1
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
2
|
Ortega MA, Garcia-Puente LM, Fraile-Martinez O, Pekarek T, García-Montero C, Bujan J, Pekarek L, Barrena-Blázquez S, Gragera R, Rodríguez-Rojo IC, Rodríguez-Benitez P, López-González L, Díaz-Pedrero R, Álvarez-Mon M, García-Honduvilla N, De León-Luis JA, Bravo C, Saez MA. Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia. Antioxidants (Basel) 2024; 13:591. [PMID: 38790696 PMCID: PMC11117992 DOI: 10.3390/antiox13050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health. Previous research indicates that different pathophysiological events within the placenta may contribute to the development of preeclampsia across multiple pathways. In our experimental study, we investigated markers of oxidative stress, ferroptosis, and lipid peroxidation pathways in placental tissue samples obtained from women with LO-PE (n = 68) compared to healthy control pregnant women (HC, n = 43). Through a comprehensive analysis, we observed an upregulation of specific molecules associated with these pathways, including NADPH oxidase 1 (NOX-1), NADPH oxidase 2 (NOX-2), transferrin receptor protein 1 (TFRC), arachidonate 5-lipoxygenase (ALOX-5), acyl-CoA synthetase long-chain family member 4 (ACSL-4), glutathione peroxidase 4 (GPX4) and malondialdehyde (MDA) in women with LO-PE. Furthermore, increased ferric tissue deposition (Fe3+) was observed in placenta samples stained with Perls' Prussian blue. The assessment involved gene and protein expression analyses conducted through RT-qPCR experiments and immunohistochemistry assays. Our findings underscore the heightened activation of inflammatory pathways in LO-PE compared to HC, highlighting the pathological mechanisms underlying this pregnancy disorder.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Luis M. Garcia-Puente
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28801 Alcala de Henares, Spain
| | - Raquel Gragera
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Inmaculada C. Rodríguez-Rojo
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, 28801 Alcala de Henares, Spain
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (L.M.G.-P.); (O.F.-M.); (T.P.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| |
Collapse
|
3
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
4
|
Janev A, Banerjee A, Weidinger A, Dimec J, Leskošek B, Silini AR, Cirman T, Wolbank S, Ramuta TŽ, Jerman UD, Pandolfi A, Di Pietro R, Pozzobon M, Giebel B, Eissner G, Ferk P, Lang-Olip I, Alviano F, Soritau O, Parolini O, Kreft ME. Recommendations from the COST action CA17116 (SPRINT) for the standardization of perinatal derivative preparation and in vitro testing. Front Bioeng Biotechnol 2023; 11:1258753. [PMID: 38033821 PMCID: PMC10682948 DOI: 10.3389/fbioe.2023.1258753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jure Dimec
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Brane Leskošek
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tina Cirman
- Cryobiology Centre, Department of Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology—CAST, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
- Foundation Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Polonca Ferk
- ELIXIR-SI Centre, Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Ljubljana, Slovenia
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Olga Soritau
- Laboratory of Tumor Cell Biology and Radiobiology, Institute of Oncology “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Poinsignon L, Chissey A, Ajjaji A, Hernandez I, Vignaud ML, Ferecatu I, Fournier T, Beaudeux JL, Zerrad-Saadi A. Placental cartography of NADPH oxidase (NOX) family proteins: Involvement in the pathophysiology of preeclampsia. Arch Biochem Biophys 2023; 749:109787. [PMID: 37866451 DOI: 10.1016/j.abb.2023.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The placenta is an essential organ for fetal development. During the first trimester, it undergoes dramatic changes as it develops in an environment poor in oxygen (around 2-3%). From about 10 gestational weeks, oxygen levels increase to 8% in the intervillous chamber. These changes are accompanied by modulation of the activity of NADPH oxidase, a major source of production of reactive oxygen species in the first trimester of pregnancy. The NOX complex is composed of seven different proteins (NOX1-5 and DUOX1-2) whose placental involvements during physiological and pathological pregnancies are largely unknown. The aim of the study was to produce a cartography of NOX family proteins, in terms of RNA, protein expression, and localization during physiological pregnancy and in the case of preeclampsia (PE), in a cohort of early-onset PE (n = 11) and late-onset PE (n = 7) cases. NOX family proteins were mainly expressed in trophoblastic cells (NOX4-5, DUOX1) and modulated during physiological pregnancy. NOX4 underwent an unexpected and hitherto unreported nuclear translocation at term. In the case of PE, two groups stood out: NOX1-3, superoxide producers, were down-regulated (p < 0.05) while NOX4-DUOX1, hydrogen peroxide producers, were up-regulated (p < 0.05), compared to the control group. Mapping of placental NOX will constitute a reference and guide for future investigations concerning its involvement in the pathophysiology of PE.
