalamus responsible for gonadotropin-releasing hormone synthesis: the mediobasal hypothalamus (MBH) and preoptic area (POA), and visfatin concentrations in the blood plasma. The tissue samples were harvested from gilts on days 2-3, 10-12, 14-16, and 17-19 of the estrous cycle, and on days 10-11, 12-13, 15-16, 27-28 of pregnancy. Visfatin was localized in the cytoplasm and nucleus of cells creating both studied hypothalamic structures. The study demonstrated that visfatin gene and protein expression in MBH and POA depends on hormonal status related to the phase of the estrous cycle or early pregnancy. Blood plasma concentrations of visfatin during the estrous cycle were higher on days 2-3 in relation to other studied phases of the cycle, while during early pregnancy, the highest visfatin contents were observed on days 12-13. This study demonstrated visfatin expression in the porcine hypothalamus and its dependence on the hormonal milieu related to the estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Tadeusz Kaminski
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marta Kiezun
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Ewa Zaobidna
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kamil Dobrzyn
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Barbara Wasilewska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska St. 30, 10-082 Olsztyn, Poland
| | - Ewa Mlyczynska
- grid.5522.00000 0001 2162 9631Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa St. 9, 31–387 Krakow, Poland
| | - Edyta Rytelewska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Katarzyna Kisielewska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Marlena Gudelska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Kinga Bors
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Grzegorz Kopij
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Karolina Szymanska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Barbara Kaminska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Agnieszka Rak
- grid.5522.00000 0001 2162 9631Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa St. 9, 31–387 Krakow, Poland
| | - Nina Smolinska
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego St. 1A, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
10
|
Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol 2021; 236:6282-6296. [PMID: 33634486 DOI: 10.1002/jcp.30345] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alexander Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.,Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Bhattacharjee J, Mohammad S, Goudreau AD, Adamo KB. Physical activity differentially regulates VEGF, PlGF, and their receptors in the human placenta. Physiol Rep 2021; 9:e14710. [PMID: 33463910 PMCID: PMC7814495 DOI: 10.14814/phy2.14710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Physical activity (PA) has beneficial effects on the function of many organs by modulating their vascular development. Regular PA during pregnancy is associated with favorable short‐ and long‐term outcomes for both mother and fetus. During pregnancy, appropriate vascularization of the placenta is crucial for adequate maternal–fetal nutrient and gas exchange. How PA modulates angiogenic factors, VEGF, and its receptors in the human placenta, is as of yet, unknown. We objectively measured the PA of women at 24–28 and 34–38 weeks of gestation. Participants were considered “active” if they had met or exceeded 150 min of moderate‐intensity PA per week during their 2nd trimester. Term placenta tissues were collected from active (n = 23) or inactive (n = 22) women immediately after delivery. We examined the expression of the angiogenic factors VEGF, PlGF, VEGFR‐1, and VEGFR‐2 in the placenta. Western blot analysis showed VEGF and its receptor, VEGFR‐1 was significantly (p < 0.05) higher both at the protein and mRNA levels in placenta from physically active compared to inactive women. No difference in VEGFR‐2 was observed. Furthermore, immunohistochemistry showed differential staining patterns of VEGF and its receptors in placental endothelial, stromal, and trophoblast cells and in the syncytial brush border. In comparison, PlGF expression did not differ either at the protein or mRNA level in the placenta from physically active or inactive women. The expression and localization pattern of VEGF and its receptors suggest that PA during pregnancy may support a pro‐angiogenic milieu to the placental vascular network.
