1
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
2
|
Adamova P, Powell AK, Dykes IM. Assessment of NanoString technology as a tool for profiling circulating miRNA in maternal blood during pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:471-496. [PMID: 39697629 PMCID: PMC11648433 DOI: 10.20517/evcna.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/24/2024] [Indexed: 12/20/2024]
Abstract
Aim Circulating maternal MicroRNA (miRNA) is a promising source of biomarkers for antenatal diagnostics. NanoString nCounter is a popular global screening tool due to its simplicity and ease of use, but there is a lack of standardisation in analysis methods. We examined the effect of user-defined variables upon reported changes in maternal blood miRNA during pregnancy. Methods Total RNA was prepared from the maternal blood of pregnant and control rats. miRNA expression was profiled using Nanostring nCounter. Raw count data were processed using nSolver using different combinations of normalisation and background correction methods as well as various background thresholds. A panel of 14 candidates in which changes were supported by multiple analysis workflows was selected for validation by RT-qPCR. We then reverse-engineered the nSolver analysis to gain further insight. Results Thirty-one putative differentially expressed miRNAs were identified by nSolver. However, each analysis workflow produced a different set of reported biomarkers and none of them was common to all analysis methods. Four miRNAs with known roles in pregnancy (miR-183, miR-196c, miR-431, miR-450a) were validated. No single nSolver analysis workflow could successfully identify all four validated changes. Reverse engineering revealed errors in nSolver data processing which compound the inherent problems associated with background correction and normalisation. Conclusion Our results suggest that user-defined variables greatly influence the output of the assay. This highlights the need for standardised nSolver data analysis methods and detailed reporting of these methods. We suggest that investigators in the future should not rely on a single analysis method to identify changes and should always validate screening results.
Collapse
Affiliation(s)
- Petra Adamova
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Andrew K. Powell
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain M. Dykes
- Department of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Liverpool Centre for Cardiovascular Science, Institute for Health Research, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Mustafov D, Ahmad MS, Serrano A, Braoudaki M, Siddiqui SS. MicroRNA:Siglec crosstalk in cancer progression. Curr Opin Chem Biol 2024; 81:102502. [PMID: 39029379 DOI: 10.1016/j.cbpa.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
Aberrant Siglec expression in the tumour microenvironment has been implicated in tumour malignancies and can impact tumour behaviour and patient survival. Further to this, engagement with sialoglycans induces masked antigen recognition and promotes immune evasion, highlighting deregulated immune function. This necessitates the elucidation of their expression profiles in tumour progression. MicroRNAs (miRNAs) mediated targeting represents a novel approach to further elucidate Siglec potential and clinical relevance. Although miRNA activity in Siglec expression remains limited, we highlight current literature detailing miRNA:Siglec interactions within the tumour landscape and provide insights for possible diagnostic and therapeutic strategies in targeting the Siglec/sialic acid axis.
Collapse
Affiliation(s)
- D Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - M S Ahmad
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - A Serrano
- Francisco de Vitoria University, Ctra. M-515 Pozuelo-Majadahonda, Km. 1,800, Pozuelo de Alarcón, 28223, Madrid, Spain. https://twitter.com/Antonation2002
| | - M Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - S S Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
4
|
Carter S, Lin JC, Chow T, Martinez MP, Qiu C, Feldman RK, McConnell R, Xiang AH. Preeclampsia Onset, Days to Delivery, and Autism Spectrum Disorders in Offspring: Clinical Birth Cohort Study. JMIR Public Health Surveill 2024; 10:e47396. [PMID: 38630528 PMCID: PMC11063875 DOI: 10.2196/47396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Maternal preeclampsia is associated with a risk of autism spectrum disorders (ASD) in offspring. However, it is unknown whether the increased ASD risk associated with preeclampsia is due to preeclampsia onset or clinical management of preeclampsia after onset, as clinical expectant management of preeclampsia allows pregnant women with this complication to remain pregnant for potentially weeks depending on the onset and severity. Identifying the risk associated with preeclampsia onset and exposure provides evidence to support the care of high-risk pregnancies and reduce adverse effects on offspring. OBJECTIVE This study aimed to fill the knowledge gap by assessing the ASD risk in children associated with the gestational age of preeclampsia onset and the number of days from preeclampsia onset to delivery. METHODS This retrospective population-based clinical cohort study included 364,588 mother-child pairs of singleton births between 2001 and 2014 in a large integrated health care system in Southern California. Maternal social demographic and pregnancy health data, as well as ASD diagnosis in children by the age of 5 years, were extracted from electronic medical records. Cox regression models were used to assess hazard ratios (HRs) of ASD risk in children associated with gestational age of the first occurrence of preeclampsia and the number of days from first occurrence to delivery. RESULTS Preeclampsia occurred in 16,205 (4.4%) out of 364,588 pregnancies; among the 16,205 pregnancies, 2727 (16.8%) first occurred at <34 weeks gestation, 4466 (27.6%) first occurred between 34 and 37 weeks, and 9012 (55.6%) first occurred at ≥37 weeks. Median days from preeclampsia onset to delivery were 4 (IQR 2,16) days, 1 (IQR 1,3) day, and 1 (IQR 0,1) day for those first occurring at <34, 34-37, and ≥37 weeks, respectively. Early preeclampsia onset was associated with greater ASD risk (P=.003); HRs were 1.62 (95% CI 1.33-1.98), 1.43 (95% CI 1.20-1.69), and 1.23 (95% CI 1.08-1.41), respectively, for onset at <34, 34-37, and ≥37 weeks, relative to the unexposed group. Within the preeclampsia group, the number of days from preeclampsia onset to delivery was not associated with ASD risk in children; the HR was 0.995 (95% CI 0.986-1.004) after adjusting for gestational age of preeclampsia onset. CONCLUSIONS Preeclampsia during pregnancy was associated with ASD risk in children, and the risk was greater with earlier onset. However, the number of days from first preeclampsia onset to delivery was not associated with ASD risk in children. Our study suggests that ASD risk in children associated with preeclampsia is not increased by expectant management of preeclampsia in standard clinical practice. Our results emphasize the need to identify effective approaches to preventing the onset of preeclampsia, especially during early pregnancy. Further research is needed to confirm if this finding applies across different populations and clinical settings.
Collapse
Affiliation(s)
- Sarah Carter
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Jane C Lin
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Mayra P Martinez
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| | - Chunyuan Qiu
- Department of Anesthesiology and Perioperative Medicine, Baldwin Park Medical Center, Kaiser Permanente Southern California, Baldwin Park, CA, United States
| | - R Klara Feldman
- Department of Obstetrics and Gynecology, Baldwin Park Medical Center, Kaiser Permanente Southern California, Baldwin Park, CA, United States
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States
| |
Collapse
|
5
|
Ao Z, Wu Z, Hu G, Gong T, Zhang C, Yang Z, Zhang Y. Implications for miR-339-5p regulation of trophoblast proliferation and migration in placentas associated with porcine intrauterine growth retardation using integrated transcriptome sequencing analysis. Theriogenology 2024; 216:127-136. [PMID: 38181538 DOI: 10.1016/j.theriogenology.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.