Collapse
Affiliation(s)
- Léa Poinsignon
- Université Paris-Cité, Inserm, 3PHM, F-75006, Paris, France
| | - Audrey Chissey
- Université Paris-Cité, Inserm, 3PHM, F-75006, Paris, France
| | - Ayoub Ajjaji
- Université Paris-Cité, Inserm, 3PHM, F-75006, Paris, France
| | | | | | - Ioana Ferecatu
- Université Paris-Cité, Inserm, 3PHM, F-75006, Paris, France
| | | | - Jean-Louis Beaudeux
- Université Paris-Cité, Inserm, 3PHM, F-75006, Paris, France; Service Biochimie, AP-HP, Hôpital Necker Enfants Malades, F-75006, Paris, France
| | | |
Collapse
|
6
|
Zhou G, Fichorova RN, Holzman C, Chen B, Chang C, Kasten EP, Hoffmann HM. Placental circadian lincRNAs and spontaneous preterm birth. Front Genet 2023; 13:1051396. [PMID: 36712876 PMCID: PMC9874002 DOI: 10.3389/fgene.2022.1051396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have a much higher cell- and/or tissue-specificity compared to mRNAs in most cases, making them excellent candidates for therapeutic applications to reduce off-target effects. Placental long non-coding RNAs have been investigated in the pathogenesis of preeclampsia (often causing preterm birth (PTB)), but less is known about their role in preterm birth. Preterm birth occurs in 11% of pregnancies and is the most common cause of death among infants in the world. We recently identified that genes that drive circadian rhythms in cells, termed molecular clock genes, are deregulated in maternal blood of women with spontaneous PTB (sPTB) and in the placenta of women with preeclampsia. Next, we focused on circadian genes-correlated long intergenic non-coding RNAs (lincRNAs, making up most of the long non-coding RNAs), designated as circadian lincRNAs, associated with sPTB. We compared the co-altered circadian transcripts-correlated lincRNAs expressed in placentas of sPTB and term births using two published independent RNAseq datasets (GSE73712 and GSE174415). Nine core clock genes were up- or downregulated in sPTB versus term birth, where the RORA transcript was the only gene downregulated in sPTB across both independent datasets. We found that five circadian lincRNAs (LINC00893, LINC00265, LINC01089, LINC00482, and LINC00649) were decreased in sPTB vs term births across both datasets (p ≤ .0222, FDR≤.1973) and were negatively correlated with the dataset-specific clock genes-based risk scores (correlation coefficient r = -.65 ∼ -.43, p ≤ .0365, FDR≤.0601). Gene set variation analysis revealed that 65 pathways were significantly enriched by these same five differentially expressed lincRNAs, of which over 85% of the pathways could be linked to immune/inflammation/oxidative stress and cell cycle/apoptosis/autophagy/cellular senescence. These findings may improve our understanding of the pathogenesis of spontaneous preterm birth and provide novel insights into the development of potentially more effective and specific therapeutic targets against sPTB.
