1
|
Bhavani G, Jeyalakshmi C. Prediction of clinical risk factors in pregnancy using optimized neural network scheme. Placenta 2025; 163:33-42. [PMID: 40058161 DOI: 10.1016/j.placenta.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Women should be aware of prenancy related health issues. A user-friendly model is developed in which the patients can use as well as clinicians to determine the risks associated with foetal development inside the womb, birth weight, whose effects are typically linked to the mother through biological relationships. Recent advances in computer vision and artificial intelligence offer new techniques for automated evaluation of medical images across a variety of fields, including ultrasound (US) images. Enhancing the detection of the estimated foetal weight (EFW) and mother-foetal disease computations can aid obstetricians in making decisions and reduce perinatal issues. This study aims to build a birth weight classification and prediction of relevant parameters during delivery. In this data analysis suite, exploratory data analysis is performed as part of the data pre-processing to investigate the fundamental information and transformational properties. For feature extracting model, the Advanced Dynamic based Feature Selection (ADFS) algorithm has been used which is optimized using the enriched elephant herding optimization algorithm (EEHOA). The multiple feature estimation is classified using augmented recurrent neural network classifier (AURNN). The findings of analyses with graphical representations have been interpreted through the application of visual analytical techniques.
Collapse
Affiliation(s)
- G Bhavani
- Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu, 625015 India.
| | - C Jeyalakshmi
- Department of Electronics and Communication Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirapalli, Tamilnadu, 621112, India.
| |
Collapse
|
2
|
Pishghadam M, Haizler-Cohen L, Ngwa JS, Yao W, Kapse K, Iqbal SN, Limperopoulos C, Andescavage NN. Placental quantitative susceptibility mapping and T2* characteristics for predicting birth weight in healthy and high-risk pregnancies. Eur Radiol Exp 2025; 9:18. [PMID: 39966316 PMCID: PMC11836258 DOI: 10.1186/s41747-025-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The human placenta is critical in supporting fetal development, and placental dysfunction may compromise maternal-fetal health. Early detection of placental dysfunction remains challenging due to the lack of reliable biomarkers. This study compares placental quantitative susceptibility mapping and T2* values between healthy and high-risk pregnancies and investigates their association with maternal and fetal parameters and their ability to predict birth weight (BW). METHODS A total of 105 pregnant individuals were included: 68 healthy controls and 37 high-risk due to fetal growth restriction (FGR), chronic or gestational hypertension, and pre-eclampsia. Placental magnetic resonance imaging data were collected using a three-dimensional multi-echo radiofrequency-spoiled gradient-echo, and mean susceptibility and T2* values were calculated. To analyze associations and estimate BW, we employed linear regression and regression forest models. RESULTS No significant differences were found in susceptibility between high-risk pregnancies and controls (p = 0.928). T2* values were significantly lower in high-risk pregnancies (p = 0.013), particularly in pre-eclampsia and FGR, emerging as a predictor of BW. The regression forest model showed placental T2* as a promising mode for BW estimation. CONCLUSION Our findings underscore the potential of mean placental T2* as a more sensitive marker for detecting placental dysfunction in high-risk pregnancies than mean placental susceptibility. Moreover, the high-risk status emerged as a significant predictor of BW. These results call for further research with larger and more diverse populations to validate these findings and enhance prediction models for improved pregnancy management. RELEVANCE STATEMENT This study highlights the potential of placental T2* magnetic resonance imaging measurements as reliable indicators for detecting placental dysfunction in high-risk pregnancies, aiding in improved prenatal care and birth weight prediction. KEY POINTS Placental dysfunction in high-risk pregnancies is evaluated using MRI T2* values. Lower T2* values significantly correlate with pre-eclampsia and fetal growth restriction. T2* MRI may predict birth weight, enhancing prenatal care outcomes.
Collapse
Affiliation(s)
- Morteza Pishghadam
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Lylach Haizler-Cohen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Julius S Ngwa
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Wu Yao
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Sara N Iqbal
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
| | - Nickie N Andescavage
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Bhattacharya S, Price AN, Uus A, Sousa HS, Marenzana M, Colford K, Murkin P, Lee M, Cordero-Grande L, Teixeira RPAG, Malik SJ, Deprez M. In vivo T2 measurements of the fetal brain using single-shot fast spin echo sequences. Magn Reson Med 2024; 92:715-729. [PMID: 38623934 PMCID: PMC7617281 DOI: 10.1002/mrm.30094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.
Collapse
Affiliation(s)
- Suryava Bhattacharya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony N. Price
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Alena Uus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Helena S. Sousa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Kathleen Colford
- Centre for the Developing Brain, King’s College London, London, UK
| | - Peter Murkin
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maggie Lee
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicración, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Rui Pedro A. G. Teixeira
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Shaihan J. Malik
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| |
Collapse
|
4
|
Melbourne A, Schabel MC, David AL, Roberts VHJ. Magnetic resonance imaging of placental intralobule structure and function in a preclinical nonhuman primate model†. Biol Reprod 2024; 110:1065-1076. [PMID: 38442734 PMCID: PMC11180614 DOI: 10.1093/biolre/ioae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Although the central role of adequate blood flow and oxygen delivery is known, the lack of optimized imaging modalities to study placental structure has impeded our understanding of its vascular function. Magnetic resonance imaging is increasingly being applied in this field, but gaps in knowledge remain, and further methodological developments are needed. In particular, the ability to distinguish maternal from fetal placental perfusion and the understanding of how individual placental lobules are functioning are lacking. The potential clinical benefits of developing noninvasive tools for the in vivo assessment of blood flow and oxygenation, two key determinants of placental function, are tremendous. Here, we summarize a number of structural and functional magnetic resonance imaging techniques that have been developed and applied in animal models and studies of human pregnancy over the past decade. We discuss the potential applications and limitations of these approaches. Their combination provides a novel source of contrast to allow analysis of placental structure and function at the level of the lobule. We outline the physiological mechanisms of placental T2 and T2* decay and devise a model of how tissue composition affects the observed relaxation properties. We apply this modeling to longitudinal magnetic resonance imaging data obtained from a preclinical pregnant nonhuman primate model to provide initial proof-of-concept data for this methodology, which quantifies oxygen transfer and placental structure across and between lobules. This method has the potential to improve our understanding and clinical management of placental insufficiency once validation in a larger nonhuman primate cohort is complete.
Collapse
Affiliation(s)
- Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Obstetrics and Maternal Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Anna L David
- Department of Obstetrics and Maternal Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
5
|
Vestergaard T, Julsgaard M, Helmig RB, Faunø E, Vendelboe T, Kelsen J, Laurberg TB, Sørensen A, Pedersen BG. Reduced T2*-weighted placental MRI predicts foetal growth restriction in women with chronic rheumatic disease-a Danish explorative study. Clin Rheumatol 2024; 43:1989-1997. [PMID: 38671260 PMCID: PMC11111562 DOI: 10.1007/s10067-024-06889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES Women with chronic rheumatic disease (CRD) are at greater risk of foetal growth restriction than their healthy peers. T2*-weighted magnetic resonance imaging of placenta (T2*P-MRI) is superior to conventional ultrasonography in predicting birth weight and works as a proxy metabolic mirror of the placental function. We aimed to compare T2*P-MRI in pregnant women with CRD and healthy controls. In addition, we aimed to investigate the correlation between T2*P-MRI and birth weight. METHODS Using a General Electric (GE) 1.5 Tesla, we consecutively performed T2*-weighted placental MRI in 10 women with CRD and 18 healthy controls at gestational week (GW)24 and GW32. We prospectively collected clinical parameters during pregnancy including birth outcome and placental weight. RESULTS Women with CRD had significantly lower T2*P-MRI values at GW24 than healthy controls (median T2*(IQR) 92.1 ms (81.6; 122.4) versus 118.6 ms (105.1; 129.1), p = 0.03). T2*P-MRI values at GW24 showed a significant correlation with birth weight, as the T2*P-MRI value was reduced in all four pregnancies complicated by SGA at birth. Three out of four pregnancies complicated by SGA at birth remained undetected by routine antenatal ultrasound. CONCLUSION This study demonstrates reduced T2*P-MRI values and a high proportion of SGA at birth in CRD pregnancies compared to controls, suggesting an increased risk of placental dysfunction in CRD pregnancies. T2*P-MRI may have the potential to focus clinical vigilance by identifying pregnancies at risk of SGA as early as GW24. Key Points • Placenta-related causes of foetal growth restriction in women with rheumatic disease remain to be investigated. • T2*P-MRI values at gestational week 24 predicted foetuses small for gestational age at birth. • T2*P-MRI may indicate pregnant women with chronic rheumatic disease (CRD) in need of treatment optimization.
Collapse
Affiliation(s)
- Thea Vestergaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark.
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Mette Julsgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Aalborg, Copenhagen, Denmark
| | - Rikke Bek Helmig
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Faunø
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
| | - Tau Vendelboe
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Anne Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
6
|
Jani D, Clark A, Couper S, Thompson JMD, David AL, Melbourne A, Mirjalili A, Lydon AM, Stone PR. The effect of maternal position on placental blood flow and fetoplacental oxygenation in late gestation fetal growth restriction: a magnetic resonance imaging study. J Physiol 2023; 601:5391-5411. [PMID: 37467072 DOI: 10.1113/jp284269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Fetal growth restriction (FGR) and maternal supine going-to-sleep position are both risk factors for late stillbirth. This study aimed to use magnetic resonance imaging (MRI) to quantify the effect of maternal supine position on maternal-placental and fetoplacental blood flow, placental oxygen transfer and fetal oxygenation in FGR and healthy pregnancies. Twelve women with FGR and 27 women with healthy pregnancies at 34-38 weeks' gestation underwent MRI in both left lateral and supine positions. Phase-contrast MRI and a functional MRI technique (DECIDE) were used to measure blood flow in the maternal internal iliac arteries (IIAs) and umbilical vein (UV), placental oxygen transfer (placental flux), fetal oxygen saturation (FO2 ), and fetal oxygen delivery (delivery flux). The presence of FGR, compared to healthy pregnancies, was associated with a 7.8% lower FO2 (P = 0.02), reduced placental flux, and reduced delivery flux. Maternal supine positioning caused a 3.8% reduction in FO2 (P = 0.001), and significant reductions in total IIA flow, placental flux, UV flow and delivery flux compared to maternal left lateral position. The effect of maternal supine position on fetal oxygen delivery was independent of FGR pregnancy, meaning that supine positioning has an additive effect of reducing fetal oxygenation further in women with FGR, compared to women with appropriately grown for age pregnancies. Meanwhile, the effect of maternal supine positioning on placental oxygen transfer was not independent of the effect of FGR. Therefore, growth-restricted fetuses, which are chronically hypoxaemic, experience a relatively greater decline in oxygen transfer when mothers lie supine in late gestation compared to appropriately growing fetuses. KEY POINTS: Fetal growth restriction (FGR) is the most common risk factor associated with stillbirth, and early recognition and timely delivery is vital to reduce this risk. Maternal supine going-to-sleep position is found to increase the risk of late stillbirth but when combined with having a FGR pregnancy, maternal supine position leads to 15 times greater odds of stillbirth compared to supine sleeping with appropriately grown for age (AGA) pregnancies. Using MRI, this study quantifies the chronic hypoxaemia experienced by growth-restricted fetuses due to 13.5% lower placental oxygen transfer and 26% lower fetal oxygen delivery compared to AGA fetuses. With maternal supine positioning, there is a 23% reduction in maternal-placental blood flow and a further 14% reduction in fetal oxygen delivery for both FGR and AGA pregnancies, but this effect is proportionally greater for growth-restricted fetuses. This knowledge emphasises the importance of avoiding supine positioning in late pregnancy, particularly for vulnerable FGR pregnancies.