Collapse
Affiliation(s)
- Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Caizai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhenqing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Sewnarain S, Singh S, Naicker T. Placental progesterone and its receptor in HIV-infected pre-eclamptic women. Histochem Cell Biol 2024; 161:255-267. [PMID: 37975897 PMCID: PMC10912128 DOI: 10.1007/s00418-023-02250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Given the high prevalence of HIV infection and pre-eclampsia (PE) in South Africa, this study evaluated and compared the placental immunostaining of progesterone (P) and progesterone receptors (PR) in the synergy of HIV-infected PE compared to normotensive pregnant women using immunohistochemistry interfaced with morphometric image analysis. Progesterone immunostaining was expressed widely across exchange and conducting villi within mesenchymal, endothelial, and trophoblast cells. In contrast, PR was expressed within syncytiotrophoblasts and was absent within endothelial cells. In exchange villi, P and PR immuno-expression was significantly lower in PE compared to the normotensive group (p = < 0.0001 and p = < 0.0001, respectively) and within the early-onset pre-eclampsia (EOPE) compared to the late-onset pre-eclampsia (LOPE) group (p = < 0.0001 and p = < 0.0001, respectively). Progesterone immuno-expression was significantly lower in the HIV+ compared to the HIV- group (p = < 0.0001), whilst PR was non-significant. In conducting villi, P and PR immuno-expression was significantly lower in the EOPE compared to the LOPE group (p = < 0.0001 and p = < 0.0001, respectively) and in the HIV+ compared to the HIV- group (p = < 0.0001 and p = 0.0009, respectively). Progesterone immuno-expression was slightly higher in the PE compared to normotensive group, and PR immuno-expression was non-significant. There was a significant difference between P and PR within exchange versus conducting villi regardless of pregnancy type, with villi type accounting for 34.47% and 15.28% of total variance for P and PR, respectively. Placental P and PR immuno-expression is downregulated in the duality of PE and HIV+ infection. The use of combined antiretroviral therapy (cART) may result in defective P synthesis, which causes insufficient binding to its receptors. Consequently, PI3K/AKT, JAK-STAT, and MAPK signalling pathways are affected, impairing trophoblast invasion and leading to pre-eclampsia development. Notably, the decrease in P and PR immuno-expression in EOPE validates their effect on placentation.
Collapse
Affiliation(s)
- Serisha Sewnarain
- Optics and Imaging Centre, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Private Bag X7, Congella, Durban, 4013, KwaZulu-Natal, South Africa.
| | - Shoohana Singh
- Optics and Imaging Centre, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Private Bag X7, Congella, Durban, 4013, KwaZulu-Natal, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Private Bag X7, Congella, Durban, 4013, KwaZulu-Natal, South Africa
| |
Collapse
|
7
|
Sun B, Jiang T, Yong J, Peng J, Dong S, Gu Y, Ji X, Luo L, Chang WL. MiR-135b-5p targets ADAM12 to suppress invasion and accelerate trophoblast apoptosis in preeclampsia. Placenta 2023; 143:69-79. [PMID: 37864886 DOI: 10.1016/j.placenta.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Preeclampsia was a serious complication often leaded to adverse pregnancy outcomes. Abnormal placental miR-135b-5p expression in preeclampsia was observed in our preliminary investigation. However, the role of miR-135b-5p in preeclampsia was unclear. METHODS We determined the miR-135b-5p expression pattern at the fetomaternal interface and levels in placental tissue and exosomes. MiR-135b-5p expression in the trophoblast cell line HTR8/SVneo was manipulated by transient agomir or antagomir transfection or establishment of HTR8/SVneo cell line stably overexpressing miR-135b or miR-135b-5p-sponger. Then the function of miR-135b-5p on the motility of HTR8/SVneo cells, and its effects on cell viability was determined. Finally, we confirmed the relationship between miR-135b-5p and ADAM12. RESULTS MiR-135b-5p exclusively expressed in the villous cytotrophoblast, and extravillous trophoblast. Significant miR-135b-5p upregulation was observed in the placenta and peripheral plasma exosomes in preeclampsia, and could be a highly sensitive molecular marker for preeclampsia. Elevated miR-135b-5p expression significantly promoted apoptosis and inhibited HTR8/SVneo cell invasion and migration. Binding of miR-135b-5p to the ADAM12 mRNA 3'-untranslated region was predicted by bioinformatics analysis and confirmed using a dual-luciferase reporter assay. High miR-135-5p levels inhibit the invasion and migration of trophoblastic cells, possibly by directly binding to the 3'-UTR of DADM12 and suppressing its translation efficiency, thereby nullifying the promotion of trophoblast invasion and migration via ADAM12. DISCUSSION Abnormal upregulation of miR-135b-5p may be involved in preeclampsia through triggering trophoblast apoptosis and impeding trophoblast invasion and migration by targeting ADAM12.
Collapse
Affiliation(s)
- Bo Sun
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518101, China; Department of Obstetrics, The Second People's Hospital of Shenzhen, Shenzhen, 518035, China
| | - Taotao Jiang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Jiayao Yong
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China
| | - Julan Peng
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Shangkun Dong
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanli Gu
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Xinmei Ji
- Department of Gynaecology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Wen-Lin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China; Department of Gynaecology, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China.
| |
Collapse
|
8
|
Xu J, Wang J, Chen M, Chao B, He J, Bai Y, Luo X, Liu H, Xie L, Tao Y, Qi H, Luo X. miR-101-5p suppresses trophoblast cell migration and invasion via modulating the DUSP6-ERK1/2 axis in preeclampsia. J Assist Reprod Genet 2023; 40:1597-1610. [PMID: 37300650 PMCID: PMC10352218 DOI: 10.1007/s10815-023-02846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei Province, China
| | - Bingdi Chao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lumei Xie
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Ren J, Jin H, Zhu Y. The Role of Placental Non-Coding RNAs in Adverse Pregnancy Outcomes. Int J Mol Sci 2023; 24:ijms24055030. [PMID: 36902459 PMCID: PMC10003511 DOI: 10.3390/ijms24055030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed from the genome and do not encode proteins. In recent years, ncRNAs have attracted increasing attention as critical participants in gene regulation and disease pathogenesis. Different categories of ncRNAs, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the progression of pregnancy, while abnormal expression of placental ncRNAs impacts the onset and development of adverse pregnancy outcomes (APOs). Therefore, we reviewed the current status of research on placental ncRNAs and APOs to further understand the regulatory mechanisms of placental ncRNAs, which provides a new perspective for treating and preventing related diseases.
Collapse
Affiliation(s)
- Jiawen Ren
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Correspondence:
| |
Collapse
|
10
|
Murrieta-Coxca JM, Barth E, Fuentes-Zacarias P, Gutiérrez-Samudio RN, Groten T, Gellhaus A, Köninger A, Marz M, Markert UR, Morales-Prieto DM. Identification of altered miRNAs and their targets in placenta accreta. Front Endocrinol (Lausanne) 2023; 14:1021640. [PMID: 36936174 PMCID: PMC10022468 DOI: 10.3389/fendo.2023.1021640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.