Collapse
Affiliation(s)
- Guoli Zhou
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, United States
| | - Chi Chang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Eric P. Kasten
- Clinical and Translational Sciences Institute, Michigan State University, East Lansing, MI, United States,Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Hanne M. Hoffmann
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States,*Correspondence: Guoli Zhou, ; Hanne M. Hoffmann,
| |
Collapse
|
7
|
Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int J Mol Sci 2021; 22:ijms221810122. [PMID: 34576285 PMCID: PMC8468091 DOI: 10.3390/ijms221810122] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) in cells and tissues and the ability of a biological system to detoxify them. During a normal pregnancy, oxidative stress increases the normal systemic inflammatory response and is usually well-controlled by the balanced body mechanism of the detoxification of anti-oxidative products. However, pregnancy is also a condition in which this adaptation and balance can be easily disrupted. Excessive ROS is detrimental and associated with many pregnancy complications, such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM), and preterm birth (PTB), by damaging placentation. The placenta is a tissue rich in mitochondria that produces the majority of ROS, so it is important to maintain normal placental function and properly develop its vascular network to ensure a safe and healthy pregnancy. Antioxidants may ameliorate these diseases, and related research is progressing. This review aimed to determine the association between oxidative stress and adverse pregnancy outcomes, especially PE, FGR, GDM, and PTB, and explore how to overcome this oxidative stress in these unfavorable conditions.
Collapse
|
8
|
Zhang W, Li M, Li N, Liu Z. Regulation of Keap-1/Nrf2 Signaling Pathway Is Activated by Oxidative Stress in Patients with Premature Rupture of Membranes. Med Sci Monit 2020; 26:e921757. [PMID: 32589628 PMCID: PMC7339974 DOI: 10.12659/msm.921757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The potential mechanisms underlying premature rupture of membrane (PROM) is still unknown. The aim of this study was to determine the role of Keap-1/Nrf2 signaling pathway activation by oxidative stress in patients with preterm premature rupture of membranes. Material/Methods Placental tissues from preterm premature rupture of membranes (PPROM) (n=20), full-term premature rupture of membranes (FPROM) (n=20), and normal-term births (n=20) were collected and amniotic tissues were separated from the placental tissues from pregnant women at Shandong Provincial Qianfoshan Hospital. RT-PCR and Western blot were used to detect the levels of factors in the Keap-1/Nrf2 signaling pathway. To investigate the roles of Nrf2, we downregulated Nrf2 expression using siRNA in primary human amniotic epithelial (HAE) cells. Results Among the control group, FPROM group, and PPROM group, the reactive oxygen species (ROS) levels were significantly increased in the FPROM and PPROM groups. The differences indicated higher levels of oxidative stress in amniotic tissues with FPROM and PPROM after downregulation of si-Nrf2 in HAE cells. Antioxidants were lower in amniotic tissues with the FPROM group and PPROM group than in the control group. The antioxidant enzymes catalase (CAT), glutathione (GSH), glutathione peroxidase (GSHPx), and superoxide dismutases (SOD1 and SOD2) were examined in amniotic tissues. We found that the ROS levels were significantly increased after downregulation of si-Nrf2 compared with the control group. We found that the expression of Heme Oxygenase-1 (HO-1) and Glycogen Synthase Kinase-3b (GSK-3b), which is critical in the Keap-1/Nrf2 signaling pathway, increased significantly after downregulation of si-Nrf2 in HAE cells. Conclusions We found that increased ROS levels and decreased antioxidant enzymes in the PPROM and FPROM patients compared with the control group.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Meng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Nana Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Zonghua Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China (mainland)
| |
Collapse
|
9
|
Ortega MA, Romero B, Asúnsolo Á, Martínez-Vivero C, Sainz F, Bravo C, De León-Luis J, Álvarez-Mon M, Buján J, García-Honduvilla N. Pregnancy-associated venous insufficiency course with placental and systemic oxidative stress. J Cell Mol Med 2020; 24:4157-4170. [PMID: 32141705 PMCID: PMC7171392 DOI: 10.1111/jcmm.15077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