Collapse
Affiliation(s)
- Devanshi Jani
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sophie Couper
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - John M D Thompson
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Department of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College Huntley Street, London, UK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - Ali Mirjalili
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Anna-Maria Lydon
- Centre for Advanced MRI, University of Auckland, Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Aertsen M, Melbourne A, Couck I, King E, Ourselin S, De Keyzer F, Dymarkowski S, Deprest J, Lewi L. Placental differences between uncomplicated and complicated monochorionic diamniotic pregnancies on diffusion and multicompartment Magnetic Resonance Imaging. Placenta 2023; 142:106-114. [PMID: 37683336 DOI: 10.1016/j.placenta.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Twin-twin transfusion syndrome (TTTS) and selective fetal growth restriction (sFGR) are common complications in monochorionic diamniotic (MCDA) pregnancies. The Diffusion-rElaxation Combined Imaging for Detailed Placental Evaluation (DECIDE) model, a placental-specific model, separates the T2 values of the fetal and maternal blood from the background tissue and estimates the fetal blood oxygen saturation. This study investigates diffusion and relaxation differences in uncomplicated MCDA pregnancies and MCDA pregnancies complicated by TTTS and sFGR in mid-pregnancy. METHODS This prospective monocentric cohort study included uncomplicated MCDA pregnancies and pregnancies complicated by TTTS and sFGR. We performed MRI with conventional diffusion-weighted imaging (DWI) and combined relaxometry - DWI-intravoxel incoherent motion. DECIDE analysis was used to quantify different parameters within the placenta related to the fetal, placental, and maternal compartments. RESULTS We included 99 pregnancies, of which 46 were uncomplicated, 12 were complicated by sFGR and 41 by TTTS. Conventional DWI did not find differences between or within cohorts. On DECIDE imaging, fetoplacental oxygen saturation was significantly lower in the smaller member of sFGR (p = 0.07) and in both members of TTTS (p = 0.01 and p = 0.004) compared to the uncomplicated pairs. Additionally, average T2 relaxation time was significantly lower in the smaller twin of the sFGR (p = 0.004) compared to the uncomplicated twins (p = 0.03). CONCLUSION Multicompartment functional MRI showed significant differences in several MRI parameters between the placenta of uncomplicated MCDA pregnancies and those complicated by sFGR and TTTS in mid-pregnancy.
Collapse
Affiliation(s)
- M Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium.
| | - A Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - I Couck
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - E King
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - S Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - F De Keyzer
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - J Deprest
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health, King's College London, King's Health Partners, St.Thomas' Hospital, 1st Floor South Wing, London, SE1 7EH, UK
| | - L Lewi
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Hutter J, Al-Wakeel A, Kyriakopoulou V, Matthew J, Story L, Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139:25-33. [PMID: 37295055 DOI: 10.1016/j.placenta.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK.
| | - Ayman Al-Wakeel
- GKT School of Medical Education, King's College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, UK; Institute for Women's and Children's Health, King's College London, UK; Fetal Medicine Unit, St Thomas' Hospital, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| |
Collapse
|
9
|
Clark A, Flouri D, Mufti N, James J, Clements E, Aughwane R, Aertsen M, David A, Melbourne A. Developments in functional imaging of the placenta. Br J Radiol 2023; 96:20211010. [PMID: 35234516 PMCID: PMC10321248 DOI: 10.1259/bjr.20211010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging technology being used to measure the function of the placenta and new developments in the computational analysis of these data. We address three important examples where functional imaging is supporting our understanding of these conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Eleanor Clements
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Rosalind Aughwane
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | | |
Collapse
|
10
|
He J, Chen Z, Chen C, Liu P. Differences in placental oxygenation and perfusion status between fetal growth-restricted and small-for-gestational-age pregnancies: a functional magnetic resonance imaging study. Eur Radiol 2023; 33:1729-1736. [PMID: 36269372 DOI: 10.1007/s00330-022-09185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Functional magnetic resonance imaging (MRI) can assess oxygenation and perfusion status in the placenta. We aimed to explore the differences in functional parameters between pregnancies complicated by fetal growth restriction (FGR) and small-for-gestational-age (SGA). METHODS This was a prospective study. A pregnancy complicated by SGA was defined by prenatal ultrasonic estimated fetal weight (EFW) and a final birthweight < the 10th percentile. A pregnancy complicated by FGR was defined as a more severe subtype (ultrasonic EFW < the 3rd percentile or abnormal Doppler results). All pregnant women underwent T2* and intravoxel incoherent motion (IVIM) scans using a 3.0-T MRI scanner. Functional parameters in the control, SGA, and FGR groups, namely, the T2* Z score, apparent diffusion coefficient (ADC), diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f), were calculated and compared. RESULTS In total, 30 pregnancies complicated by SGA, 24 pregnancies complicated by FGR, and 28 control pregnancies were included in the final analysis. Oxygenation status, as assessed by the T2* Z score, was significantly lower in pregnancies complicated by FGR than in pregnancies complicated by SGA (p < 0.001). However, diffusion and perfusion parameters, including the ADC, D, D*, and f, were similar between pregnancies complicated by SGA and FGR (p > 0.05 for all). Compared to the control pregnancies, all the parameters were significantly decreased in the SGA and FGR groups, except for the D* value. The T2* Z score, ADC, and D values were negatively correlated with birthweight. CONCLUSION Although both pregnancies complicated by SGA and FGR were associated with significantly lower oxygenation and perfusion than normal control pregnancies, placental hypoxia seemed to be more predominant in pregnancies complicated by FGR than in pregnancies complicated by SGA. KEY POINTS • Pregnancy complicated by FGR was associated with a more severe type of hypoxia than pregnancy complicated by SGA. • The diffusion and perfusion parameters of pregnancies complicated by SGA and FGR were similar. • SGA may represent another growth disorder that is not entirely healthy.
Collapse
Affiliation(s)
- Junshen He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhao Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China.
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Mydtskov ND, Sinding M, Aarøe KK, Thaarup LV, Madsen SBB, Hansen DN, Frøkjær JB, Peters DA, Sørensen ANW. Placental volume, thickness and transverse relaxation time (T2*) estimated by magnetic resonance imaging in relation to small for gestational age at birth. Eur J Obstet Gynecol Reprod Biol 2023; 282:72-76. [PMID: 36669243 DOI: 10.1016/j.ejogrb.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Placental magnetic resonance imaging (MRI) may be a valuable tool in the prediction of small for gestational age (SGA) at birth. MRI provides reliable estimates of placental volume and thickness. In addition, placental transverse relaxation time (T2*) may be directly related to placental function. This study aimed to explore and compare the predictive performance of three placental MRI parameters - volume, thickness and T2* - in relation to SGA at birth. METHODS A mixed cohort of 85 pregnancies was retrieved from the placental MRI database at the study hospital. MRI was performed in a 1.5 T system at gestational weeks 15-41. In normal birthweight (BW) pregnancies [BW > -22 % of expected for gestational age (GA)], the correlation between each of the MRI parameters and GA was investigated by linear regression. The prediction of SGA was investigated by logistic regression analysis adjusted for GA at MRI. RESULTS In normal BW pregnancies, a significant linear correlation was found between GA and each of the MRI parameters. Univariate analysis demonstrated that placental volume [odds ratio (OR) 0.97, p = 0.001] and placental T2* (OR 0.79, p = 0.003), but not placental thickness (OR 0.92, p = 0.862) were significant predictors of SGA. A multi-variate model including all three MRI parameters found that placental T2* was the only independent predictor of SGA (OR 0.81, p = 0.04). CONCLUSION Among the MRI parameters investigated in this study, placental T2* was the only independent predictor of SGA in a multi-variate model. This finding underlines the strong position of T2*-weighted placental MRI in the prediction of SGA.