Collapse
Affiliation(s)
| | - Emanuel Barth
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Faculty of Mathematics and Computer Science, Bioinformatics Core Facility, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Tanja Groten
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
- University Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Manja Marz
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Fritz Lipman Institute (FLI), Leibniz Institute for Age Research, Jena, Germany
| | - Udo R. Markert
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| | - Diana M. Morales-Prieto
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| |
Collapse
|
11
|
Peng X, Zhang R, Zhang Y, Cai C. Nuclear Factor-Kappa B-induced miRNA-518a-5p represses trophoblast cell migration and invasion by the Nuclear Factor-Kappa B pathway. AN ACAD BRAS CIENC 2023; 95:e20220596. [PMID: 37132750 DOI: 10.1590/0001-3765202320220596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/03/2022] [Indexed: 05/04/2023] Open
Abstract
Preeclampsia is associated with the insufficient invasion of trophoblasts. NF-κB is a transcription factor in almost all mammalian cells and has been validated to be upregulated in the maternal circulation and placenta of women with preeclampsia. MiR-518a-5p is also overexpressed in pre-eclamptic placenta. The present study was designed to explore whether NF-κB can transcriptionally activate miR-518a-5p and investigate the influences of miR-518a-5p on the viability, apoptosis, migration, and invasion of HTR8/SVneo trophoblast. In situ hybridization and real time polymerase chain reaction were used to reveal miR-518a-5p expression in placenta tissues and HTR8/SVneo cells, respectively. Cell migration and invasion were detected using Transwell inserts. Our findings indicated that NF-κB p52, p50, and p65 can bind to miR-518a-5p gene promoter. MiR-518a-5p further influences the levels of p50 and p65 but not p52. HTR8/SVneo cell viability and apoptosis were not influenced by miR-518a-5p. However, miR-518a-5p represses the migratory/invasive capacities of HTR8/SVneo cell and decreased gelatinolytic activity of MMP2 and MMP9, which was reversed by an NF-κB inhibitor. To sum up, miR-518a-5p is induced by NF-κB and represses trophoblast cell migration and invasion by the NF-κB pathway.
Collapse
Affiliation(s)
- Xing Peng
- Department of Gynaecology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Ruirui Zhang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Yumei Zhang
- Department of Gynaecology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Chunyan Cai
- Department of Gynaecology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| |
Collapse
|
12
|
Östling H, Lodefalk M, Backman H, Kruse R. Global microRNA and protein expression in human term placenta. Front Med (Lausanne) 2022; 9:952827. [PMID: 36330066 PMCID: PMC9622934 DOI: 10.3389/fmed.2022.952827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Description of the global expression of microRNAs (miRNAs) and proteins in healthy human term placentas may increase our knowledge of molecular biological pathways that are important for normal fetal growth and development in term pregnancy. The aim of this study was to explore the global expression of miRNAs and proteins, and to point out functions of importance in healthy term placentas. Materials and methods Placental samples (n = 19) were identified in a local biobank. All samples were from uncomplicated term pregnancies with vaginal births and healthy, normal weight newborns. Next-generation sequencing and nano-scale liquid chromatographic tandem mass spectrometry were used to analyse miRNA and protein expression, respectively. Results A total of 895 mature miRNAs and 6,523 proteins were detected in the placentas, of which 123 miRNAs and 346 proteins were highly abundant. The miRNAs were in high degree mapped to chromosomes 19, 14, and X. Analysis of the highly abundant miRNAs and proteins showed several significantly predicted functions in common, including immune and inflammatory response, lipid metabolism and development of the nervous system. Discussion The predicted function inflammatory response may reflect normal vaginal delivery, while lipid metabolism and neurodevelopment may be important processes for the term fetus. The data presented in this study, with complete miRNA and protein findings, will enhance the knowledge base for future research in the field of placental function and pathology.
Collapse
Affiliation(s)
- Hanna Östling
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- *Correspondence: Hanna Östling,
| | - Maria Lodefalk
- Department of Paediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helena Backman
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
14
|
Wang Y, Wang L, Yu X, Gong W. MiR-30a-3p Targeting FLT1 Modulates Trophoblast Cell Proliferation in the Pathogenesis of Preeclampsia. Horm Metab Res 2022; 54:633-640. [PMID: 35981547 DOI: 10.1055/a-1880-1126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia (PE) may pose significant adverse effects on pregnant women. Dysregulation of angiogenesis, trophoblast invasion, and proliferation are known to be associated with PE development and progression. Fms related tyrosine kinase 1 (FLT1), an anti-angiogenic factor, is consistently upregulated in PE patients. Recent papers highlight that aberrant miR-30a-3p expression contributes to PE development. More effects are needed to assess the biological function of placental miR-30a-3p in PE. The soluble FLT1 (sFLT1) and FLT1 levels were tested by ELISA assay and Western blotting assay. mRNA levels were measured by RT-qPCR assay. Colony formation and MTT assays were applied to assess the effect of miR-30a-3p on trophoblast cell proliferation. The serum sFLT1 and placental FLT1 levels were substantially high in patients with PE. Using miRNA microarray assay, we identified miR-30a-3p upregulation in PE patients' placenta tissues. We further confirmed that miR-30a-3p binds to the 3'-UTR of FLT1 gene and positively regulate its expression. Forcing miR-30a-3p expression inhibited trophoblast cell proliferation and vice versa. In conclusion, persistent high levels of FLT1 and miR-30a-3p may pose adverse effects on angiogenesis and trophoblast proliferation in placenta of PE patients. Therefore, targeting FLT1 and miR-30a-3p may serve as ideal strategies for managing patients with PE.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wenwen Gong
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
15
|
Liu H, Wang X. MiR-200b-3p is upregulated in the placental tissues from patients with preeclampsia and promotes the development of preeclampsia via targeting profilin 2. Cell Cycle 2022; 21:1945-1957. [PMID: 35613309 DOI: 10.1080/15384101.2022.2075644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia is a serious pregnancy disorder affecting both maternal and fetal health. However, the pathogenesis of preeclampsia has not been fully understood. This study aimed to investigate the key microRNAs (miRNAs) in the development of preeclampsia. A high-throughput miRNA sequencing analysis for the placental tissues from patients with preeclampsia and healthy controls was conducted, followed by investigation of differentially expressed miRNAs (DEMs) and functional enrichment analysis. Moreover, the expression of a key DEM, named miR-200b-3p, in the preeclampsia patients was validated, and the effects of miR-200b-3p overexpression on the proliferation, migration, and apoptosis of HTR8 trophoblast cells were investigated in vitro. Furthermore, the target gene of miR-200b-3p was investigated based on gene expression profile GSE177049 and miRWalk 2.0 database. The target relationship between miR-200b-3p and profilin 2 (PFN2) was investigated in vitro. A total of 12 DEMs including miR-200b-3p were identified between preeclampsia placental tissues and control placental tissues, which were significantly enriched in several pathways, such as cell adhesion molecules (CAMs) and tight junction. Moreover, increased expression of miR-200b-3p was revealed in the placental tissues of preeclampsia patients, and overexpression of miR-200b-3p suppressed cell proliferation and migration but promoted apoptosis of trophoblast cells. Furthermore, PFN2 was confirmed as a target of miR-200b-3p, and overexpression of PFN2 reversed the inhibitory effects of miR-200b-3p overexpression on trophoblast cell migration. Our findings reveal that miR-200b-3p is upregulated in the placental tissues of patients with preeclampsia and promotes preeclampsia development via PFN2. miR-200b-3p may serve as a promising therapeutic target against preeclampsia.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xietong Wang
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Taga S, Hayashi M, Nunode M, Nakamura N, Ohmichi M. miR-486-5p inhibits invasion and migration of HTR8/SVneo trophoblast cells by down-regulating ARHGAP5. Placenta 2022; 123:5-11. [DOI: 10.1016/j.placenta.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
|
17
|