The development of lower extremity venous insufficiency (VI) during pregnancy has been associated with placental damage. VI is associated with increased oxidative stress in venous wall. We have investigated potential disturbance/dysregulation of the production of reactive oxygen species (ROS) in placenta and its eventual systemic effects through the measurement of malondialdehyde (MDA) plasma levels in women with VI. A total of 62 women with VI and 52 healthy controls (HCs) were studied. Levels of nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), 2 (NOX2), inducible nitric oxide synthase (iNOS), endothelial (eNOS), poly(ADP-ribose) polymerase PARP (PARP) and ERK were measured in placental tissue with immunohistochemistry and RT-qPCR. Plasma and placental levels of MDA were determined by colorimetry at the two study times of 32 weeks of gestation and post-partum. Protein and gene expression levels of NOX1, NOX2, iNOS, PARP and ERK were significantly increased in placentas of VI. eNOS activity was low in both study groups, and there were no significant differences in gene or protein expression levels. Women with VI showed a significant elevation of plasma MDA levels at 32 weeks of gestation, and these levels remained elevated at 32 weeks post-partum. The MDA levels were significantly higher in placentas of women with VI. Placental damage that was found in the women with VI was characterized by overexpression of oxidative stress markers NOX1, NOX2, and iNOS, as well as PARP and ERK. Pregnant women with VI showed systemic increases in oxidative stress markers such as plasma MDA levels. The foetuses of women with VI had a significant decrease in their venous pH as compared to those from HC women. The situation of oxidative stress and cellular damage created in the placenta is in coexpression with the production of a pH acidification.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Beatriz Romero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Clara Martínez-Vivero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Felipe Sainz
- Angiology and Vascular Surgery Unit, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Coral Bravo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Service of Gynecology and Obstetrics, Central University Hospital of Defense-UAH, Madrid, Spain
| | - Juan De León-Luis
- Service of Gynecology and Obstetrics, Section of Fetal Maternal Medicine, University Hospital Gregorio Marañón, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain.,Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Ramón y Cajal Institute of Sanitary Research (IRYCIS), Alcalá de Henares, Spain
| |
Collapse
|
10
|
Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF, Ischiropoulos H, Simmons RA. The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci 2020; 21:ijms21031043. [PMID: 32033212 PMCID: PMC7037776 DOI: 10.3390/ijms21031043] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
The placenta is metabolically active and supports the growth of the fetus. We hypothesize that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may result in spontaneous preterm birth (SPTB). To explore this hypothesis, we performed a nested cased control study of metabolomic signatures in placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation). To control for the effects of gestational age on placenta metabolism, we also studied a subset of metabolites in non-laboring preterm and term Rhesus monkeys. Comprehensive quantification of metabolites demonstrated a significant elevation in the levels of amino acids, prostaglandins, sphingolipids, lysolipids, and acylcarnitines in SPTB placenta compared to term placenta. Additional quantification of placental acylcarnitines by tandem mass spectrometry confirmed the significant elevation in SPTB human, with no significant differences between midgestation and term placenta in Rhesus macaque. Fatty acid oxidation as measured by the flux of 3H-palmitate in SPTB placenta was lower than term. Collectively, significant and biologically relevant alterations in the placenta metabolome were identified in SPTB placenta. Altered acylcarnitine levels and fatty acid oxidation suggest that disruption in normal substrate metabolism is associated with SPTB.
Collapse
Affiliation(s)
- Summer Elshenawy
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
| | - Sara E. Pinney
- Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
| | - Tami Stuart
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
| | - Paschalis-Thomas Doulias
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
| | - Gabriella Zura
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
| | - Samuel Parry
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michal A. Elovitz
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J. Bennett
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Amita Bansal
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
| | - Jerome F. Strauss
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harry Ischiropoulos
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
| | - Rebecca A. Simmons
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (S.E.); (T.S.); (P.-T.D.); (G.Z.); (H.I.)
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (S.P.); (M.A.E.); (A.B.)
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
11
|
Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet Gynecol Sci 2019; 62:199-211. [PMID: 31338337 PMCID: PMC6629986 DOI: 10.5468/ogs.2019.62.4.199] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated ‘sterile’ inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30–150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.