Collapse
Affiliation(s)
- N D Mydtskov
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | - M Sinding
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - K K Aarøe
- Department of Surgery, North Denmark Regional Hospital, Hjørring, Denmark
| | - L V Thaarup
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S B B Madsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - D N Hansen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J B Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus N, Denmark
| | - A N W Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
12
|
Himoto Y, Fujimoto K, Kido A, Otani S, Matsumoto YK, Mogami H, Nakao KK, Kurata Y, Moribata Y, Chigusa Y, Minamiguchi S, Mandai M, Nakamoto Y. Risk Stratification for Pregnancies Diagnosed With Fetal Growth Restriction Based on Placental MRI. J Magn Reson Imaging 2022; 56:1650-1658. [PMID: 35713388 DOI: 10.1002/jmri.28298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diagnosis of fetal growth restriction (FGR) entails difficulties with differentiating fetuses not fulfilling their growth potential because of pathologic conditions, such as placental insufficiency, from constitutionally small fetuses. The feasibility of placental MRI for risk stratification among pregnancies diagnosed with FGR remains unexplored. PURPOSE To explore quantitative MRI features useful to identify pregnancies with unfavorable outcomes and to assess the diagnostic performance of visual analysis of MRI to detect pregnancies with unfavorable outcomes, among pregnancies diagnosed with FGR. STUDY TYPE Retrospective. POPULATION Thirteen pregnancies with unfavorable outcomes (preterm emergency cesarean section or intrauterine fetal death) and 11 pregnancies with favorable outcomes performed MRI at gestational weeks 21-36. FIELD STRENGTH/SEQUENCE A 5-T, half-Fourier-acquired single-shot turbo spin echo (HASTE), spin-echo echo-planar imaging (SE-EPI) and T2 map derived from SE-EPI. ASSESSMENT Placental size on HASTE sequences and T2 mapping-based histogram features were extracted. Three radiologists qualitatively evaluated the visibility of maternal cotyledon on HASTE and SE-EPI sequences with echo times (TEs) = 60, 90, and 120 msec using 3-point Likert scales: 0, absent; 1, equivocal; and 2, present. STATISTICAL TESTS Welch's t-test or Mann-Whitney U test for quantitative features between the favorable and unfavorable outcome groups. Areas under the receiver operating curves (AUCs) of the three readers' visual analyses to detect pregnancies with unfavorable outcomes. A P value of <0.05 was inferred as statistically significant. RESULTS Placental size (major and minor axis, estimated area of placental bed, and volume of placenta) and T2 mapping-based histogram features (mean, skewness, and kurtosis) were statistically significantly different between the two groups. Visual analysis of HASTE and SE-EPI with TE = 60 msec showed AUCs of 0.80-0.86 to detect pregnancies with unfavorable outcomes. DATA CONCLUSION Placental size, histogram features, and visual analysis of placental MRI may allow for risk stratification regarding outcomes among pregnancies diagnosed with FGR. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Yuki Himoto
- Department of Diagnostic Radiology and Nuclear Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuka Kuriyama Matsumoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Kyoko Kameyama Nakao
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhisa Kurata
- Department of Diagnostic Radiology and Nuclear Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Yusaku Moribata
- Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Evaluation of placental oxygenation in fetal growth restriction using blood oxygen level-dependent magnetic resonance imaging. Placenta 2022; 126:40-45. [PMID: 35750000 DOI: 10.1016/j.placenta.2022.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Abnormalities in placental function can lead to fetal growth restriction (FGR), but there is no consensus on their evaluation. Using blood oxygen level-dependent magnetic resonance imaging (BOLD MRI), we compared placental oxygenation between FGR cases and previously reported normal pregnancies. METHODS Eight singleton pregnant women (>32 weeks of gestation) diagnosed with fetal growth failure during pregnancy were recruited. BOLD MRI was consecutively performed under normoxia (21% O2), hyperoxia (100% O2), and normoxia for 4 min each. Each placental time-activity curve was evaluated to calculate the peak score (peakΔR2*) and the time from the start of maternal oxygen administration to the time of peakΔR2* (time to peakΔR2*). In six of the eight FGR cases, placental FGR-related pathological findings were evaluated after delivery. RESULTS The parameter peakΔR2* was significantly decreased in the FGR group (8 ± 3 vs 6 ± 1, p < 0.001), but there was no significant difference in time to peakΔR2* (458 ± 74 s vs 468 ± 57 s, p = 0.750). The findings in the six FGR cases assessed for placental pathologies included chorangiosis in two cases, avascular chorions in two cases, placental infarction in two cases, and syncytial knot formation in one case. DISCUSSION The peakΔR2* values were lower in the FGR group than in the normal pregnancy group. This suggests that oxygenation of the placenta is decreased in the FGR group compared to the normal group, and this may be related to FGR. Placental pathology also revealed findings possibly related to FGR, suggesting that low peakΔR2* values in the FGR group may reflect placental dysfunction.
Collapse
|
14
|
Chen L, Pi Y, Chang K, Luo S, Peng Z, Chen M, Yu L. Screening models combining maternal characteristics and multiple markers for the early prediction of preeclampsia in pregnancy: a nested case–control study. J OBSTET GYNAECOL 2022; 42:1889-1896. [PMID: 35634766 DOI: 10.1080/01443615.2022.2054675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Pi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sifu Luo
- Department of Obstetrics and Gynecology, Institute of Surgery Research, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhuyun Peng
- Department of Obstetrics and Gynecology, Institute of Surgery Research, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lili Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Comparison of T2 Quantification Strategies in the Abdominal-Pelvic Region for Clinical Use. Invest Radiol 2022; 57:412-421. [PMID: 34999669 DOI: 10.1097/rli.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the study was to compare different magnetic resonance imaging (MRI) acquisition strategies appropriate for T2 quantification in the abdominal-pelvic area. The different techniques targeted in the study were chosen according to 2 main considerations: performing T2 measurement in an acceptable time for clinical use and preventing/correcting respiratory motion. MATERIALS AND METHODS Acquisitions were performed at 3 T. To select sequences for in vivo measurements, a phantom experiment was conducted, for which the T2 values obtained with the different techniques of interest were compared with the criterion standard (single-echo SE sequence, multiple acquisitions with varying echo time). Repeatability and temporal reproducibility studies for the different techniques were also conducted on the phantom. Finally, an in vivo study was conducted on 12 volunteers to compare the techniques that offer acceptable acquisition time for clinical use and either address or correct respiratory motion. RESULTS For the phantom study, the DESS and T2-preparation techniques presented the lowest precision (ρ2 = 0.9504 and ρ2 = 0.9849 respectively), and showed a poor repeatability/reproducibility compared with the other techniques. The strategy relying on SE-EPI showed the best precision and accuracy (ρ2 = 0.9994 and Cb = 0.9995). GRAPPATINI exhibited a very good precision (ρ2 = 0.9984). For the technique relying on radial TSE, the precision was not as good as GRAPPATINI (ρ2 = 0.9872). The in vivo study demonstrated good respiratory motion management for all of the selected techniques. It also showed that T2 estimate ranges were different from one method to another. For GRAPPATINI and radial TSE techniques, there were significant differences between all the different types of organs of interest. CONCLUSIONS To perform T2 measurement in the abdominal-pelvic region, one should favor a technique with acceptable acquisition time for clinical use, with proper respiratory motion management, with good repeatability, reproducibility, and precision. In this study, the techniques relying respectively on SE-EPI, radial TSE, and GRAPPATINI appeared as good candidates.
Collapse
|
16
|
Ho A, Chappell LC, Story L, Al-Adnani M, Egloff A, Routledge E, Rutherford M, Hutter J. Visual assessment of the placenta in antenatal magnetic resonance imaging across gestation in normal and compromised pregnancies: Observations from a large cohort study. Placenta 2022; 117:29-38. [PMID: 34768166 PMCID: PMC8761363 DOI: 10.1016/j.placenta.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Visual assessment of the placenta in antenatal magnetic resonance imaging is important to confirm healthy appearances or to identify pathology complicating fetal anomaly or maternal disease. METHODS We assessed the placenta in a large cohort of 228 women with low and high risk pregnancies across gestation. All women gave written informed consent and were imaged using either a 3T Philips Achieva or 1.5T Philips Ingenia scanner. Images were acquired with a T2-weighted single shot turbo spin echo sequence of the whole uterus (thereby including placenta) for anatomical information. RESULTS A structured approach to visual assessment of the placenta on T2-weighted imaging has been provided including determination of key anatomical landmarks to aid orientation, placental shape, signal intensity, lobularity and granularity. Transient factors affecting imaging are shown including the effect of fetal movement, gross fetal motion and contractions. Placental appearances across gestation in low risk pregnancies are shown and compared to pregnancies complicated by preeclampsia and chronic hypertension. The utility of other magnetic resonance techniques (T2* mapping as an indirect marker for quantifying oxygenation) and histological assessment alongside visual assessment of placental T2-weighted imaging are demonstrated. DISCUSSION A systematic approach with qualitative descriptors for placental visual assessment using T2-weighted imaging allows confirmation of normal placental development and can detect placental abnormalities in pregnancy complications. T2-weighted imaging can be visually assessed alongside functional imaging (such as T2* maps) in order to further probe the visual characteristics seen.
Collapse
Affiliation(s)
- Alison Ho
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Mudher Al-Adnani
- Department of Cellular Pathology, Guy’s and St Thomas’ Hospital, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Emma Routledge
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, London, United Kingdom,Biomedical Engineering Department, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Nakao KK, Kido A, Fujimoto K, Chigusa Y, Minamiguchi S, Mandai M, Nakamoto Y. Placental functional assessment and its relationship to adverse pregnancy outcome: comparison of intravoxel incoherent motion (IVIM) MRI, T2-relaxation time, and umbilical artery Doppler ultrasound. Acta Radiol 2021; 64:370-376. [PMID: 34882022 DOI: 10.1177/02841851211060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Early identification of placental insufficiency can lead to appropriate treatment selections and can improve neonates' outcomes. Possible contributions of magnetic resonance imaging (MRI) have been suggested. PURPOSE To evaluate the prognostic capabilities of placental intravoxel incoherent motion (IVIM) parameters and T2-relaxation time, and their correlation with fetal growth and adverse outcomes, comparing umbilical artery (UmA) pulsatility index (PI). MATERIAL AND METHODS A total of 68 singleton pregnancies at 24-40 weeks of gestation underwent placental MRI and were reviewed retrospectively. UmA-PI was measured using Doppler ultrasound by obstetricians. IVIM parameters (Dfast, Dslow, and f) were calculated with a Bayesian model fitting. First, the associations between gestational age (GA) with placental IVIM parameters, T2-relaxation time, and placental thickness (PT) were evaluated. Second, IVIM parameters, T2 value (Z-score), PT (Z-score), and UmA-PI (Z-score) were compared between ( 1) those delivering small for gestational age (SGA) and appropriate for gestational age (AGA) neonates, ( 2) emergency cesarean section (ECS), and non-ECS, and ( 3) preterm birth and full-term birth. RESULTS Low birth weight was observed in 15/68 cases (22%). GA was significantly associated only with T2-relaxation time and PT. SGA was significantly associated with T2 value (Z-score), f, and UmA-PI (Z-score). In the ECS groups, T2 value (Z-score), f, and Dfast were significantly lower than those in non-ECS groups. All IVIM parameters and T2 values (Z-score) showed significantly lower scores in the preterm birth group. CONCLUSION Placental f and T2 value (Z-score) had significant associations with low birth weight and clinical adverse outcomes and could be potential imaging biomarkers of placental insufficiency.
Collapse
Affiliation(s)
- Kyoko Kameyama Nakao
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitsugu Chigusa
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Departments of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Departments of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
19
|
Stout JN, Liao C, Gagoski B, Turk EA, Feldman HA, Bibbo C, Barth WH, Shainker SA, Wald LL, Grant PE, Adalsteinsson E. Quantitative T 1 and T 2 mapping by magnetic resonance fingerprinting (MRF) of the placenta before and after maternal hyperoxia. Placenta 2021; 114:124-132. [PMID: 34537569 DOI: 10.1016/j.placenta.2021.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022]
Abstract
INTRODUCTION MR relaxometry has been used to assess placental exchange function, but methods to date are not sufficiently fast to be robust to placental motion. Magnetic resonance fingerprinting (MRF) permits rapid, voxel-wise, intrinsically co-registered T1 and T2 mapping. After characterizing measurement error, we scanned pregnant women during air and oxygen breathing to demonstrate MRF's ability to detect placental oxygenation changes. METHODS The accuracy of FISP-based, sliding-window reconstructed MRF was tested on phantoms. MRF scans in 9-s breath holds were acquired at 3T in 31 pregnant women during air and oxygen breathing. A mixed effects model was used to test for changes in placenta relaxation times between physiological states, to assess the dependency on gestational age (GA), and the impact of placental motion. RESULTS MRF estimates of known phantom relaxation times resulted in mean absolute errors for T1 of 92 ms (4.8%), but T2 was less accurate at 16 ms (13.6%). During normoxia, placental T1 = 1825 ± 141 ms (avg ± standard deviation) and T2 = 60 ± 16 ms (gestational age range 24.3-36.7, median 32.6 weeks). In the statistical model, placental T2 rose and T1 remained contant after hyperoxia, and no GA dependency was observed for T1 or T2. DISCUSSION Well-characterized, motion-robust MRF was used to acquire T1 and T2 maps of the placenta. Changes with hyperoxia are consistent with a net increase in oxygen saturation. Toward the goal of whole-placenta quantitative oxygenation imaging over time, we aim to implement 3D MRF with integrated motion correction to improve T2 accuracy.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA.