Dhombres F, Bonnard J, Bailly K, Maurice P, Papageorghiou A, Jouannic JM. Contributions of artificial intelligence reported in Obstetrics and Gynecology journals: a systematic review. J Med Internet Res 2022; 24:e35465. [PMID: 35297766 PMCID: PMC9069308 DOI: 10.2196/35465] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The applications of artificial intelligence (AI) processes have grown significantly in all medical disciplines during the last decades. Two main types of AI have been applied in medicine: symbolic AI (eg, knowledge base and ontologies) and nonsymbolic AI (eg, machine learning and artificial neural networks). Consequently, AI has also been applied across most obstetrics and gynecology (OB/GYN) domains, including general obstetrics, gynecology surgery, fetal ultrasound, and assisted reproductive medicine, among others. Objective The aim of this study was to provide a systematic review to establish the actual contributions of AI reported in OB/GYN discipline journals. Methods The PubMed database was searched for citations indexed with “artificial intelligence” and at least one of the following medical subject heading (MeSH) terms between January 1, 2000, and April 30, 2020: “obstetrics”; “gynecology”; “reproductive techniques, assisted”; or “pregnancy.” All publications in OB/GYN core disciplines journals were considered. The selection of journals was based on disciplines defined in Web of Science. The publications were excluded if no AI process was used in the study. Review, editorial, and commentary articles were also excluded. The study analysis comprised (1) classification of publications into OB/GYN domains, (2) description of AI methods, (3) description of AI algorithms, (4) description of data sets, (5) description of AI contributions, and (6) description of the validation of the AI process. Results The PubMed search retrieved 579 citations and 66 publications met the selection criteria. All OB/GYN subdomains were covered: obstetrics (41%, 27/66), gynecology (3%, 2/66), assisted reproductive medicine (33%, 22/66), early pregnancy (2%, 1/66), and fetal medicine (21%, 14/66). Both machine learning methods (39/66) and knowledge base methods (25/66) were represented. Machine learning used imaging, numerical, and clinical data sets. Knowledge base methods used mostly omics data sets. The actual contributions of AI were method/algorithm development (53%, 35/66), hypothesis generation (42%, 28/66), or software development (3%, 2/66). Validation was performed on one data set (86%, 57/66) and no external validation was reported. We observed a general rising trend in publications related to AI in OB/GYN over the last two decades. Most of these publications (82%, 54/66) remain out of the scope of the usual OB/GYN journals. Conclusions In OB/GYN discipline journals, mostly preliminary work (eg, proof-of-concept algorithm or method) in AI applied to this discipline is reported and clinical validation remains an unmet prerequisite. Improvement driven by new AI research guidelines is expected. However, these guidelines are covering only a part of AI approaches (nonsymbolic) reported in this review; hence, updates need to be considered.
Collapse
Affiliation(s)
- Ferdinand Dhombres
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Armand Trousseau University hospital, Fetal Medicine department, APHP26 AV du Dr Arnold Netter, Paris, FR.,INSERM, Laboratory in Medical Informatics and Knowledge Engineering in e-Health (LIMICS), Paris, FR
| | - Jules Bonnard
- Sorbonne University, Institute for Intelligent Systems and Robotics (ISIR), Paris, FR
| | - Kévin Bailly
- Sorbonne University, Institute for Intelligent Systems and Robotics (ISIR), Paris, FR
| | - Paul Maurice
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Paris, FR
| | - Aris Papageorghiou
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, Oxford, GB
| | - Jean-Marie Jouannic
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Paris, FR.,INSERM, Laboratory in Medical Informatics and Knowledge Engineering in e-Health (LIMICS), Paris, FR
| |
Collapse
|
18
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
20
|
Xu X, Lv S, Xiao Z. Analysis of a circRNA-, miRNA-, and mRNA-associated ceRNA network reveals potential biomarkers in preeclampsia a ceRNA network in preeclampsia. Ann Med 2021; 53:2354-2364. [PMID: 34894939 PMCID: PMC8741177 DOI: 10.1080/07853890.2021.2014554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Preeclampsia (PE), one of hypertension-related disorders of pregnancy, is a common cause of maternal death worldwide. This study aimed to identify a circRNA-miRNA-mRNA-associated ceRNA network and related pathways in PE. MATERIAL AND METHODS We downloaded 3 microarray datasets from the Gene Expression Omnibus database, obtained 163 differentially expressed circRNAs (dif-circRNAs) (61 upregulated and 102 downregulated), 39 differentially expressed microRNAs (dif-miRNAs) (22 upregulated and 17 downregulated), and 271 differentially expressed mRNAs (dif-mRNAs) (168 upregulated and 103 downregulated) from placenta tissues of PE. Functional enrichment analysis and protein-protein interaction (PPI) network with module analysis of dif-mRNAs were performed. The regulatory relationship between dif-miRNAs and dif-mRNAs/circRNAs was predicted via related databases. A circRNA-miRNA-mRNA regulatory network was constructed. RESULTS A total of 53 pairs were obtained, including 13 circRNAs (10 upregulated and 3 downregulated), 9 miRNAs (3 upregulated and 6 downregulated) and 31 mRNAs (22 upregulated and 9 downregulated). GNB5 and IL2RB were obtained. KEGG enrichment analysis showed that both of them were closely related with the PI3K-Akt signalling pathway. Therefore, ceRNAs might affect the PI3K-Akt signalling pathway via the upregulation of GNB5 by binding to miR-1248 in PE. Meanwhile, hsa_circ_0052661 might upregulate IL2RB by binding miR-4303 to play a role in PE in the same way. CONCLUSION GNB5 and IL2RB might be key genes involved in the PI3K-Akt signalling pathway in PE, and hsa_circ_0087208, hsa_circ_0035443, hsa_circ_0067557 and hsa_circ_0052661 might regulate these key genes in PE by binding miR-1248 or miR-4303.Key messagesThere is still a lack of predictive and diagnostic factors for preeclampsia, which is a common cause of maternal death worldwide.This study identified a novel circRNA-associated ceRNA network and related pathways in preeclampsia.GNB5 and IL2RB might be key genes in their related circRNA-associated ceRNA network, and probably take an important role in preeclampsia via PI3K-Akt signalling pathway, which made them to be potential markers of preeclampsia.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Guizhou Medical University, Guiyang City, China
| | - Sha Lv
- Guizhou Medical University, Guiyang City, China
| | - Ziwen Xiao
- Guizhou Medical University, Guiyang City, China
| |
Collapse
|
21
|
Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells 2021; 10:3055. [PMID: 34831277 PMCID: PMC8616535 DOI: 10.3390/cells10113055] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
| | - Matthew W. Rappelt
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - David D. Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
23
|
Liao G, Cheng D, Li J, Hu S. Clinical significance of microRNA-320a and insulin-like growth factor-1 receptor in early-onset preeclampsia patients. Eur J Obstet Gynecol Reprod Biol 2021; 263:164-170. [PMID: 34218203 DOI: 10.1016/j.ejogrb.2021.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
AIMS Currently, there is no reliable method to effectively predict and diagnose early-onset preeclampsia (EOPE). microRNAs (miRs) are promising biomarkers for EOPE. This study investigated the role of miR-320a in EOPE. METHODS Expressions of miR-320a and insulin-like growth factor-1 receptor (IGF-1R) in serum of EOPE patients and normal pregnant women were detected. The clinical diagnostic efficacy of miR-320a and IGF-1R for EOPE was analyzed using receiver operating characteristic curve. The correlation between miR-320a expression and EOPE clinical indicators [mean arterial pressure (MAP), 24-h urinary protein excretion, serum creatinine (SCR), uric acid (UA), albumin (ALB) and platelet count] was analyzed. The correlation and binding relationship between miR-320a and IGF-1R was predicted and verified. RESULTS miR-320a was upregulated, and IGF-1R was downregulated in EOPE patients with their differential expressions more obvious in severe EOPE than mild EOPE. miR-320a and IGF-1R possessed potent clinical diagnostic efficacy for EOPE. miR-320a expression showed a positive correlation with MAP, 24-h urinary protein excretion, UA and SCR levels, and a negative correlation with ALB level and platelet count in EOPE patients. Moreover, miR-320a targeted IGF-1R. CONCLUSION We demonstrated that miR-320a was aberrantly elevated in EOPE and showed powerful clinical diagnostic efficacy for EOPE, which may be achieved by directly targeting IGF-1R. This study provided great reference values for EOPE early diagnosis and novel targets for EOPE treatment.