Collapse
|
12
|
Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod 2018; 99:1100-1112. [PMID: 29893818 PMCID: PMC7190655 DOI: 10.1093/biolre/ioy135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tx, 77550
| | - Christopher Luke Dixon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
13
|
Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, Taylor BD, Menon R. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 2018; 219:478.e1-478.e21. [PMID: 30138617 PMCID: PMC6239974 DOI: 10.1016/j.ajog.2018.08.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fetal endocrine signals are generally considered to contribute to the timing of birth and the initiation of labor. Fetal tissues under oxidative stress release inflammatory mediators that lead to sterile inflammation within the maternal-fetal interface. Importantly, these inflammatory mediators are packaged into exosomes, bioactive cell-derived extra cellular vesicles that function as vectors and transport them from the fetal side to the uterine tissues where they deposit their cargo into target cells enhancing uterine inflammatory load. This exosome-mediated signaling is a novel mechanism for fetal-maternal communication. OBJECTIVE This report tested the hypothesis that oxidative stress can induce fetal amnion cells to produce exosomes, which function as a paracrine intermediary between the fetus and mother and biochemically signal readiness for parturition. STUDY DESIGN Primary amnion epithelial cells were grown in normal cell culture (control) or exposed to oxidative stress conditions (induced by cigarette smoke extract). Exosomes were isolated from cell supernatant by sequential ultracentrifugation. Exosomes were quantified and characterized based on size, shape, and biochemical markers. Myometrial, decidual, and placental cells (BeWo) were treated with 2 × 105, 2 × 107, and 2 × 109 control or oxidative stress-derived amnion epithelial cell exosomes for 24 hours. Entry of amnion epithelial cell exosomes into cells was confirmed by confocal microscopy of fluorescent-labeled exosomes. The effect of amnion epithelial cell exosomes on target cell inflammatory status was determined by measuring production of interleukin-6, interleukin-8, interleukin-1β, tumor necrosis factor-α, and prostaglandin E2 by enzyme-linked immunosorbent assay and inflammatory gene transcription factor (nuclear factor-κβ) activation status by immunoblotting for phosphorylated RelA/p65. Localization of NANOG in term human myometrium and decidua obtained from women before labor and during labor was performed using immunohistochemistry. Data were analyzed by Wilcoxon-Mann-Whitney test to compare effects of exosomes from control and oxidative stress-treated amnion epithelial cells on inflammatory status of target cells. RESULTS Amnion epithelial cells released ∼125 nm, cup-shaped exosomes with ∼899 and 1211 exosomes released per cell from control and oxidative stress-induced cells, respectively. Amnion epithelial cell exosomes were detected in each target cell type after treatment using confocal microscopy. Treatment with amnion epithelial cell exosomes increased secretion of interleukin-6, interleukin-8, and PGE2 and activation of NF-κβ (each P < .05) in myometrial and decidual cells. Exosome treatments had no effect on interleukin-6 and PGE2 production in BeWo cells. NANOG staining was higher in term labor myometrium and decidua compared to tissues not in labor. CONCLUSION In vitro, amnion epithelial cell exosomes lead to an increased inflammatory response in maternal uterine cells whereas placental cells showed refractoriness. Fetal cell exosomes may function to signal parturition by increasing maternal gestational cell inflammation.
Collapse
Affiliation(s)
- Emily E Hadley
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - George Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Carlos Salomon
- Exosome Biology Laboratory, Center for Clinical Diagnostics, Center for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Brisbane, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX.