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Borjan Gagoski
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Esra Abaci Turk
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Henry A Feldman
- Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Carolina Bibbo
- Brigham and Women's Hospital, Division of Maternal-Fetal Medicine, Boston, MA, 02115, USA
| | - William H Barth
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Scott A Shainker
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - P Ellen Grant
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
Andersen AS, Anderson KB, Hansen DN, Sinding M, Petersen AC, Peters DA, Frøkjær JB, Sørensen A. Placental MRI: Longitudinal relaxation time (T1) in appropriate and small for gestational age pregnancies. Placenta 2021; 114:76-82. [PMID: 34482232 DOI: 10.1016/j.placenta.2021.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The antenatal detection of small for gestational age (SGA) pregnancies is a challenge, which may be improved by placental MRI. The longitudinal relaxation time (T1) is a tissue constant related to tissue morphology and tissue oxygenation, thereby placental T1 may be related to placental function. The aim of this study is to investigate placental T1 in appropriate for gestational age (AGA) and SGA pregnancies. METHODS A total of 132 singleton pregnancies were retrieved from our MRI research database. MRI and ultrasound estimated fetal weight (EFW) was performed at gestational week 20.6-41.7 in a 1.5 T system. SGA was defined as BW ≤ -15% of the expected for gestational age (≤10th centile). A subgroup of SGA pregnancies underwent postnatal placental histological examination (PHE) and abnormal PHE was defined as vascular malperfusion. The placental T1 values were converted into Z-scores adjusted for gestational age at MRI. The predictive performance of placental T1 and EFW was compared by receiver operating curves (ROC). RESULTS In AGA pregnancies, placental T1 showed a negative linear correlation with gestational age (r = -0.36, p = 0.004) Placental T1 was significantly reduced in SGA pregnancies (mean Z-score = -0.34) when compared to AGA pregnancies, p = 0.03. Among SGA pregnancies placental T1 was not reduced in cases with abnormal PHE, p = 0.84. The predictive performance of EFW (AUC = 0.84, 95% CI, 0.77-0.91) was significantly stronger than placental T1 (AUC = 0.62, 95% CI, 0.52-0.72) (p = 0.002). DISCUSSION A low placental T1 relaxation time is associated with SGA at birth. However, the predictive performance of placental T1 is not as strong as EFW.
Collapse
Affiliation(s)
- Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Nørrebrogade 44, 8000, Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| |
Collapse
|
21
|
On the use of multicompartment models of diffusion and relaxation for placental imaging. Placenta 2021; 112:197-203. [PMID: 34392172 DOI: 10.1016/j.placenta.2021.07.302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Multi-compartment models of diffusion and relaxation are ubiquitous in magnetic resonance research especially applied to neuroimaging applications. These models are increasingly making their way into the world of placental imaging. This review provides a framework for their motivation and implementation and describes some of the outstanding questions that need to be answered before they can be routinely adopted.
Collapse
|
22
|
Sethi S, Giza SA, Goldberg E, Empey MEET, de Ribaupierre S, Eastabrook GDM, de Vrijer B, McKenzie CA. Quantification of 1.5 T T 1 and T 2 * Relaxation Times of Fetal Tissues in Uncomplicated Pregnancies. J Magn Reson Imaging 2021; 54:113-121. [PMID: 33586269 DOI: 10.1002/jmri.27547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Despite its many advantages, experience with fetal magnetic resonance imaging (MRI) is limited, as is knowledge of how fetal tissue relaxation times change with gestational age (GA). Quantification of fetal tissue relaxation times as a function of GA provides insight into tissue changes during fetal development and facilitates comparison of images across time and subjects. This, therefore, can allow the determination of biophysical tissue parameters that may have clinical utility. PURPOSE To demonstrate the feasibility of quantifying previously unknown T1 and T2 * relaxation times of fetal tissues in uncomplicated pregnancies as a function of GA at 1.5 T. STUDY TYPE Pilot. POPULATION Nine women with singleton, uncomplicated pregnancies (28-38 weeks GA). FIELD STRENGTH/SEQUENCE All participants underwent two iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) acquisitions at different flip angles (6° and 20°) at 1.5 T. ASSESSMENT Segmentations of the lungs, liver, spleen, kidneys, muscle, and adipose tissue (AT) were conducted using water-only images and proton density fat fraction maps. Driven equilibrium single pulse observation of T1 (DESPOT1 ) was used to quantify the mean water T1 of the lungs, intraabdominal organs, and muscle, and the mean water and lipid T1 of AT. IDEAL T2 * maps were used to quantify the T2 * values of the lungs, intraabdominal organs, and muscle. STATISTICAL TESTS F-tests were performed to assess the T1 and T2 * changes of each analyzed tissue as a function of GA. RESULTS No tissue demonstrated a significant change in T1 as a function of GA (lungs [P = 0.89]; liver [P = 0.14]; spleen [P = 0.59]; kidneys [P = 0.97]; muscle [P = 0.22]; AT: water [P = 0.36] and lipid [P = 0.14]). Only the spleen and muscle T2 * showed a significant decrease as a function of GA (lungs [P = 0.67); liver [P = 0.05]; spleen [P < 0.05]; kidneys [P = 0.70]; muscle [P < 0.05]). DATA CONCLUSION These preliminary data suggest that the T1 of the investigated tissues is relatively stable over 28-38 weeks GA, while the T2 * change in spleen and muscle decreases significantly in that period. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Simran Sethi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Stephanie A Giza
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Estee Goldberg
- Department of Biomedical Engineering, Western University, London, Ontario, Canada
| | | | - Sandrine de Ribaupierre
- Department of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| | - Genevieve D M Eastabrook
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
23
|
Flouri D, Darby JRT, Holman SL, Perumal SR, David AL, Morrison JL, Melbourne A. Magnetic resonance imaging of placentome development in the pregnant Ewe. Placenta 2021; 105:61-69. [PMID: 33549925 PMCID: PMC7611430 DOI: 10.1016/j.placenta.2021.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Novel imaging measurements of placental development are difficult to validate due to the invasive nature of gold-standard procedures. Animal studies have been important in validation of magnetic resonance imaging (MRI) measurements in invasive preclinical studies, as they allow for controlled experiments and analysis of multiple time-points during pregnancy. This study characterises the longitudinal diffusion and perfusion properties of sheep placentomes using MRI, measurements that are required for future validation studies. METHODS Pregnant ewes were anaesthetised for a MRI session on a 3T scanner. Placental MRI was used to classify placentomes morphologically into three types based on their shape and size at two gestational ages. To validate classification accuracy, placentome type derived from MRI data were compared with placentome categorisation results after delivery. Diffusion-Weighted MRI and T2-relaxometry were used to measure a broad range of biophysical properties of the placentomes. RESULTS MRI morphological classification results showed consistent gestational age changes in placentome shape, as supported by post-delivery gold standard data. The mean apparent diffusion coefficient was significantly higher at 110 days gestation than at late gestation (~140 days; term, 150 days). Mean T2 was higher at mid gestation (152.2 ± 58.1 ms) compared to late gestation (127.8 ms ± 52.0). Significantly higher perfusion fraction was measured in late gestation placentomes that also had a significantly higher fractional anisotropy when compared to the earlier gestational age. DISCUSSION We report baseline measurements of techniques common in placental MRI for the sheep placenta. These measurements are essential to support future validation measurements of placental MRI techniques.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sunthara R Perumal
- South Australian Health & Medical Research Institute, Preclinical, Imaging & Research Laboratories, Adelaide, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, London, United Kingdom; NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
24
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
26
|
Sørensen A, Sinding M. Placental Magnetic Resonance Imaging: A Method to Evaluate Placental Function In Vivo. Obstet Gynecol Clin North Am 2020; 47:197-213. [PMID: 32008669 DOI: 10.1016/j.ogc.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This article describes the use of placental magnetic resonance imaging (MRI) relaxation times in the in vivo assessment of placental function. It focuses on T2*-weighted placental MRI, the main area of the authors' research over the past decade. The rationale behind T2*-weighted placental MRI, the main findings reported in the literature, and directions for future research and clinical applications of this method are discussed. The article concludes that placental T2* relaxation time is an easily obtained and robust measurement, which can discriminate between normal and dysfunctional placenta. Placenta T2* is a promising tool for in vivo assessment of placental function.
Collapse
Affiliation(s)
- Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, Aalborg 9000, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg 9000, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, Aalborg 9000, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, Aalborg 9000, Denmark
| |
Collapse
|
27
|
Aughwane R, Mufti N, Flouri D, Maksym K, Spencer R, Sokolska M, Kendall G, Atkinson D, Bainbridge A, Deprest J, Vercauteren T, Ourselin S, David AL, Melbourne A. Magnetic resonance imaging measurement of placental perfusion and oxygen saturation in early-onset fetal growth restriction. BJOG 2020; 128:337-345. [PMID: 32603546 PMCID: PMC7613436 DOI: 10.1111/1471-0528.16387] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We hypothesised that a multi-compartment magnetic resonance imaging (MRI) technique that is sensitive to fetal blood oxygenation would identify changes in placental blood volume and fetal blood oxygenation in pregnancies complicated by early-onset fetal growth restriction (FGR). DESIGN Case-control study. SETTING London, UK. POPULATION Women with uncomplicated pregnancies (estimated fetal weight [EFW] >10th centile for gestational age [GA] and normal maternal and fetal Doppler ultrasound, n = 12) or early-onset FGR (EFW <3rd centile with or without abnormal Doppler ultrasound <32 weeks GA, n = 12) were studied. METHODS All women underwent MRI examination. Using a multi-compartment MRI technique, we quantified fetal and maternal blood volume and feto-placental blood oxygenation. MAIN OUTCOME MEASURES Disease severity was stratified according to Doppler pulsatility index and the relationship to the MRI parameters was investigated, including the influence of GA at scan. RESULTS The FGR group (mean GA 27+5 weeks, range 24+2 to 33+6 weeks) had a significantly lower EFW compared with the control group (mean GA 29+1 weeks; -705 g, 95% CI -353 to -1057 g). MRI-derived feto-placental oxygen saturation was higher in controls compared with FGR (75 ± 9.6% versus 56 ± 16.2%, P = 0.02, 95% CI 7.8-30.3%). Feto-placental oxygen saturation estimation correlated strongly with GA at scan in controls (r = -0.83). CONCLUSION Using a novel multimodal MRI protocol we demonstrated reduced feto-placental blood oxygen saturation in pregnancies complicated by early-onset FGR. The degree of abnormality correlated with disease severity defined by ultrasound Doppler findings. Gestational age-dependent changes in oxygen saturation were also present in normal pregnancies. TWEETABLE ABSTRACT MRI reveals differences in feto-placental oxygen saturation between normal and FGR pregnancy that is associated with disease severity.