Collapse
Affiliation(s)
- Guilian Liao
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen 518172, Guangdong Province, China.
| | - Danling Cheng
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen 518172, Guangdong Province, China
| | - Juan Li
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen 518172, Guangdong Province, China
| | - Shaona Hu
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen 518172, Guangdong Province, China
| |
Collapse
|
24
|
Mavreli D, Lykoudi A, Lambrou G, Papaioannou G, Vrachnis N, Kalantaridou S, Papantoniou N, Kolialexi A. Deep Sequencing Identified Dysregulated Circulating MicroRNAs in Late Onset Preeclampsia. In Vivo 2021; 34:2317-2324. [PMID: 32871756 DOI: 10.21873/invivo.12044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM To characterize global microRNA (miRNA) expression profile in the first trimester maternal plasma of women who subsequently develop late-onset preeclampsia (LOPE) compared to uncomplicated pregnancies. MATERIALS AND METHODS Five first trimester plasma samples from women who developed LOPE and 5 controls were analyzed using next generation sequencing technology (NGS) followed by target prediction, Gene Ontology analysis and pathway identification. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for confirmation in an independent cohort of 12 LOPE cases and 12 controls. RESULTS miR-23b-5p and miR-99b-5p were down-regulated by >1.5 fold in LOPE complicated pregnancies (p value <0.05) compared to controls. Target prediction showed that the major targets of these miRNAs are associated with glycometabolism and immune response. CONCLUSION miR-23b-5p and miR-99b-5p are possibly implicated in the pathogenic mechanisms leading to the induction of LOPE and may serve as candidate non-invasive biomarkers for early prediction and prevention.
Collapse
Affiliation(s)
- Danai Mavreli
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece.,Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Lykoudi
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece.,Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - George Lambrou
- 1 Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - George Papaioannou
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Vrachnis
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Kalantaridou
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Papantoniou
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggeliki Kolialexi
- 3 Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Athens, Greece .,Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Chen A, Yu R, Jiang S, Xia Y, Chen Y. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia. Front Physiol 2021; 12:659638. [PMID: 33995125 PMCID: PMC8121253 DOI: 10.3389/fphys.2021.659638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Preeclampsia is a clinical syndrome characterized by multiple-organ dysfunction, such as maternal hypertension and proteinuria, after 20 weeks of gestation. It is a common cause of fetal growth restriction, fetal malformation, and maternal death. At present, termination of pregnancy is the only way to prevent the development of the disease. Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, are involved in important pathological and physiological functions in life cycle activities including ontogeny, reproduction, apoptosis, and cell reprogramming, and are closely associated with human diseases. Accumulating evidence suggests that non-coding RNAs are involved in the pathogenesis of preeclampsia through regulation of various physiological functions. In this review, we discuss the current evidence of the pathogenesis of preeclampsia, introduce the types and biological functions of non-coding RNA, and summarize the roles of non-coding RNA in the pathophysiological development of preeclampsia from the perspectives of oxidative stress, hypoxia, angiogenesis, decidualization, trophoblast invasion and proliferation, immune regulation, and inflammation. Finally, we briefly discuss the potential clinical application and future prospects of non-coding RNA as a biomarker for the diagnosis of preeclampsia.
Collapse
Affiliation(s)
- Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shiwen Jiang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
27
|
Ali A, Hadlich F, Abbas MW, Iqbal MA, Tesfaye D, Bouma GJ, Winger QA, Ponsuksili S. MicroRNA-mRNA Networks in Pregnancy Complications: A Comprehensive Downstream Analysis of Potential Biomarkers. Int J Mol Sci 2021; 22:2313. [PMID: 33669156 PMCID: PMC7956714 DOI: 10.3390/ijms22052313] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pregnancy complications are a major cause of fetal and maternal morbidity and mortality in humans. The majority of pregnancy complications initiate due to abnormal placental development and function. During the last decade, the role of microRNAs (miRNAs) in regulating placental and fetal development has become evident. Dysregulation of miRNAs in the placenta not only affects placental development and function, but these miRNAs can also be exported to both maternal and fetal compartments and affect maternal physiology and fetal growth and development. Due to their differential expression in the placenta and maternal circulation during pregnancy complications, miRNAs can be used as diagnostic biomarkers. However, the differential expression of a miRNA in the placenta may not always be reflected in maternal circulation, which makes it difficult to find a reliable biomarker for placental dysfunction. In this review, we provide an overview of differentially expressed miRNAs in the placenta and/or maternal circulation during preeclampsia (PE) and intrauterine growth restriction (IUGR), which can potentially serve as biomarkers for prediction or diagnosis of pregnancy complications. Using different bioinformatics tools, we also identified potential target genes of miRNAs associated with PE and IUGR, and the role of miRNA-mRNA networks in the regulation of important signaling pathways and biological processes.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Muhammad W Abbas
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Iqbal
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Gerrit J Bouma
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A Winger
- Animal Reproduction and Biomedical Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute of Genome Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
28
|
Licini C, Avellini C, Picchiassi E, Mensà E, Fantone S, Ramini D, Tersigni C, Tossetta G, Castellucci C, Tarquini F, Coata G, Giardina I, Ciavattini A, Scambia G, Di Renzo GC, Di Simone N, Gesuita R, Giannubilo SR, Olivieri F, Marzioni D. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Transl Res 2021; 228:13-27. [PMID: 32726711 DOI: 10.1016/j.trsl.2020.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
Abstract
Pre-eclampsia (PE) is a systemic maternal syndrome affecting 2-8% of pregnancies worldwide and involving poor placental perfusion and impaired blood supply to the foetus. It manifests after the 20th week of pregnancy as new-onset hypertension and substantial proteinuria and is responsible for severe maternal and newborn morbidity and mortality. Identifying biomarkers that predict PE onset prior to its establishment would critically help treatment and attenuate outcome severity. MicroRNAs are ubiquitous gene expression modulators found in blood and tissues. Trophoblast cell surface antigen (Trop)-2 promotes cell growth and is involved in several cancers. We assessed the PE predictive ability of maternal miR-125b in the first trimester of pregnancy by measuring its plasma levels in women with normal pregnancies and with pregnancies complicated by PE on the 12th week of gestation. To gain insight into PE pathogenesis we investigated whether Trop-2 is targeted by miR-125b in placental tissue. Data analysis demonstrated a significant association between plasma miR-125b levels and PE, which together with maternal body mass index before pregnancy provided a predictive model with an area under the curve of 0.85 (95% confidence interval, 0.70-1.00). We also found that Trop-2 is a target of miR-125b in placental cells; its localization in the basal part of the syncytiotrophoblast plasma membrane suggests a role for it in the early onset of PE. Altogether, maternal miR-125b proved a promising early biomarker of PE, suggesting that it may be involved in placental development through its action on Trop-2 well before the clinical manifestations of PE.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Avellini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Elena Picchiassi
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Tersigni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federica Tarquini
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Giuliana Coata
- Department of Biomedical and Surgical Science, Clinic of Obstetrics and Gynaecology, University of Perugia, 06132 Perugia, Italy
| | - Irene Giardina
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Italy
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, 00168 Roma, Italy
| | - Gian Carlo Di Renzo
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Italy; Department of Obstetrics and Gynaecology I.M. Sechenov First State University, Moscow, Russia
| | - Nicoletta Di Simone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy; Università Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, 00168 Roma, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Stefano R Giannubilo
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, 60100 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| |
Collapse
|
29
|
Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation 2021; 17:240-248. [PMID: 34393443 PMCID: PMC8340720 DOI: 10.6026/97320630017240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are single-stranded, non-coding RNA molecules, regulate gene expression at the post-transcriptional level. They are expressed in the human body and have a significant impact on the different processes of pathological illness. A developing placenta undergoes a series of stages after successful fertilization, such as cell division, migration, adhesion, apoptosis, and angiogenesis. MicroRNAs dysregulation in placenta has been linked to pregnancy-related complications such as preeclampsia. Therefore, it is of interest to document known information (list of microRNA) on this issue in the development of biological tools for diagnosis, treatment and prevention of the disease.