| |
Collapse
|
14
|
Moore TA, Ahmad IM, Zimmerman MC. Oxidative Stress and Preterm Birth: An Integrative Review. Biol Res Nurs 2018; 20:497-512. [PMID: 30068228 DOI: 10.1177/1099800418791028] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A variety of methods and measures have been used to quantify oxidative stress in clinical studies related to preterm birth (PTB), and studies have reported conflicting findings. No integrative reviews have been conducted. OBJECTIVE To describe specific molecules used as markers of oxidative stress and methods to measure these molecules and to review the literature for associations between oxidative stress and PTB specific to these molecules. METHOD Systematic literature searches were conducted in June 2015 and updated in 2017 in databases from the Biomedical Reference Collection: Basic Edition, including MEDLINE and clinicaltrials.gov . Articles were included if they described original research published after 2009 and compared PTB or preterm premature rupture of membranes with term birth (TB). RESULTS Abstracts ( n = 3,107) were reviewed for inclusion/exclusion criteria. Of these, 308 were full-text reviewed, and 30 articles were included in this review. All were identified as nonexperimental. The most common measurements of oxidative stress were quantification of total oxidant or antioxidant status or lipid peroxidation. Studies measuring reactive oxygen species or by-products of oxidative stress reported higher levels of these molecules for preterm specimens compared to TB specimens. Studies measuring antioxidants reported lower levels for these molecules in PTB specimens. Few of the studies had inconclusive findings. DISCUSSION Findings suggest that an imbalance between oxidants and antioxidants may be associated with PTB. The measurements and findings to date limit interpretation and understanding. Research using multidimensional methods and multidisciplinary teams are necessary to advance research and practice.
Collapse
Affiliation(s)
- Tiffany A Moore
- 1 College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- 2 College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew C Zimmerman
- 3 College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
15
|
Polettini J, Richardson LS, Menon R. Oxidative stress induces senescence and sterile inflammation in murine amniotic cavity. Placenta 2018; 63:26-31. [PMID: 29486853 DOI: 10.1016/j.placenta.2018.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A physiologic increase of reactive oxygen species (ROS) is observed through pregnancy. ROS-induced damage to major cellular elements, specifically protein peroxidation, can lead to fetal and placental tissue senescence and inflammation often associated with normal parturition. The purpose of this study was to examine the effects of oxidative stress (OS) in inducing changes in proteins, senescence, and sterile inflammation in pregnant mice. METHODS CD-1 mice (n = 5/group) on day 14 of gestation were subjected to minilaparotomy and the uterine horn between gestational sacs was injected with the following: saline (control), cigarette smoke extract (CSE) CSE diluted in saline and CSE + SB 203580 (SB) (a p38 mitogen-activated protein kinase (MAPK) inhibitor). Mice were sacrificed on day 18, and amniotic sacs, placentas and amniotic fluid (AF) were collected. Protein damage was evaluated by immunostaining for 3-Nitrotyrosine modified proteins (3-NT). Activation of prosenescence p38MAPK was evaluated by western blot. Senescence features, β-galactosidase (SA-β-Gal) and AF inflammatory cytokines were analyzed by immunostaining and multiplex luminex-based immunoassays, respectively. The data were analyzed by ANOVA and Tukey's test, p < .05 was used for significance. RESULTS Amniotic sac from CSE-treated animals showed significant protein peroxidation compared to control as indicated by 3-NT staining. CSE activated p38MAPK phosphorylation in amniotic sac but not in placenta. Membrane p38MAPK activation was reduced after treatment with SB. CSE increased fetal membrane senescence (staining for SA-β-Gal) and increased AF concentrations of all evaluated cytokines. High inflammation correlated with pup loss and a decrease in placental weight. Treatment with p38MAPK inhibitor (SB) minimized damages, senescence and sterile inflammation. CONCLUSION OS induction by cigarette smoke extract cause fetal tissue protein damage, p38MAPK activation, senescence and sterile inflammation in the amniotic cavity of mouse. Prevention of p38MAPK activation can be a novel approach to prevention of adverse pregnancy outcomes related to OS induced premature senescence.