Collapse
Affiliation(s)
- R Aughwane
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - N Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - D Flouri
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - K Maksym
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - R Spencer
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University of Leeds, Leeds, UK
| | - M Sokolska
- Medical Physics, University College Hospital, London, UK
| | - G Kendall
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - D Atkinson
- Centre for Medical Imaging, University College London, London, UK
| | - A Bainbridge
- Medical Physics, University College Hospital, London, UK
| | - J Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium
| | - T Vercauteren
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - S Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - A L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - A Melbourne
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| |
Collapse
|
28
|
Bockoven C, Gastfield RD, Victor T, Venkatasubramanian PN, Wyrwicz AM, Ernst LM. Correlation of Placental Magnetic Resonance Imaging With Histopathologic Diagnosis: Detection of Aberrations in Structure and Water Diffusivity. Pediatr Dev Pathol 2020; 23:260-266. [PMID: 31870210 DOI: 10.1177/1093526619895438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Noninvasive methods to identify placental pathologic conditions are being sought in order to recognize these conditions at an earlier stage leading to improved clinical interventions and perinatal outcomes. The objective of this study was to examine fixed tissue slices of placenta by T2- and diffusion-weighted magnetic resonance imaging (MRI) and correlate the images with placental pathologic findings defined by routine gross and histologic examination. METHODS Four formalin-fixed placentas with significant placental pathology (maternal vascular malperfusion, chronic villitis of unknown etiology, and massive perivillous fibrin deposition) and 2 histologically normal placentas were evaluated by high-resolution MRI. Representative placental slices were selected (2 cm long and 10 mm wide) and rehydrated. Imaging was performed on a Bruker Avance 14.1 T microimager. Diffusion-weighted images were acquired from 16 slices using slice thickness 0.5 mm and in-plane resolution approximately 100 µm × 100 µm. T2 maps were obtained from the same slices. T2 relaxation time and apparent diffusion coefficient (ADC) were acquired from representative regions of interest and compared between normal and diseased placentas. RESULTS In T2- and diffusion-weighted images, the placental microstructure differed subjectively between diseased and normal placentas. Furthermore, diseased placentas showed statistically significantly longer mean T2 relaxation times and generally higher mean ADC. CONCLUSION Diffusion- and T2-weighted MRI can potentially be used to detect significant placental pathology by using T2 relaxation time and ADC as markers of altered placental microstructure.
Collapse
Affiliation(s)
- Crystal Bockoven
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - Roland D Gastfield
- Center for Basic MR Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois
| | - Thomas Victor
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | | | - Alice M Wyrwicz
- Center for Basic MR Research, Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| |
Collapse
|
29
|
Aughwane R, Ingram E, Johnstone ED, Salomon LJ, David AL, Melbourne A. Placental MRI and its application to fetal intervention. Prenat Diagn 2020; 40:38-48. [PMID: 31306507 PMCID: PMC7027916 DOI: 10.1002/pd.5526] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) of placental invasion has been part of clinical practice for many years. The possibility of being better able to assess placental vascularization and function using MRI has multiple potential applications. This review summarises up-to-date research on placental function using different MRI modalities. METHOD We discuss how combinations of these MRI techniques have much to contribute to fetal conditions amenable for therapy such as singletons at high risk for fetal growth restriction (FGR) and monochorionic twin pregnancies for planning surgery and counselling for selective growth restriction and transfusion conditions. RESULTS The whole placenta can easily be visualized on MRI, with a clear boundary against the amniotic fluid, and a less clear placental-uterine boundary. Contrasts such as diffusion weighted imaging, relaxometry, blood oxygenation level dependent MRI and flow and metabolite measurement by dynamic contrast enhanced MRI, arterial spin labeling, or spectroscopic techniques are contributing to our wider understanding of placental function. CONCLUSION The future of placental MRI is exciting, with the increasing availability of multiple contrasts and new models that will boost the capability of MRI to measure oxygen saturation and placental exchange, enabling examination of placental function in complicated pregnancies.
Collapse
Affiliation(s)
| | - Emma Ingram
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Edward D. Johnstone
- Division of Developmental Biology & MedicineUniversity of ManchesterManchesterUK
| | - Laurent J. Salomon
- Hôpital Necker‐Enfants Malades, AP‐HP, EHU PACT and LUMIERE PlatformUniversité Paris DescartesParisFrance
| | - Anna L. David
- Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research CentreLondonUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
30
|
Mansour S, Hamed S, Sayed S, Hosny S. Role of diffusion MR imaging (DWI) and three-dimensional ultrasound (3DUS) in the assessment of placental insufficiency in the gestational hypertension. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
DWI is a non-invasive MR modality that is not contrast-based. In the current study, we aimed to evaluate DWI in correlation with 3DUS in the detection of placental insufficiency in high-risk pregnancies complicated with hypertension.
This prospective analysis included 80 pregnancies; 40 hypertensive and 40 controls, gestational age ranged from 22 to 34 weeks. All cases had undergone 3DUS aided by power Doppler scanning and DWI. There is no given contrast. Data were correlated to histopathology.
Results
Doppler US showed a significant relation between RI of the right uterine artery of cases and control (P = 0.014). There was also a positive correlation between the presence of the diastolic notch and RI value. The mean ADC value in the controls was 1.87 ± 0.26 mm2/s, while in hypertensive was 1.36 ± 0.09 mm2/s. In DWI images, there was a significant difference between patients with normal and those with abnormal placental signals (P value = 0.047). Also, there was a significant difference between the measurement of placental volume by MRI and US among cases and controls (P values ≤0.001 and 0.017, respectively).
Conclusion
Diffusion-weighted imaging can detect early subtle findings and signs of placental dysfunction more than detected with 3DUS, so it can add to the diagnostic accuracy of US in imaging of pregnancies at high risk of placental insufficiency.
Collapse
|
31
|
Flouri D, Owen D, Aughwane R, Mufti N, Maksym K, Sokolska M, Kendall G, Bainbridge A, Atkinson D, Vercauteren T, Ourselin S, David AL, Melbourne A. Improved fetal blood oxygenation and placental estimated measurements of diffusion-weighted MRI using data-driven Bayesian modeling. Magn Reson Med 2019; 83:2160-2172. [PMID: 31742785 PMCID: PMC7064949 DOI: 10.1002/mrm.28075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Motion correction in placental DW-MRI is challenging due to maternal breathing motion, maternal movements, and rapid intensity changes. Parameter estimates are usually obtained using least-squares methods for voxel-wise fitting; however, they typically give noisy estimates due to low signal-to-noise ratio. We introduce a model-driven registration (MDR) technique which incorporates a placenta-specific signal model into the registration process, and we present a Bayesian approach for Diffusion-rElaxation Combined Imaging for Detailed placental Evaluation model to obtain individual and population trends in estimated parameters. METHODS MDR exploits the fact that a placenta signal model is available and thus we incorporate it into the registration to generate a series of target images. The proposed registration method is compared to a pre-existing method used for DCE-MRI data making use of principal components analysis. The Bayesian shrinkage prior (BSP) method has no user-defined parameters and therefore measures of parameter variation in a region of interest are determined by the data alone. The MDR method and the Bayesian approach were evaluated on 10 control 4D DW-MRI singleton placental data. RESULTS MDR method improves the alignment of placenta data compared to the pre-existing method. It also shows a further reduction of the residual error between the data and the fit. BSP approach showed higher precision leading to more clearly apparent spatial features in the parameter maps. Placental fetal oxygen saturation (FO2 ) showed a negative linear correlation with gestational age. CONCLUSIONS The proposed pipeline provides a robust framework for registering DW-MRI data and analyzing longitudinal changes of placental function.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David Owen
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Rosalind Aughwane
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Nada Mufti
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Kasia Maksym
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | | | - Giles Kendall
- Institute for Women's Health, University College Hospital, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics, University College Hospital, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College Hospital, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium.,NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
32
|
Turk EA, Stout JN, Ha C, Luo J, Gagoski B, Yetisir F, Golland P, Wald LL, Adalsteinsson E, Robinson JN, Roberts DJ, Barth WH, Grant PE. Placental MRI: Developing Accurate Quantitative Measures of Oxygenation. Top Magn Reson Imaging 2019; 28:285-297. [PMID: 31592995 PMCID: PMC7323862 DOI: 10.1097/rmr.0000000000000221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Human Placenta Project has focused attention on the need for noninvasive magnetic resonance imaging (MRI)-based techniques to diagnose and monitor placental function throughout pregnancy. The hope is that the management of placenta-related pathologies would be improved if physicians had more direct, real-time measures of placental health to guide clinical decision making. As oxygen alters signal intensity on MRI and oxygen transport is a key function of the placenta, many of the MRI methods under development are focused on quantifying oxygen transport or oxygen content of the placenta. For example, measurements from blood oxygen level-dependent imaging of the placenta during maternal hyperoxia correspond to outcomes in twin pregnancies, suggesting that some aspects of placental oxygen transport can be monitored by MRI. Additional methods are being developed to accurately quantify baseline placental oxygenation by MRI relaxometry. However, direct validation of placental MRI methods is challenging and therefore animal studies and ex vivo studies of human placentas are needed. Here we provide an overview of the current state of the art of oxygen transport and quantification with MRI. We suggest that as these techniques are being developed, increased focus be placed on ensuring they are robust and reliable across individuals and standardized to enable predictive diagnostic models to be generated from the data. The field is still several years away from establishing the clinical benefit of monitoring placental function in real time with MRI, but the promise of individual personalized diagnosis and monitoring of placental disease in real time continues to motivate this effort.