Collapse
Affiliation(s)
- Abdifatah Mohamed Nuh
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Yan You
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Min Ma
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| |
Collapse
|
30
|
Zha W, Guan S, Liu N, Li Y, Tian Y, Chen Y, Wang Y, Wu F. Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:139919. [PMID: 32721616 DOI: 10.1016/j.scitotenv.2020.139919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of the MicroRNA (miR) Let-7 family has been implicated in preeclampsia (PE). Abnormal trophoblast cell proliferation and apoptosis associate with the pathogenesis of PE. The present study was designed to test the hypothesis whether let-7a could regulate the biological functions of trophoblasts and explore the mechanism how it works in the development of early-onset severe PE. The putative target genes Bcl-xl and YAP1 of let-7a were verified by luciferase assay. The roles of let-7a, Bcl-xl and YAP1 in regulating JEG-3 cell functions were examined by altering their expression with mimic, overexpression plasmids or siRNAs. The methylation status of let-7a-3 in PE was assessed by methylation-specific and bisulfite sequencing PCR assays. JEG-3 cells were treated with DNA methyltransferase inhibitor to analyze whether let-7a-3 demethylation functioned in PE. Tumor growth and cell apoptosis were measured from nude mice inoculated with JEG-3 cells overexpressing let-7a. The results revealed let-7a was highly expressed in early-onset severe PE and let-7a-3 presented a low methylation level. Functionally, let-7a upregulation could inhibit the viability and cell cycle progression but induce the apoptosis of JEG-3 cells. Bcl-xl and YAP1, target genes of let-7a, could rescue cell apoptosis induced by let-7a. The demethylation of let-7a-3 was also observed to elevate the expression of let-7a and enhance JEG-3 cell apoptosis. Let-7a inhibited tumorigenic ability of JEG-3 cells and enhanced cell apoptosis in vivo. Altogether, let-7a could enhance cell apoptosis in trophoblasts through downregulation of Bcl-xl and YAP1, which suggests that let-7a might be a key regulator in the progression of PE.
Collapse
Affiliation(s)
- Wenhui Zha
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shuang Guan
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ning Liu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Li
- Center of Reproductive Medicine, Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130041, PR China
| | - Yuan Tian
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yang Chen
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yan Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fuju Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
31
|
Zhang H, Xue L, Lv Y, Yu X, Zheng Y, Miao Z, Ding H. Integrated microarray analysis of key genes and a miRNA‑mRNA regulatory network of early‑onset preeclampsia. Mol Med Rep 2020; 22:4772-4782. [PMID: 33173953 PMCID: PMC7646902 DOI: 10.3892/mmr.2020.11551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/18/2020] [Indexed: 11/05/2022] Open
Abstract
Early‑onset preeclampsia (EOPE) is a serious threat to maternal and foetal health. The present study aimed to identify potential biomarkers and targets for the treatment of EOPE. Expression profiles of placenta from patients with EOPE and healthy controls (GSE103542, GSE74341 and GSE44711) were downloaded from the Gene Expression Omnibus database. Integrated analysis revealed 246 genes and 28 microRNAs (miRNAs) that were differentially expressed between patients with EOPE and healthy controls. Differentially expressed genes (DEGs) were primarily enriched in 'biological processes', such as 'cell adhesion', 'female pregnancy', 'extracellular matrix organization' and 'response to hypoxia'. Significant pathways associated with DEGs primarily included 'focal adhesion', 'ECM‑receptor interaction', 'PI3K‑Akt signaling' and 'ovarian steroidogenesis'. A Protein‑Protein Interaction network of DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins online database, and epidermal growth factor receptor, collagen α‑1(I) chain, secreted phosphoprotein 1, leptin (LEP), collagen α‑2(I) chain (COL1A2), plasminogen activator inhibitor 1 (SERPINE1), Thy‑1 membrane glycoprotein, bone morphogenetic protein 4, vascular cell adhesion protein 1 and matrix metallopeptidase 1 were identified as hub genes. The alterations of hsa‑miR‑937, hsa‑miR‑148b*, hsa‑miR‑3907, hsa‑miR‑367*, COL1A2, LEP and SERPINE1 in placenta were validated using our local samples. Our research showed that the expression of hsa‑miR‑937, hsa‑miR‑1486*, hsa‑miR‑3907, hsa‑miR‑367* and hub genes in the placenta were closely associated with the pathophysiology of EOPE. hsa‑miR‑937, hsa‑miR‑1486*, hsa‑miR‑3907, hsa‑miR‑367* and hub genes could serve as biomarkers for diagnosis and as potential targets for the treatment of EOPE.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Internal Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Lu Xue
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yan Lv
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Xiang Yu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yiwei Zheng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Zhijing Miao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Hongjuan Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
32
|
Tao J, Xia LZ, Liang L, Chen Y, Wei D, Meng J, Wu S, Wang Z. MiR-124-3p promotes trophoblast cell HTR-8/SVneo pyroptosis by targeting placental growth factor. Placenta 2020; 101:176-184. [PMID: 33010604 DOI: 10.1016/j.placenta.2020.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION MiR-124-3p is one of the aberrantly expressed miRNAs in the placentas of patients with preeclampsia (PE), a severe obstetric complication characterised by hypertension and proteinuria. This study aimed to investigate the role of miR-124-3p in the invasion, migration and death of trophoblast cells and explore the potential mechanisms. METHODS MiR-124-3p expression in placental tissues was compared with that in normal placenta. HTR8/SVneo cells were then transfected with miR-124-3p mimics to examine cellular apoptosis, migration and invasion. Furthermore, the expression of pyroptosis-related molecular NLRP3, Pro-caspase1, caspase1, IL-1β and GSDMD was examined with Western blot. Dual luciferase reporter assay was performed to confirm that placental growth factor (PLGF) is a direct target of miR-124-3p, and HTR-8/SVneo cells were transfected with small interfering RNA PLGF (siPLGF) to determine whether PLGF knockdown promotes HTR-8/SVneo pyroptosis. Finally, intracellular ROS was diminished with N-acetyl-l-cysteine (NAC) to observe whether the pro-pyroptosis effect of PLGF knockdown is alleviated. RESULTS Results in this study showed that miR-124-3p expression was remarkably increased in the placenta of patients with PE. Moreover, the transfection of miR-124-3p mimics in trophoblastic cells significantly decreased cell migration and invasion but increased cell apoptosis and the expression of NLRP3, pro-caspase1, caspase1, IL-1β and GSDMD. Therefore, PLGF was confirmed as a direct target of miR-124-3p. Finally, siPLGF transfection can mimic the effects of miR-124-3p, and NAC can inhibit this effect. CONCLUSION In summary, miR-124-3p is upregulated in PE, and in vitro functional analysis revealed that this mRNA inhibits trophoblast invasion and migration but promotes cell pyroptosis partly via the PLGF-ROS pathway.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| | - Lin-Zhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, China.
| | - ShiYuan Wu
- YueYang Maternal-Child Medicine Health Hospital, Hunan Province Innovative Training Base for Medical Postgraduates, Yueyang, Hunan, 416000, China.