Collapse
Affiliation(s)
- Jossimara Polettini
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Pathology, Botucatu Medical School, UNESP - Univ. Estadual Paulista, Botucatu, Sao Paulo, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States; Department of Neurobiology, Cell, and Anatomy, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
16
|
Sheller-Miller S, Urrabaz-Garza R, Saade G, Menon R. Damage-Associated molecular pattern markers HMGB1 and cell-Free fetal telomere fragments in oxidative-Stressed amnion epithelial cell-Derived exosomes. J Reprod Immunol 2017; 123:3-11. [PMID: 28858636 DOI: 10.1016/j.jri.2017.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/13/2017] [Accepted: 08/09/2017] [Indexed: 01/13/2023]
Abstract
Term labor in humans is associated with increased oxidative stress (OS) -induced senescence and damages to amnion epithelial cells (AECs). Senescent fetal cells release alarmin high-mobility group box 1 (HMGB1) and cell-free fetal telomere fragments (cffTF) which can be carried by exosomes to other uterine tissues to produce parturition-associated inflammatory changes. This study characterized AEC-derived exosomes under normal and OS conditions and their packaging of HMGB1 and cffTF. Primary AECs were treated with either standard media or oxidative stress-induced media (exposure to cigarette smoke extract for 48h). Senescence was determined, and exosomes were isolated and characterized. To colocalize HMGB1 and cffTF in amnion exosomes, immunofluorescent staining and in situ hybridization were performed, followed by confocal microscopy. Next generation sequencing (NGS) determined exosomal cffTF and other cell-free amnion cell DNA specificity. Regardless of condition, primary AECs produce exosomes with a classic size, shape, and markers. OS and senescence caused the translocation of HMGB1 and cffTF from AECs' nuclei to cytoplasm compared to untreated cells, which was inhibited by antioxidant N-acetyl cysteine (NAC). Linescans confirmed colocalization of HMGB1 and cffTF in exosomes were higher in the cytoplasm after CSE treatment compared to untreated AECs. NGS determined that besides cffTF, AEC exosomes also carry genomic and mitochondrial DNA, regardless of growth conditions. Sterile inflammatory markers HMGB1 and cffTF from senescent fetal cells are packaged inside exosomes. We postulate that this exosomal cargo can act as a fetal signal at term and can cause labor-associated changes in neighboring tissues.
Collapse
Affiliation(s)
- Samantha Sheller-Miller
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555, USA.
| | - George Saade
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
17
|
Menon R, Behnia F, Polettini J, Saade GR, Campisi J, Velarde M. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY) 2016; 8:216-30. [PMID: 26851389 PMCID: PMC4789578 DOI: 10.18632/aging.100891] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Faranak Behnia
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Jossimara Polettini
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - George R Saade
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1062, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Cell and Molecular Biology, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Velarde
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Institute of Biology, University of Philippines, Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
18
|
Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress. PLoS One 2016; 11:e0157614. [PMID: 27333275 PMCID: PMC4917104 DOI: 10.1371/journal.pone.0157614] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (p<0.05). Finally, mass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy. Understanding the propagation of fetal signals and their mechanisms in normal term pregnancies can provide insights into pathologic activation of such signals associated with spontaneous preterm parturitions.
Collapse
Affiliation(s)
- Samantha Sheller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Faculty of Health Sciences, University of Queensland, Herston, Queensland, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
19
|
Dutta EH, Behnia F, Boldogh I, Saade GR, Taylor BD, Kacerovský M, Menon R. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol Hum Reprod 2016; 22:143-57. [PMID: 26690900 DOI: 10.1093/molehr/gav074] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
STUDY HYPOTHESIS In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. STUDY FINDING We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. WHAT IS KNOWN ALREADY Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. MAIN RESULTS AND THE ROLE OF CHANCE Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. LIMITATIONS, REASONS FOR CAUTION Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. WIDER IMPLICATIONS OF THE FINDINGS Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. STUDY FUNDING AND COMPETING INTERESTS This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of Texas Medical Branch at Galveston and funds to Dr M. Kacerovský from the Ministry of Health Czech Republic (UHHK, 001799906). The authors report no conflict of interest.
Collapse
Affiliation(s)
- Eryn H Dutta
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA Medical Corps GME Programs (FTOS/OFI), Navy Medicine Professional Development Center, Bethesda, MD, USA
| | - Faranak Behnia
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George R Saade
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology & Biostatistics, Texas A&M University System Health Science Center, College Station, TX, USA
| | - Marian Kacerovský
- Department of Obstetrics & Gynecology, Charles University of Prague, Faculty of Medicine, University Hospital in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB 11-158, Galveston, TX 77555, USA
| |
Collapse
|