Collapse
Affiliation(s)
- Jayonta Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Shuhiba Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Alexandra D Goudreau
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Kristi B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Weidinger A, Poženel L, Wolbank S, Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front Bioeng Biotechnol 2021; 8:613804. [PMID: 33520964 PMCID: PMC7839410 DOI: 10.3389/fbioe.2020.613804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
For more than 100 years, the human amniotic membrane (hAM) has been used in multiple tissue regeneration applications. The hAM consists of cells with stem cell characteristics and a rich layer of extracellular matrix. Undoubtedly, the hAM with viable cells has remarkable properties such as the differentiation potential into all three germ layers, immuno-modulatory, and anti-fibrotic properties. At first sight, the hAM seems to be one structural entity. However, by integrating its anatomical location, the hAM can be divided into placental, reflected, and umbilical amniotic membrane. Recent studies show that cells of these amniotic sub-regions differ considerably in their properties such as morphology, structure, and content/release of certain bioactive factors. The aim of this review is to summarize these findings and discuss the relevance of these different properties for tissue regeneration. In summary, reflected amnion seems to be more immuno-modulatory and could have a higher reprogramming efficiency, whereas placental amnion seems to be pro-inflammatory, pro-angiogenic, with higher proliferation and differentiation capacity (e.g., chondrogenic and osteogenic), and could be more suitable for certain graft constructions. Therefore, we suggest that the respective hAM sub-region should be selected in consideration of its desired outcome. This will help to optimize and fine-tune the clinical application of the hAM.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Laura Poženel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
13
|
Shen L, Zhu Y, Xiao J, Qian B, Jiang T, Deng J, Peng G, Yu S, Cao S, Zuo Z, Ma X, Zhong Z, Ren Z, Wang Y, Zhou Z, Liu H, Zong X, Hu Y. Relationships between placental adiponectin, leptin, visfatin and resistin and birthweight in cattle. Reprod Fertil Dev 2021; 32:402-408. [PMID: 31739842 DOI: 10.1071/rd18247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
Adipokines can affect intrauterine development while calf birthweight (CBW) is a breeding standard of calves, which reflects the status of fetal intrauterine development. To explore the correlation between placental adipokines and CBW, 54 healthy Chinese Holstein cows were used in the present study. The cows were grouped according to the CBW of their calves. Placentas were collected immediately after delivery and enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction were used to detect the placental expression levels of adiponectin, leptin, visfatin and resistin. Our results show that the mRNA transcription and blood placental content of adiponectin, leptin, visfatin and resistin increased with increasing CBW. The analysis showed that the mRNA transcription levels of placental adiponectin, leptin and resistin were positively correlated with CBW. The mRNA and protein expression levels of adiponectin, leptin and visfatin between the three groups were significantly correlated. Placental resistin mRNA levels correlated positively with adiponectin mRNA, but not leptin or visfatin. The protein expression levels of resistin were significantly positively correlated with those of adiponectin, leptin and visfatin. These results suggest that placental adipokines play important roles in regulating calf intrauterine growth.
Collapse
Affiliation(s)
- Liuhong Shen
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Yingkun Zhu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Jinbang Xiao
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Bolin Qian
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Tao Jiang
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Junliang Deng
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Guangneng Peng
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Shumin Yu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Suizhong Cao
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China; and Corresponding author.
| | - Zhicai Zuo
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Xiaoping Ma
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Zhijun Zhong
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Zhihua Ren
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Ya Wang
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Ziyao Zhou
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Haifeng Liu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| | - Xiaolan Zong
- Sichuan Agricultural University, Chengdu Campus, Academic Affairs Office, Chengdu, Sichuan, 611130, China
| | - Yanchun Hu
- Sichuan Agricultural University, Chengdu Campus, The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Chengdu, Sichuan, 611130, China
| |
Collapse
|
14
|
Polyakova YV, Zavodovsky BV, Sivordova LE, Akhverdyan YR, Zborovskaya IA. Visfatin and Rheumatoid Arthritis: Pathogenetic Implications and Clinical Utility. Curr Rheumatol Rev 2020; 16:224-239. [DOI: 10.2174/1573397115666190409112621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Objective:
Analysis and generalization of data related to visfatin involvement in the
pathogenesis of inflammation at various stages of rheumatoid arthritis.
Data Synthesis:
Visfatin is an adipocytokine which has also been identified in non-adipose tissues.
It influences directly on the maturation of B cells, which are involved in autoantibody production
and T cell activation. Visfatin can promote inflammation via regulation of pro-inflammatory cytokines
including TNF, IL-1β and IL-6. The concentration of circulating visfatin in rheumatoid arthritis
patients is higher compared to healthy individuals. Several studies suggest that visfatin level is
associated with rheumatoid arthritis activity, and its elevation may precede clinical signs of the relapse.
In murine collagen-induced arthritis, visfatin levels were also found to be elevated both in
inflamed synovial cells and in joint vasculature. Visfatin blockers have been shown to confer fast
and long-term attenuation of pathological processes; however, most of their effects are transient.
Other factors responsible for hyperactivation of the immune system can participate in this process
at a later stage. Treatment of rheumatoid arthritis with a combination of these blockers and inhibitors
of other mediators of inflammation can potentially improve treatment outcomes compared to
current therapeutic strategies. Recent advances in the treatment of experimental arthritis in mice as
well as the application of emerging treatment strategies obtained from oncology for rheumatoid arthritis
management could be a source of novel adipokine-mediated anti-rheumatic drugs.
Conclusion:
The ongoing surge of interest in anticytokine therapy makes further study of visfatin
highly relevant as it may serve as a base for innovational RA treatment.