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
33
|
Sharma M, Barai RS, Kundu I, Bhaye S, Pokar K, Idicula-Thomas S. PCOSKB R2: a database of genes, diseases, pathways, and networks associated with polycystic ovary syndrome. Sci Rep 2020; 10:14738. [PMID: 32895427 PMCID: PMC7477240 DOI: 10.1038/s41598-020-71418-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
PolyCystic Ovary Syndrome KnowledgeBase (PCOSKBR2) is a manually curated database with information on 533 genes, 145 SNPs, 29 miRNAs, 1,150 pathways, and 1,237 diseases associated with PCOS. This data has been retrieved based on evidence gleaned by critically reviewing literature and related records available for PCOS in databases such as KEGG, DisGeNET, OMIM, GO, Reactome, STRING, and dbSNP. Since PCOS is associated with multiple genes and comorbidities, data mining algorithms for comorbidity prediction and identification of enriched pathways and hub genes are integrated in PCOSKBR2, making it an ideal research platform for PCOS. PCOSKBR2 is freely accessible at http://www.pcoskb.bicnirrh.res.in/ .
Collapse
Affiliation(s)
- Mridula Sharma
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Ram Shankar Barai
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Indra Kundu
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Sameeksha Bhaye
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Khushal Pokar
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Center, Indian Council of Medical Research-National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
34
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
35
|
|
36
|
Wu HY, Wang XH, Liu K, Zhang JL. LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis. Cell Cycle 2019; 19:39-52. [PMID: 31774373 DOI: 10.1080/15384101.2019.1691787] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome that substantially leads to maternal and fetal mortality. Multiple factors contribute to the disease, but the exact pathogenesis still remains elusive. Here we explored the roles of lncRNA MALAT1 and miR-206 in PE. qRT-PCR was applied to measure mRNA levels of MALAT1 and miR-206 in the placenta of PE patients. Scratch wound healing assay and transwell invasion assay were conducted to test the effects of MALAT1 and miR-206 on migration and invasion of trophoblast cells. In addition, we validated MALAT1/miR-206 and miR-206/IGF-1 interactions with dual luciferase reporter assay. Western bot was used to detect protein expressions of IGF-1, p-PI3K, PI3K, p-Akt and Akt. We found that MALAT1 was decreased but miR-206 was increased in the placenta of patients with PE. Inhibition of MALAT1, knockdown IGF-1, or miR-206 mimics suppressed the trophoblast cells migration and invasion, while overexpression of MALAT1, IGF-1 or miR-206 inhibitors exhibited opposite effects. Further, miR-206 was confirmed as a direct target of MALAT1. Besides, miR-206 inhibited IGF-1 expression by directly binding to the 3'UTR. Mechanistically, our study demonstrated that MALAT1 regulates IGF-1/PI3K/Akt signaling via miR-206. Together, these results suggest that MALAT1 and miR-206 play important roles in PE. MALAT1 regulates miR-206/IGF-1 axis, thereby modulating trophoblast cells migration and invasion through PI3K/Akt signal pathway. These results show light on the underlying mechanisms of PE and provide potential targets for PE therapy.Abbreviations: PE: Preeclampsia; lncRNA: Long-non-coding RNA; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; IGF-1: Insulin-like growth factor 1; PI3k: Phosphatidylinositol-4, 5-bisphosphate 3-kinase; Akt: Protein kinase B; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; qRT-PCR: Quantitative Reverse Transcription polymerase chain reaction; shRNA: Short hairpin RNA; siRNA: Small interfering RNA; EMT: Epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Hai-Ying Wu
- Department of Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiao-Hui Wang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Kan Liu
- Department of Obstetrics, Henan Provincial People's Hospital, Clinical Medical College of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jing-Li Zhang
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, P.R. China
| |
Collapse
|
37
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
38
|
Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A, Yousefi M. MicroRNAs: Small molecules with a large impact on pre-eclampsia. J Cell Physiol 2019; 235:3235-3248. [PMID: 31595979 DOI: 10.1002/jcp.29286] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As critical mediators in biological processes, microRNAs (miRNAs) which are small and endogenous noncoding RNAs have been associated with disease progression, cell proliferation, and development. Pre-eclampsia (PE), a pregnancy-related disorder with no early markers or symptoms is recognized as the main reason for fetal and maternal mortality and morbidity in the initial steps or even during pregnancy, worldwide. Clinical symptoms usually appear in the third trimester of the pregnancy. Although numerous research have unraveled several aspects of placenta development abnormalities associated with abnormal trophoblastic invasion and angiogenesis modification, many questions about the PE pathogenesis remains unanswered. A large number of studies have shown the important role of miRNAs as potential biomarkers in the PE prognosis and diagnosis. Here, the latest investigations about the PE and placental miRNAs expression, as well as, the crucial role of miRNA molecules including miR-210 and miR-155 which are deregulated in patients with PE, will be argued.
Collapse
Affiliation(s)
- Maryam Hemmatzadeh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Aliyeh Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
40
|
Östling H, Kruse R, Helenius G, Lodefalk M. Placental expression of microRNAs in infants born small for gestational age. Placenta 2019; 81:46-53. [PMID: 31138431 DOI: 10.1016/j.placenta.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/22/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The molecular mechanisms behind poor foetal growth are not fully known. The aim of this study was to explore global microRNA expression in placentas of infants born small for gestational age (SGA) compared to infants with a normal birth weight (NBW). METHODS Placental biopsies from term infants were identified in a biobank and divided into four groups: infants born SGA with (n = 13) or without (n = 9) exposure to low maternal gestational weight gain (GWG) and infants born with NBWs with (n = 20) or without (n = 26) exposure to low GWG. All women and infants were healthy, and no woman smoked during pregnancy. Only vaginal deliveries were included. Next-generation sequencing was performed with single read sequencing of >9 million reads per sample. Differential microRNA expression was analysed using ANOVA for unequal variances (Welch) with multiple testing corrections through the Benjamini-Hochberg method. A fold change >2 and a corrected p value < 0.05 were considered significant. Adjustments for possible confounding factors were made using a linear regression model. RESULTS A total of 1870 known, mature human microRNAs were detected in the sample. MiR-3679-5p and miR-193b-3p were significantly upregulated, and miR-379-3p, miR-335-3p, miR-4532, miR-519e-3p, miR-3065-5p, and miR-105-5p were significantly downregulated after adjustment for potential confounding factors in SGA infants with normal GWG compared to infants with NBWs and normal GWG. DISCUSSION Infants born unexplained SGA show differential microRNA expression in their placenta. Important pathways for the differentially expressed microRNAs include inflammation and the insulin-IGF system.