Collapse
Affiliation(s)
- Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jeffrey N. Stout
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Christopher Ha
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julian N. Robinson
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, USA
| | | | - William H. Barth
- Maternal-Fetal Medicine, Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, MA, USA
| |
Collapse
|
33
|
Hutter J, Harteveld AA, Jackson LH, Franklin S, Bos C, van Osch MJP, O'Muircheartaigh J, Ho A, Chappell L, Hajnal JV, Rutherford M, De Vita E. Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med 2019; 83:549-560. [PMID: 31433077 PMCID: PMC6825519 DOI: 10.1002/mrm.27950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To study placental function-both perfusion and an oxygenation surrogate ( T 2 * )-simultaneously and quantitatively in-vivo. METHODS Fifteen pregnant women were scanned on a 3T MR scanner. For perfusion measurements, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition. Joint motion correction and quantification were performed to evaluate changes in T 2 * and perfusion over GA. RESULTS The optimized integrated PERFOX protocol and post-processing allowed successful visualization and quantification of perfusion and T 2 * in all subjects. Areas of high T 2 * and high perfusion appear to correspond to placental sub-units and show a systematic offset in location along the maternal-fetal axis. The areas of highest perfusion are consistently closer to the maternal basal plate and the areas of highest T 2 * closer to the fetal chorionic plate. Quantitative results show a strong negative correlation of gestational age with T 2 * and weak negative correlation with perfusion. CONCLUSIONS A strength of the joint sequence is that it provides truly simultaneous and co-registered estimates of local T 2 * and perfusion, however, to achieve this, the time per slice is prolonged compared to a perfusion only scan which can potentially limit coverage. The achieved interlocking can be particularly useful when quantifying transient physiological effects such as uterine contractions. PERFOX opens a new avenue to elucidate the relationship between maternal supply and oxygen uptake, both of which are central to placental function and dysfunction.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Anita A. Harteveld
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laurence H. Jackson
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Clemens Bos
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Alison Ho
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Lucy Chappell
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Mary Rutherford
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Enrico De Vita
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Slator PJ, Hutter J, Palombo M, Jackson LH, Ho A, Panagiotaki E, Chappell LC, Rutherford MA, Hajnal JV, Alexander DC. Combined diffusion-relaxometry MRI to identify dysfunction in the human placenta. Magn Reson Med 2019; 82:95-106. [PMID: 30883915 PMCID: PMC6519240 DOI: 10.1002/mrm.27733] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE A combined diffusion-relaxometry MR acquisition and analysis pipeline for in vivo human placenta, which allows for exploration of coupling between T 2 * and apparent diffusion coefficient (ADC) measurements in a sub 10-minute scan time. METHODS We present a novel acquisition combining a diffusion prepared spin echo with subsequent gradient echoes. The placentas of 17 pregnant women were scanned in vivo, including both healthy controls and participants with various pregnancy complications. We estimate the joint T 2 * -ADC spectra using an inverse Laplace transform. RESULTS T 2 * -ADC spectra demonstrate clear quantitative separation between normal and dysfunctional placentas. CONCLUSIONS Combined T 2 * -diffusivity MRI is promising for assessing fetal and maternal health during pregnancy. The T 2 * -ADC spectrum potentially provides additional information on tissue microstructure, compared to measuring these two contrasts separately. The presented method is immediately applicable to the study of other organs.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Jana Hutter
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Laurence H. Jackson
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Alison Ho
- Women’s Health DepartmentKing’s College LondonLondonUnited Kingdom
| | - Eleftheria Panagiotaki
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Lucy C. Chappell
- Women’s Health DepartmentKing’s College LondonLondonUnited Kingdom
| | - Mary A. Rutherford
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Biomedical Engineering DepartmentKing’s College LondonLondonUnited Kingdom
- Centre for the Developing BrainKing’s College LondonLondonUnited Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
35
|
Non-invasive assessment of placental perfusion in vivo using arterial spin labeling (ASL) MRI: A preclinical study in rats. Placenta 2019; 77:39-45. [PMID: 30827354 DOI: 10.1016/j.placenta.2019.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Non-invasive assessment of placental perfusion is of great interest to characterize placental function in clinical practice. This article proposes a strictly non-invasive MRI technique using ASL to quantify placental blood flow in vivo. The aim of this study was to develop a fMRI tool to quantify placental blood flow (PBF) in rat, by using arterial spin labeling (ASL) MRI at 4.7 T. MATERIALS AND METHODS MRI was performed with a dedicated magnet for small animals, in pregnant rats on day 20 of the 22-day gestation period. A Look-Locker flow-sensitive alternating inversion recovery gradient echo sequence was developed as ASL technique (TE: 1.55 ms; TR: 3.5 ms, TI: 56 ms, deltaTI: 56 ms, FA: 20°, Matrix: 128 × 128, 8 segments, 4 Nex). Labeling was performed with global and slice-selective inversions, and T1 map was obtained for each mode of inversion. PBF was then derived from a compartmental model of the variation of T1 between global and slice-selective inversions. RESULTS The full protocol was completed and ASL image post-processing was successful in 18 rats. Forty-seven placentas were analyzed, with a mean PBF of 147 ± 70 ml/min/100 g of placenta, consistent with published values of placental perfusion using invasive techniques. CONCLUSION ASL MRI is feasible for the quantification of PBF in rats at 4.7 T. This technique, which requires no administration of contrast media, could have implications for non-invasive longitudinal and in vivo animal studies and may be useful for the management of human pregnancies.
Collapse
|
36
|
Hutter J, Slator PJ, Jackson L, Gomes ADS, Ho A, Story L, O’Muircheartaigh J, Teixeira RPAG, Chappell LC, Alexander DC, Rutherford MA, Hajnal JV. Multi-modal functional MRI to explore placental function over gestation. Magn Reson Med 2019; 81:1191-1204. [PMID: 30242899 PMCID: PMC6585747 DOI: 10.1002/mrm.27447] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE To investigate, visualize and quantify the physiology of the human placenta in several dimensions - functional, temporal over gestation, and spatial over the whole organ. METHODS Bespoke MRI techniques, combining a rich diffusion protocol, anatomical data and T2* mapping together with a multi-modal pipeline including motion correction and extracted quantitative features were developed and employed on pregnant women between 22 and 38 weeks gestational age including two pregnancies diagnosed with pre-eclampsia. RESULTS A multi-faceted assessment was demonstrated showing trends of increasing lacunarity, and decreasing T2* and diffusivity over gestation. CONCLUSIONS The obtained multi-modal acquisition and quantification shows promising opportunities for studying evolution, adaptation and compensation processes.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Paddy J. Slator
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Laurence Jackson
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Ana Dos Santos Gomes
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Alison Ho
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Lisa Story
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | | | - Rui P. A. G. Teixeira
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| | - Lucy C. Chappell
- Women's Health Academic CentreKing's College LondonLondonUnited Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer ScienceUniversity College LondonUnited Kingdom
| | | | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonUnited Kingdom
- Biomedical Engineering DepartmentKing's College LondonUnited Kingdom
| |
Collapse
|
37
|
Melbourne A, Aughwane R, Sokolska M, Owen D, Kendall G, Flouri D, Bainbridge A, Atkinson D, Deprest J, Vercauteren T, David A, Ourselin S. Separating fetal and maternal placenta circulations using multiparametric MRI. Magn Reson Med 2018; 81:350-361. [PMID: 30239036 PMCID: PMC6282748 DOI: 10.1002/mrm.27406] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE The placenta is a vital organ for the exchange of oxygen, nutrients, and waste products between fetus and mother. The placenta may suffer from several pathologies, which affect this fetal-maternal exchange, thus the flow properties of the placenta are of interest in determining the course of pregnancy. In this work, we propose a new multiparametric model for placental tissue signal in MRI. METHODS We describe a method that separates fetal and maternal flow characteristics of the placenta using a 3-compartment model comprising fast and slowly circulating fluid pools, and a tissue pool is fitted to overlapping multiecho T2 relaxometry and diffusion MRI with low b-values. We implemented the combined model and acquisition on a standard 1.5 Tesla clinical system with acquisition taking less than 20 minutes. RESULTS We apply this combined acquisition in 6 control singleton placentas. Mean myometrial T2 relaxation time was 123.63 (±6.71) ms. Mean T2 relaxation time of maternal blood was 202.17 (±92.98) ms. In the placenta, mean T2 relaxation time of the fetal blood component was 144.89 (±54.42) ms. Mean ratio of maternal to fetal blood volume was 1.16 (±0.6), and mean fetal blood saturation was 72.93 (±20.11)% across all 6 cases. CONCLUSION The novel acquisition in this work allows the measurement of histologically relevant physical parameters, such as the relative proportions of vascular spaces. In the placenta, this may help us to better understand the physiological properties of the tissue in disease.
Collapse
Affiliation(s)
- Andrew Melbourne
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Rosalind Aughwane
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Institute for Women's Health, University College Hospital,London, London, United Kingdom
| | | | - David Owen
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Giles Kendall
- Institute for Women's Health, University College Hospital,London, London, United Kingdom
| | - Dimitra Flouri
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics, University College Hospital, London, United Kingdom
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Jan Deprest
- Institute for Women's Health, University College Hospital,London, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium
| | - Tom Vercauteren
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| | - Anna David
- Institute for Women's Health, University College Hospital,London, London, United Kingdom.,University Hospital KU Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Sebastien Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging, Kings College London, London, United Kingdom
| |
Collapse
|
38
|
Kameyama KN, Kido A, Himoto Y, Moribata Y, Minamiguchi S, Konishi I, Togashi K. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time? Acta Radiol 2018; 59:748-754. [PMID: 28862023 DOI: 10.1177/0284185117727786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIRpl./psoas muscle) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIRpl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIRpl./psoas muscle might be optimal as a clinically available quantitative index of placental function.
Collapse
Affiliation(s)
- Kyoko Nakao Kameyama
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Himoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusaku Moribata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ikuo Konishi
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Placental baseline conditions modulate the hyperoxic BOLD-MRI response. Placenta 2018; 61:17-23. [DOI: 10.1016/j.placenta.2017.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/31/2023]
|
40
|
Siauve N, Hayot PH, Deloison B, Chalouhi GE, Alison M, Balvay D, Bussières L, Clément O, Salomon LJ. Assessment of human placental perfusion by intravoxel incoherent motion MR imaging. J Matern Fetal Neonatal Med 2017; 32:293-300. [PMID: 28974131 DOI: 10.1080/14767058.2017.1378334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To provide functional information on the human placenta, including perfusion, and diffusion, with no contrast agent injection, and to study correlations between intravoxel incoherent motion (IVIM) placental parameters and fetal growth. MATERIALS AND METHODS MRI was performed in women undergoing legal termination of pregnancy at 17-34 weeks, including a 4-b-value and 11-b-value DW sequences. The apparent diffusion coefficient (ADC), the restricted diffusion coefficient (D), the pseudoperfusion coefficient (D*), and the perfusion fraction (f) were calculated. Their relationships with gestational age, Z-scores for fetal and placental weight were evaluated by means of regression analysis. Logistic regression analysis was used to assess the ability of IVIM parameters to predict/detect intrauterine growth retardation (SGA). RESULTS Fifty-five pregnant women, including nine cases of SGA (16%), were included in the study. The ADC (n = 55) showed a quadratic correlation with gestational age (p < .001) and a linear correlation with the fetal weight Z-score (p = .02). Mean ADC values were significantly different between normally growing and SGA fetuses (2.37 ± 0.25 versus 2.29 ± 0.33 10-3.mm2.s-1, p=.048). The perfusion fraction f (n = 23) showed a quadratic correlation with gestational age (p = .017) and a linear correlation with the fetal weight Z - score (p = .008). Mean f values differed significantly between normally growing and SGA fetuses (42.55 ± 9.30% versus 27.94 ± 8.76%, p = .002). The receiver operating characteristics (ROC) curve for f to predict SGA was produced (area under the ROC curve = 0.9). CONCLUSIONS The observed association between f and fetal weight suggests that fMRI could be suitable for studying placental insufficiency and for identifying risk of SGA.