Collapse
Affiliation(s)
- Yulia V. Polyakova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Boris V. Zavodovsky
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Larisa E. Sivordova
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Yuri R. Akhverdyan
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| | - Irina A. Zborovskaya
- Research Institute for Clinical and Experimental Rheumatology, Volgograd, Russian Federation
| |
Collapse
|
15
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
16
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
17
|
Musilova I, Kolackova M, Andrys C, Drahosova M, Baranová I, Chmelarova M, Stranik J, Jacobsson B, Kacerovsky M. Nicotinamide phosphoribosyltransferase and intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2019; 34:736-746. [PMID: 31056993 DOI: 10.1080/14767058.2019.1615049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: The amniotic fluid nicotinamide phosphoribosyltransferase (NAMPT) levels have not been compared among women with preterm prelabor rupture of membranes (PPROM) comorbid with intra-amniotic infection, sterile intra-amniotic inflammation (IAI), colonization, or without IAI and microbial invasion of the amniotic cavity (MIAC). Therefore, the main aim was to quantify the amniotic fluid NAMPT in women with PPROM complicated by intra-amniotic infection, sterile IAI, or colonization. The second aim was to characterize the diagnostic indices of NAMPT to reveal IAI. The third aim was to determine whether the cervical fluid and maternal serum NAMPT quantitation might be of value in the identification of intra-amniotic inflammatory complications in PPROM.Methods of study: NAMPT levels in amniotic fluid, cervical fluid, and maternal serum were assessed in three independent cohorts of women with singleton pregnancies complicated by PPROM between 24+0 and 36+6 weeks of gestation consisting of 88, 121, and 88 women, respectively. Amniotic fluid samples were obtained by transabdominal amniocentesis, cervical fluid samples were obtained using a Dacron polyester swab and maternal blood was obtained by venipuncture of the cubital vein. The NAMPT levels were measured by an enzyme-linked immunosorbent assay. Testing for MIAC and IAI was performed on all women, who were then categorized into four subgroups: intra-amniotic infection (MIAC and IAI), sterile IAI (IAI alone), colonization (MIAC alone), and without MIAC and IAI.Results: Women with intra-amniotic infection and women with sterile IAI had higher NAMPT levels than did women with colonization and women without MIAC and IAI (intra-amniotic infection: median 73.6 ng/mL, sterile IAI: median 55.5 ng/mL, colonization: median 12.1 ng/mL, without MIAC and IAI: 10.6 ng/mL; p < .0001). An amniotic fluid NAMPT level of 37 ng/mL was the best value for the detection of intra-amniotic infection in women with PPROM. Cervical fluid (p = .51) and maternal serum (p = .50) NAMPT levels did not reflect intra-amniotic inflammatory complications in women with PPROM.Conclusions: Intra-amniotic infection and sterile IAI are associated with higher NAMPT levels in amniotic fluid but not in cervical fluid or maternal serum in women with PPROM. Amniotic fluid NAMPT might be a marker for invasive identification of IAI in PPROM.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marcela Drahosova
- Department of Clinical Immunology and Allergy, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Baranová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marcela Chmelarova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Fang Q, You M, Xu W, Yang W, Gong Y, Dong X. pre-B cell colony enhancing factor negatively regulates Na + and fluid transport in lung epithelial cells. Am J Transl Res 2018; 10:2047-2054. [PMID: 30093942 PMCID: PMC6079128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED This study was undertaken to investigate the effect of pre-B cell colony enhancing factor (PBEF) on Na+ and fluid transport in lung epithelial cells. METHODS Type 1 and 2 cells were isolated from lung epithelium. After hypoxia reoxygenation treatment, the primary cell cultures were transfected with a plasmid over-expressing PBEF. Sodium-potassium ATPase (NKA), epithelial sodium channel (ENaC), type I cell marker rT140, surfactant protein (SP) and PBEF protein were analyzed at mRNA and protein levels using PCR and Western blot analysis. Immunofluorescence assays showed type 1 and 2 cells were successfully isolated. After the transfection with PBEF over-expression vector, PBEF and RTI40 levels were increased, while ENaC and SP as well as NKA, were decreased in both cells. It is clear that PBEF negatively regulates the expression of ENaC and NKA in the Na+ and fluid transport in lung epithelial cells.