Collapse
Affiliation(s)
- Nathalie Siauve
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,c Assistance Publique: Hôpitaux de Paris , Hôpital Européen Georges Pompidou , Paris , France
| | - Pierre Humbert Hayot
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,d Assistance Publique: Hôpitaux de Paris , Hôpital Necker-Enfants Malades , Paris , France
| | - Benjamin Deloison
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,d Assistance Publique: Hôpitaux de Paris , Hôpital Necker-Enfants Malades , Paris , France
| | - Gihad E Chalouhi
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,d Assistance Publique: Hôpitaux de Paris , Hôpital Necker-Enfants Malades , Paris , France
| | - Marianne Alison
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France
| | - Daniel Balvay
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,e Plateforme d'Imagerie du Vivant , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Laurence Bussières
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,d Assistance Publique: Hôpitaux de Paris , Hôpital Necker-Enfants Malades , Paris , France
| | - Olivier Clément
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France
| | - Laurent J Salomon
- a INSERM, U970 , Paris Cardiovascular Research Center - PARCC, Sorbonne Paris Cite , Paris , France.,b EA Fetus & Lumiere Platform , Université Paris Descartes , Paris , France.,d Assistance Publique: Hôpitaux de Paris , Hôpital Necker-Enfants Malades , Paris , France
| |
Collapse
|
41
|
Sinding M, Peters DA, Frøkjær JB, Christiansen OB, Petersen A, Uldbjerg N, Sørensen A. Prediction of low birth weight: Comparison of placental T2* estimated by MRI and uterine artery pulsatility index. Placenta 2016; 49:48-54. [PMID: 28012454 DOI: 10.1016/j.placenta.2016.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Neonates at low birth weight due to placental dysfunction are at high risk of adverse outcomes. These outcomes can be substantially improved by prenatal identification. The Magnetic Resonance Imaging (MRI) constant, placental T2* reflects placental structure and oxygenation and thereby placental function. Therefore, we aimed to evaluate the performance of placental T2* in the prediction of low birth weight using the uterine artery (UtA) pulsatility index (PI) as gold standard. METHODS This was a prospective observational study of 100 singleton pregnancies included at 20-40 weeks' gestation. Placental T2* was obtained using a gradient recalled multi-echo MRI sequence and UtA PI was measured using Doppler ultrasound. Placental pathological examination was performed in 57 of the pregnancies. Low birth weight was defined by a Z-score ≤ -2.0. RESULTS The incidence of low birth weight was 15%. The median time interval between measurements and birth was 7.3 weeks (interquartile range 3.0, 13.7 weeks). Linear regression revealed significant associations between birth weight Z-score and both placental T2* Z-score (r = 0.68, p < 0.0001) and UtA PI Z-score (r = -0.43, p < 0.0001). Receiver operating characteristic curves demonstrated a significantly higher performance of T2* (AUC of 0.92; 95% CI, 0.85-0.98) than UtA PI (AUC of 0.74; 95% CI, 0.60-0.89) in the prediction of low birth weight (p = 0.010). Placental pathological findings were closely related to the T2* values. CONCLUSIONS In this population, placental T2* was a strong predictor of low birth weight and it performed significantly better than the UtA PI. Thus, placental T2* is a promising marker of placental dysfunction which deserves further investigation.
Collapse
Affiliation(s)
- Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Olof Palmes Alle 13, 8200 Aarhus N, Denmark.
| | - Jens B Frøkjær
- Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark.
| | - Ole B Christiansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark.
| | - Astrid Petersen
- Department of Pathology, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark.
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Palle Juul - Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark.
| |
Collapse
|
42
|
Sinding M, Peters DA, Frøkjaer JB, Christiansen OB, Petersen A, Uldbjerg N, Sørensen A. Placental magnetic resonance imaging T2* measurements in normal pregnancies and in those complicated by fetal growth restriction. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2016; 47:748-754. [PMID: 26041014 DOI: 10.1002/uog.14917] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/27/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The magnetic resonance imaging (MRI) variable transverse relaxation time (T2*) depends on multiple factors, one important one being the presence of deoxyhemoglobin. We aimed to describe placental T2* measurements in normal pregnancies and in those with fetal growth restriction (FGR). METHODS We included 24 normal pregnancies at 24-40 weeks' gestation and four FGR cases with an estimated fetal weight below the 1(st) centile. Prior to MRI, an ultrasound examination, including Doppler flow measurements, was performed. The T2* value was calculated using a gradient echo MRI sequence with readout at 16 different echo times. In normal pregnancies, repeat T2* measurements were performed and interobserver reproducibility was assessed in order to estimate the reproducibility of the method. Placental histological examination was performed in the FGR cases. RESULTS The method was robust regarding the technical and interobserver reproducibility. However, some slice-to-slice variation existed owing to the heterogeneous nature of the normal placenta. We therefore based T2* estimations on the average of two slices from each placenta. In normal pregnancies, the placental T2* value decreased significantly with increasing gestational age, with mean ± SD values of 120 ± 17 ms at 24 weeks' gestation, 84 ± 16 ms at 32 weeks and 47 ± 17 ms at 40 weeks. Three FGR cases had abnormal Doppler flow, histological signs of maternal hypoperfusion and a reduced T2* value (Z-score < -3.5). In the fourth FGR case, Doppler flow, placental histology and T2* value (Z-score, -0.34) were normal. CONCLUSIONS The established reference values for placental T2* may be clinically useful, as T2* values were significantly lower in FGR cases with histological signs of maternal hypoperfusion. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- M Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - J B Frøkjaer
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - O B Christiansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - A Petersen
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - N Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
43
|
Hawkes RA, Patterson AJ, Priest AN, Harrison G, Hunter S, Pinney J, Set P, Hilliard N, Graves MJ, Smith GCS, Lomas DJ. Uterine artery pulsatility and resistivity indices in pregnancy: Comparison of MRI and Doppler US. Placenta 2016; 43:35-40. [PMID: 27324097 DOI: 10.1016/j.placenta.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this work was to evaluate whether the uterine arteries (UtA) could be identified and their flow profiles measured during a fetal MRI examination. A comparison was performed against same day sonographic Doppler assessment. METHODS 35 normal, healthy, singleton pregnancies at 28-32 weeks gestation underwent routine Doppler examination, followed by MRI examination. The resistivity index (RI) and pulsatility index (PI) of the left and right UtA were measured using phase contrast MRI. Bland Altman statistics were used to compare MRI and ultrasound results. RESULTS Sixty-nine comparable vessels were analysed. Six vessels were excluded due to artefact or technical error. Bland-Altman analysis demonstrated the ultrasound indices were comparable, although systematically lower than the MRI indices; Right UtA RI bias -0.03 (95% limits of agreement (LOA) -0.27 to +0.20), and left UtA RI bias -0.06 (95% LOA -0.26 to +0.14); Right UtA PI bias -0.06 (95% LOA -0.50 to +0.38), Left UtA PI bias -0.11 (95% LOA -0.54 to +0.32). The inter-rater agreement for the MRI derived PI and RI analysis was good. CONCLUSION This study demonstrates that in the majority of early third trimester pregnancies, the uterine arteries can be identified, and their flow profiles measured using MRI, and that the derived PI and RI values are comparable with Doppler ultrasound values.
Collapse
Affiliation(s)
- R A Hawkes
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom.
| | - A J Patterson
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - A N Priest
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | | | - S Hunter
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - J Pinney
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - P Set
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - N Hilliard
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - M J Graves
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| | - G C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge, United Kingdom
| | - D J Lomas
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
44
|
Himoto Y, Kido A, Mogami H, Moribata Y, Minamiguchi S, Shitano F, Kiguchi K, Kurata Y, Konishi I, Togashi K. Placental function assessed visually using half-Fourier acquisition single-shot turbo spin-echo (HASTE) magnetic resonance imaging. Placenta 2016; 39:55-60. [PMID: 26992675 DOI: 10.1016/j.placenta.2016.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/15/2015] [Accepted: 01/08/2016] [Indexed: 11/28/2022]
Abstract
INTRODUCTION To investigate a simple visual assessment method of placental function using half-Fourier acquisition single-shot turbo spin-echo (HASTE) magnetic resonance imaging (MRI). METHODS The institutional review board approved this retrospective study of fetal MRI in 48 singleton pregnant women for whom placentas had undergone clinical pathological examinations. Two readers independently assessed the placentas using the HASTE scoring system, particularly emphasizing the visualization of the regular two-tone pattern inside and signal intensity (SI) of placental parenchyma referring to SI of the fetal kidney and liver. After categorization using the HASTE scoring system, the associations between the scores and the presence of pathologically proven placental insufficiency or of low birth weight less than the tenth percentile were examined using chi-square tests. The associations between the HASTE scores and the MRI findings previously reported to suggest placental insufficiency, such as placental thickness and placenta to amniotic fluid SI ratio, were also examined using Student t-tests. RESULTS The HASTE scores were associated significantly with the presence of pathologically proven placental insufficiency (P = .003 for reader 1; P = .04 reader 2) and birth weight less than the tenth percentile (P = .005 for reader 1; P = .003 for reader 2). The HASTE scores were associated significantly with the placenta thickness (P < .0001 for both readers) and the placenta to the amniotic fluid SI ratio (P < .0001 for both readers). DISCUSSION The HASTE scoring system is feasible for use in clinical assessment of placental function and for diagnosing placental insufficiency.
Collapse
Affiliation(s)
- Yuki Himoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan.