Collapse
Affiliation(s)
- Qiao Fang
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Miaomiao You
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Weichang Xu
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Wei Yang
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Yi Gong
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| | - Xiao Dong
- Department of Cardiac Macrovascular Surgery, The Second Affiliated Hospital of Nanchang University Nanchang 330006, China
| |
Collapse
|
19
|
Contro E, Stefani L, Berto S, Lapucci C, Arcelli D, Prandstraller D, Perolo A, Rizzo N, Farina A. Circulating mRNA in Maternal Plasma at the Second Trimester of Pregnancy: A Possible Screening Tool for Cardiac Conotruncal and Left Ventricular Outflow Tract Abnormalities. Mol Diagn Ther 2018; 21:653-661. [PMID: 28744745 DOI: 10.1007/s40291-017-0295-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Maternal plasma is a source of circulating placental nucleic acids. This study was designed to detect aberrantly expressed placental mRNA genes circulating in the maternal plasma of pregnancies affected with fetal conotruncal anomalies (CNTRA) and left-ventricular outflow tract (LVOT) obstruction in the second trimester of pregnancy. METHODS This was a retrospective monocentric study conducted from 1 Jan 2016 to 31 Dec 2016. NanoString technology was used to identify aberrantly expressed genes, comparing 36 women carrying a fetus with CNTRA or LVOT obstruction to 42 controls at 19-24 weeks of gestation. The genes with differential expression were subsequently tested using real-time polymerase chain reaction. Linear discriminant analysis was used to combine all the mRNA species with discriminant ability for CNTRA and LVOT obstruction. A multivariable receiver operating characteristic (ROC) curve having the estimated discriminant score as an explanatory variable was generated for the two affected groups versus controls. RESULTS Three genes with differential expression, namely MAPK1, IQGAP1 and Visfatin were found. The ROC curves yielded detection rates of 60 and 62.5% at a false-positive rate of 5% for CNTRA and LVOT, respectively. CONCLUSIONS These data suggested that molecular screening of CNTRA and LVOT obstruction in the second trimester is feasible. Prospective studies are needed to test the discriminant ability of these genes and to calculate the predictive positive value in the general population.
Collapse
Affiliation(s)
- Elena Contro
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC) Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | | | | | - Diego Arcelli
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC) Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniela Prandstraller
- Pediatric Cardiology and Adult Congenital Unit, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonella Perolo
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC) Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Nicola Rizzo
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC) Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC) Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Cheung CY, Anderson DF, Brace RA. Transport-associated pathway responses in ovine fetal membranes to changes in amniotic fluid dynamics. Physiol Rep 2018; 5:5/20/e13455. [PMID: 29051303 PMCID: PMC5661228 DOI: 10.14814/phy2.13455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Current evidence suggests that amniotic fluid volume (AFV) is actively regulated by vesicular transport of amniotic fluid outward across the amnion and into the underlying fetal vasculature in the placenta. Our objective was to determine whether gene expression profiles of potential stimulators, inhibitors, and mediators of vesicular transport are altered in response to changes in intramembranous absorption (IMA) rate. Samples of ovine amnion and chorion were obtained from fetal sheep with normal, experimentally reduced or increased AFVs and IMA rates. Amnion and chorion levels of target mRNAs were determined by RT‐qPCR. In the amnion, caveolin‐1 and flotillin‐1 mRNA levels were unchanged during alterations in IMA rate. However, levels of both were significantly higher in amnion than in chorion. Tubulin‐α mRNA levels in the amnion but not in chorion were reduced when IMA rate decreased, and amnion levels correlated positively with IMA rate (P < 0.05). Dynamin‐2 mRNA levels were not altered by experimental conditions. Vascular endothelial growth factor (VEGF164 and VEGF164b) mRNA levels increased during both increases and decreases in IMA rate, whereas soluble Flt‐1 levels did not change. Neither HIF‐1α nor PBEF mRNA levels in the amnion were correlated with VEGF164 expression levels and were not related to IMA rate. Collectively, our findings suggest that changes in amnion microtubule expression may be important in the regulation of transcellular vesicular transport of amniotic fluid and thus modulate IMA rate. Further, our results are consistent with the concept that the amnion is the rate‐limiting layer for amniotic fluid transport.