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Japan
| | - Yusaku Moribata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Sachiko Minamiguchi
- Department of Pathology, Kyoto University Graduate School of Medicine, Japan
| | - Fuki Shitano
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Kayo Kiguchi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Yasuhisa Kurata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
45
|
Schabel MC, Roberts VHJ, Lo JO, Platt S, Grant KA, Frias AE, Kroenke CD. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast. Magn Reson Med 2015; 76:1551-1562. [PMID: 26599502 DOI: 10.1002/mrm.26052] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. METHODS MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. RESULTS Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 105 cm-3 to 1.61 × 106 cm-3 . CONCLUSIONS Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University.,Utah Center for Advanced Imaging Research, University of Utah
| | - V H J Roberts
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - J O Lo
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University
| | - S Platt
- Division of Neuroscience, Oregon National Primate Research Center
| | - K A Grant
- Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| | - A E Frias
- Division of Diabetes, Obesity & Metabolism, Oregon Health & Science University.,Division of Developmental & Reproductive Sciences, Oregon National Primate Research Center.,Department of Obstetrics & Gynecology, Oregon Health & Science University
| | - C D Kroenke
- Advanced Imaging Research Center, Oregon Health & Science University.,Division of Neuroscience, Oregon National Primate Research Center.,Department of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
46
|
Sørensen A, Sinding M, Peters DA, Petersen A, Frøkjær JB, Christiansen OB, Uldbjerg N. Placental oxygen transport estimated by the hyperoxic placental BOLD MRI response. Physiol Rep 2015; 3:3/10/e12582. [PMID: 26471757 PMCID: PMC4632952 DOI: 10.14814/phy2.12582] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Estimating placental oxygen transport capacity is highly desirable, as impaired placental function is associated with fetal growth restriction (FGR) and poor neonatal outcome. In clinical obstetrics, a noninvasive method to estimate the placental oxygen transport is not available, and the current methods focus on fetal well-being rather than on direct assessment of placental function. In this article, we aim to estimate the placental oxygen transport using the hyperoxic placental blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) response. In 21 normal pregnancies and in four cases of severe early onset FGR, placental BOLD MRI was performed in a 1.5 Tesla MRI system (TR:8000 msec, TE:50 msec, Flip angle:90). Placental histological examination was performed in the FGR cases. In normal pregnancies, the average hyperoxic placental BOLD response was 12.6 ± 5.4% (mean ± SD). In the FGR cases, the hyperoxic BOLD response was abnormal only in cases with histological signs of maternal hypoperfusion of the placenta. The hyperoxic placental BOLD response is mainly derived from an increase in the saturation of maternal venous blood. In the normal placenta, the pO2 of the umbilical vein is closely related to the pO2 of the uterine vein. Therefore, the hyperoxic placental BOLD response may reflect the placental oxygen supply to the fetus. In early onset FGR, the placental oxygen transport is reduced mainly because of the maternal hypoperfusion, and in these cases the placental BOLD response might be altered. Thus, the placental BOLD MRI might provide direct noninvasive assessment of placental oxygen transport.
Collapse
Affiliation(s)
- Anne Sørensen
- Obstetrics and Gýnecology, Aalborg University Hospital, Aalborg, Denmark
| | - Marianne Sinding
- Obstetrics and Gýnecology, Aalborg University Hospital, Aalborg, Denmark
| | - David A Peters
- Clinical Engineering, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jens B Frøkjær
- Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Ole B Christiansen
- Obstetrics and Gýnecology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Uldbjerg
- Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Siauve N, Chalouhi GE, Deloison B, Alison M, Clement O, Ville Y, Salomon LJ. Functional imaging of the human placenta with magnetic resonance. Am J Obstet Gynecol 2015; 213:S103-14. [PMID: 26428488 DOI: 10.1016/j.ajog.2015.06.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
Abnormal placentation is responsible for most failures in pregnancy; however, an understanding of placental functions remains largely concealed from noninvasive, in vivo investigations. Magnetic resonance imaging (MRI) is safe in pregnancy for magnetic fields of up to 3 Tesla and is being used increasingly to improve the accuracy of prenatal imaging. Functional MRI (fMRI) of the placenta has not yet been validated in a clinical setting, and most data are derived from animal studies. FMRI could be used to further explore placental functions that are related to vascularization, oxygenation, and metabolism in human pregnancies by the use of various enhancement processes. Dynamic contrast-enhanced MRI is best able to quantify placental perfusion, permeability, and blood volume fractions. However, the transplacental passage of Gadolinium-based contrast agents represents a significant safety concern for this procedure in humans. There are alternative contrast agents that may be safer in pregnancy or that do not cross the placenta. Arterial spin labeling MRI relies on magnetically labeled water to quantify the blood flows within the placenta. A disadvantage of this technique is a poorer signal-to-noise ratio. Based on arterial spin labeling, placental perfusion in normal pregnancy is 176 ± 91 mL × min(-1) × 100 g(-1) and decreases in cases with intrauterine growth restriction. Blood oxygen level-dependent and oxygen-enhanced MRIs do not assess perfusion but measure the response of the placenta to changes in oxygen levels with the use of hemoglobin as an endogenous contrast agent. Diffusion-weighted imaging and intravoxel incoherent motion MRI do not require exogenous contrast agents, instead they use the movement of water molecules within tissues. The apparent diffusion coefficient and perfusion fraction are significantly lower in placentas of growth-restricted fetuses when compared with normal pregnancies. Magnetic resonance spectroscopy has the ability to extract information regarding metabolites from the placenta noninvasively and in vivo. There are marked differences in all 3 metabolites N-acetyl aspartate/choline levels, inositol/choline ratio between small, and adequately grown fetuses. Current research is focused on the ability of each fMRI technique to make a timely diagnosis of abnormal placentation that would allow for appropriate planning of follow-up examinations and optimal scheduling of delivery. These research programs will benefit from the use of well-defined sequences, standardized imaging protocols, and robust computational methods.
Collapse
Affiliation(s)
- Nathalie Siauve
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Gihad E Chalouhi
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Deloison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Marianne Alison
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France
| | - Olivier Clement
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; Hôpital Européen Georges Pompidou, Paris, France
| | - Yves Ville
- EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Laurent J Salomon
- INSERM, U970, Sorbonne Paris Cite, Paris Cardiovascular Research Center-PARCC, Paris, France; EA FETUS and LUMIERE Unit, Université Paris-Descartes, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
48
|
Krishnamurthy U, Szalai G, Shen Y, Xu Z, Yadav BK, Tarca AL, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Haacke EM, Romero R, D Med Sci, Neelavalli J. Longitudinal Changes in Placental Magnetic Resonance Imaging Relaxation Parameter in Murine Pregnancy: Compartmental Analysis. Gynecol Obstet Invest 2015; 81:193-201. [PMID: 26336923 PMCID: PMC4769121 DOI: 10.1159/000431223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify gestation-dependent longitudinal changes in the magnetic resonance transverse relaxation time (T2) parameter of the major constituent regions of the mouse placenta and to evaluate their relative contributions to changes in overall placental T2. METHODS Timed-pregnant CD-1 mice underwent magnetic resonance imaging at 7.0 T field strength, on gestational day 13 (GD13), GD15 and GD17. T2 of the placenta and its constituent high and low blood perfusion regions were quantified. A linear mixed-effects model was used to fit the T2 across gestation, and the significance of coefficients was tested. RESULTS A decrease in the T2 values of the placenta and its constituent regions was observed across gestation. The temporal change in T2 was estimated to be -1.85 ms/GD (p < 0.0001) for the placenta, -1.00 ms/GD (p < 0.001) for the high-perfusion zones (HPZs) and -1.66 ms/GD (p < 0.0001) for the low-perfusion zones (LPZs). CONCLUSION T2 of the constituent zones of the murine placenta decreases with advancing gestation. While the T2 of the LPZ is smaller than that of the HPZ, there is no difference in their decrease rate relative to that of the whole placenta (p = 0.24). The results suggest an increased role of constituent volume fractions in affecting overall gestation-dependent placental T2 decrease in mice.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Gabor Szalai
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Brijesh Kumar Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ewart Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | | | - D Med Sci
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
49
|
Himoto Y, Kido A, Minamiguchi S, Mogami H, Konishi I, Togashi K. Visualization of placental hypocirculation with typical patterns using conventional magnetic resonance imaging: Two case reports. J Obstet Gynaecol Res 2014; 41:794-8. [PMID: 25511628 DOI: 10.1111/jog.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/06/2014] [Indexed: 12/01/2022]
Abstract
We report two cases of clinically suspected placental hypocirculation, as per evidenced by specific half-Fourier acquisition single-shot turbo spin-echo (HASTE) magnetic resonance findings of the whole placenta. Patient 1 was a case of fetal growth restriction caused by pregnancy-induced hypertension, while patient 2 experienced a discordant dichorionic diamniotic twin pregnancy with fetal growth restriction complication with a velamentous insertion of the umbilical cord in the smaller twin. In both cases, HASTE images showed noticeably decreased signal intensity with high-intensity signal spots present in the central region of the placenta. In the twin pregnancy case, the low-intensity signal area in the placenta of the smaller twin was much lower compared to that of the larger twin. Pathological findings failed to support or explain these observations. HASTE images might reflect compensatory alternation of the distribution of maternal blood and villus caused by hypocirculation. In conclusion, our results suggest that HASTE imaging might be a useful approach for the visualization of placental hypocirculation.
Collapse
Affiliation(s)
- Yuki Himoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Krishnamurthy U, Szalai G, Neelavalli J, Shen Y, Chaiworapongsa T, Hernandez-Andrade E, Than NG, Xu Z, Yeo L, Haacke M, Romero R. Quantitative T2 changes and susceptibility-weighted magnetic resonance imaging in murine pregnancy. Gynecol Obstet Invest 2014; 78:33-40. [PMID: 24861575 PMCID: PMC4119876 DOI: 10.1159/000362552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate gestational age-dependent changes in the T2 relaxation time in normal murine placentas in vivo. The role of susceptibility-weighted imaging (SWI) in visualization of the murine fetal anatomy was also elucidated. METHODS Timed-pregnant CD-1 mice at gestational day (GD) 12 and GD17 underwent magnetic resonance imaging. Multi-echo spin echo and SWI data were acquired. The placental T2 values on GD12 and GD17 were quantified. To account for the influence of systemic maternal physiological factors on placental perfusion, maternal muscle was used as a reference for T2 normalization. A linear mixed-effects model was used to fit the normalized T2 values, and the significance of the coefficients was tested. Fetal SWI images were processed and reviewed for venous vasculature and skeletal structures. RESULTS The average placental T2 value decreased significantly on GD17 (40.17 ± 4.10 ms) compared to the value on GD12 (55.78 ± 8.13 ms). The difference in normalized T2 values also remained significant (p = 0.001). Using SWI, major fetal venous structures like the cardinal vein, the subcardinal vein, and the portal vein were visualized on GD12. In addition, fetal skeletal structures could also be discerned on GD17. CONCLUSION The T2 value of a normal murine placenta decreases with advancing gestation. SWI provided clear visualization of the fetal venous vasculature and bony structures. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Mich., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|