Collapse
Affiliation(s)
- Cecilia Y Cheung
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon .,Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Debra F Anderson
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Robert A Brace
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon.,Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
Kopaczka K, Skowron K, Kolanko E, Czekaj P. The relationship between amniotic epithelial cells and their microenvironment. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
22
|
Yang WL, Zhang L. Mechanism of PEDF promoting the proliferation of lens epithelial cells in human eyes. ASIAN PAC J TROP MED 2015; 8:971-975. [PMID: 26614999 DOI: 10.1016/j.apjtm.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the regulation effect of pigment epithelium-derived factor (PEDF) on the growth of human lens endothelial cells (LECs) and related mechanisms in vivo and in vitro. METHODS In the part of in vivo study, 82 eyes of 82 patients with age-related cataract were included to collect the central lens anterior capsule (diameter at 5.0-5.5 mm) with the informed consent of surgery for patients. The selected specimens were divided into the LECs low density group and high density group with 20 specimens for each group based on hematoxylin and eosin staining results. The relative expression level of PEDF mRNA in LECs was detected by reverse transcription PCR. In the part of in vitro study, LEC line (HLE-B3) was cultured and 50 ng/mL PEDF was added in media for 72 h in PEDF culture group, while normally cultured cells were used as the control group. The percentage of LECs at G0 and S phases and apoptotic rate of cells were assayed by using flow cytometry with annexin Ⅴ-FITC/7-AAD double staining method. Intracellular expression of vascular endothelial growth factor (VEGF) mRNA was detected by real-time fluorescence quantitative PCR. RESULTS The central anterior subcapsular LECs density and relative expression level of PEDF mRNA were lower than those of high density group. There were no significant differences between two groups (P = 0.168). The apoptotic rate in the PEDF culture group was significantly reduced in comparison with the control group (P < 0.001). In addition, the expression level of VEGF mRNA was lower in the PEDF culture group compared with the control group (P < 0.001). CONCLUSIONS In human eyes, PEDF may function as cytotropic factor to promote survival of LECs through anti-apoptosis and reducing-expression of VEGF. Decrease of PEDF content in LECs probably modulates the pathophysiological process of lens cells and further cataractogenesis.
Collapse
Affiliation(s)
- Wen-Lei Yang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin Zhang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
23
|
Costa MA. The endocrine function of human placenta: an overview. Reprod Biomed Online 2015; 32:14-43. [PMID: 26615903 DOI: 10.1016/j.rbmo.2015.10.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/13/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022]
Abstract
During pregnancy, several tightly coordinated and regulated processes take place to enable proper fetal development and gestational success. The formation and development of the placenta is one of these critical pregnancy events. This organ plays essential roles during gestation, including fetal nourishment, support and protection, gas exchange and production of several hormones and other mediators. Placental hormones are mainly secreted by the syncytiotrophoblast, in a highly and tightly regulated way. These hormones are important for pregnancy establishment and maintenance, exerting autocrine and paracrine effects that regulate decidualization, placental development, angiogenesis, endometrial receptivity, embryo implantation, immunotolerance and fetal development. In addition, because they are released into maternal circulation, the profile of their blood levels throughout pregnancy has been the target of intense research towards finding potential robust and reliable biomarkers to predict and diagnose pregnancy-associated complications. In fact, altered levels of these hormones have been associated with some pathologies, such as chromosomal anomalies or pre-eclampsia. This review proposes to revise and update the main pregnancy-related hormones, addressing their major characteristics, molecular targets, function throughout pregnancy, regulators of their expression and their potential clinical interest.
Collapse
Affiliation(s)
- Mariana A Costa
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
24
|
Pavlová T, Novák J, Bienertová-Vašků J. The role of visfatin (PBEF/Nampt) in pregnancy complications. J Reprod Immunol 2015; 112:102-10. [PMID: 26451650 DOI: 10.1016/j.jri.2015.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 01/05/2023]
Abstract
Visfatin (PBEF/Nampt) is an adipocytokine that exerts pleiotropic effects within the human body, particularly affecting its metabolism and immunity. Visfatin was originally identified as being secreted by peripheral blood lymphocytes acting as a pre-B-cell colony-enhancing factor (PBEF). However, it was subsequently reported to be expressed in almost every tissue of the human body, with visceral fat deposits being the main source of visfatin. In addition to its secreted form, visfatin may also be found intracellularly where it functions as a nicotinamide phosphoribosyltransferase (Nampt). Visfatin maternal plasma concentrations increase during pregnancy, suggesting its important role in this complicated process. Alterations in visfatin level also take place in patients during pregnancy complications. This review focuses on the ones that most commonly occur in connection with visfatin: preterm labor, pre-eclampsia and gestational diabetes mellitus. The review aims to provide a better understanding of the role of visfatin during pregnancy and the causes of its alteration in maternal plasma, highlighting the potential use of visfatin as a diagnostic marker of pregnancy complications in the future.
Collapse
Affiliation(s)
- Tereza Pavlová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, Brno 62500, Czech Republic.
| | - Jan Novák
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, Brno 62500, Czech Republic.
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, Brno 62500, Czech Republic; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 65653, Czech Republic.
| |
Collapse
|
25
|
Brace RA, Cheung CY. Regulation of Amniotic Fluid Volume: Evolving Concepts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:49-68. [DOI: 10.1007/978-1-4939-1031-1_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|