Collapse
Affiliation(s)
- H Östling
- Department of Obstetrics and Gynecology, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden
| | - R Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - G Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, SE-701 82, Örebro University, Örebro, Sweden
| | - M Lodefalk
- Department of Pediatrics, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
41
|
Li S, Sun Z, Chen T, Pan J, Shen Y, Chen X, Zhou X, Cheng R, Yang Y. The role of miR-431-5p in regulating pulmonary surfactant expression in vitro. Cell Mol Biol Lett 2019; 24:25. [PMID: 30988675 PMCID: PMC6446292 DOI: 10.1186/s11658-019-0150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Pulmonary surfactant is the complex mixture of lipid and protein that covers the alveolar surface. Pulmonary surfactant deficiency is one of the main causes of neonatal respiratory distress. Recent studies showed that miRNA plays an important role in lung development, but research into miR-431 regulation of pulmonary surfactant are sparse. In this study, we explored the regulatory role of miR-431-5p in the expression of pulmonary surfactant and identified its potential target gene, Smad4. Methods The bioinformatics tool TargetScan was used to predict the targets of miR-431. The expression of miR-431-5p was achieved via transfection of miR-431-5p mimics, an miR-431-5p inhibitor and corresponding negative control. The level of miR-431-5p was determined using quantitative real-time PCR. The CCK8 assay was conducted to confirm cell growth 12 h after transfection with miR-431-5p mimics, inhibitor or NC. Smad4 and surfactant-associated proteins in A549 were analyzed using western blot and quantitative real-time PCR. Results Smad4 was validated as a target of miR-431 in A549 cells. Overexpression of miR-431 accelerated A549 proliferation and inhibited A549 apoptosis. The mRNA and protein levels for the surfactant proteins (SP-A, SP-B, SP-C and SP-D) were found to be differentially expressed in A549 cells over- or under-expressing miR-431-5p. Conclusion Our results show that miR-431-5p is critical for pulmonary surfactant expression and that its regulation is closely related to the TGF-β/Smad4 pathway. These results will help us to study the pathophysiological mechanism of lung developmental diseases.
Collapse
Affiliation(s)
- Shujun Li
- 1Department of Pediatrics, Children's Hospital of Anhui Medical University, Hefei, China
| | - Zhongyi Sun
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- 3Department of Cardiothoracic Surgery, The First Affliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Pan
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqing Shen
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Xiaoqing Chen
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhou
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Rui Cheng
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Yang Yang
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| |
Collapse
|
42
|
Rezaei M, Mohammadpour-Gharehbagh A, Narooei-nejad M, Teimoori B, Mokhtari M, Mehrabani M, Yaghmaei M, Najafi D, Salimi S. The effect of the placental DROSHA rs10719 and rs6877842 polymorphisms on PE susceptibility and mRNA expression. J Hum Hypertens 2019; 33:552-558. [DOI: 10.1038/s41371-018-0156-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
|
43
|
Wang Z, Wang P, Wang Z, Qin Z, Xiu X, Xu D, Zhang X, Wang Y. MiRNA-548c-5p downregulates inflammatory response in preeclampsia via targeting PTPRO. J Cell Physiol 2018; 234:11149-11155. [PMID: 30443949 DOI: 10.1002/jcp.27758] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Preeclampsia is a serious complication of pregnancy and leads to maternal hypertension and proteinuria. It remains a major health problem for mothers and babies across the world due to high maternal and fetal morbidity and mortality. Accumulated data have implicated the critical role of microRNA in preeclampsia. However, to date, the role of miR-548c-5p in preeclampsia remains vaguely understood. In this study, we first elucidate the role of miR-548c-5p and its underlying molecular mechanism in preeclampsia. Compared with healthy controls, miR-548c-5p was obviously downregulated in serum exosomes and placental mononuclear cells in patients with preeclampsia. Nonetheless, PTPRO was significantly upregulated and negatively associated with miR-548c-5p in placental mononuclear cells in patients with preeclampsia. PTPRO was a target of miR-548c-5p. PTPRO was downregulated in the miR-548c-5p-overexpressed macrophages. In addition, miR-548c-5p could inhibit the proliferation and activation of LPS-stimulated macrophages, as evidenced by decreased levels of inflammatory cytokines (IL-12 and TNF-α) and less nuclear translocation of pNF-κB in pTHP1 cells. MiR-548c-5p acts as an anti-inflammatory factor in preeclampsia. The axis of miR-548c-5p/PTPRO/NF-κB may provide novel targets for the diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Zengfang Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Pingping Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Zengyan Wang
- Department of Surgery, Zhucheng People's Hospital, Zhucheng, China
| | - Zhihao Qin
- Clinical laboratory, Zhucheng Chinese Medicine Hospital, Zhucheng, China
| | - Xia Xiu
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, the Affiliated Hospital of Weifang Medical University, Weifang, China
| | | | - Yingliang Wang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
44
|
Yang X, Meng T. MicroRNA-431 affects trophoblast migration and invasion by targeting ZEB1 in preeclampsia. Gene 2018; 683:225-232. [PMID: 30315928 DOI: 10.1016/j.gene.2018.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Preeclampsia (PE) is a pregnancy complication that is characterized by higher blood pressure, together with higher protein quantity presence in the urine, which occurs after 20 weeks of gestation leading to severity of adverse maternal and fetal consequences. Some special microRNAs (miRNAs) expressed in placentas may be related to the occurrence of PE. Researchers have found that the expression of miR-431 in PE placentas was increased if compared with normal placentas; however, the effect and mechanism of miR-431 in PE are still unknown. METHODS In this study, we compared the expression levels of miR-431 and its putative target gene Zinc finger E-box-binding homeobox 1 (ZEB1) in 30 PE placentas and 30 normal placenta tissues. The effects of miR-431 and ZEB1 were verified by CCK-8 assay, transwell migration and invasion assay, cell cycle distribution assay and apoptosis assay in HTR-8/SVneo cells transfected with miR-431 mimic, siR-ZEB1 and their negative controls. RESULTS Results revealed that miR-431 was markedly added, while the mRNA and protein expressions of ZEB1 were decreased in PE placentas. The functional tests showed over-expression of miR-431 suppressed ZEB1 expression and decreased the migration and invasive capacity of trophoblast cells. MiR-431 overexpression induced apoptosis of HTR-8/SVneo cells, but it had no significant effect on cell proliferation and the distribution of cell cycle. In addition, siR-ZEB1 simulated the roles of miR-431 mimic. We found that miR-431 mimic and siR-ZEB1 reduced the epithelial-mesenchymal transition (EMT) with added E-cadherin expression and reduced vimentin expression in the cell line. CONCLUSIONS In conclusion, we found that miR-431 inhibited the migration and invasion of trophoblastic cells by targeting ZEB1, which might give rise to the onset of PE.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
45
|
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, Lv M. Roles of microRNAs in preeclampsia. J Cell Physiol 2018; 234:1052-1061. [PMID: 30256424 DOI: 10.1002/jcp.27291] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a complex disorder that is characterized by hypertension and proteinuria after the 20th week of pregnancy, and it causes most neonatal morbidity and perinatal mortality. Most studies suggest that placental dysfunction is the main cause of PE. However, genetic factors, immune factors, and systemic inflammation are also related to the pathophysiology of this syndrome. Thus far, the exact pathogenesis of PE is not yet fully understood, and intense research efforts are focused on PE to elucidate the pathophysiological mechanisms. MicroRNAs (miRNAs) refer to small single-stranded and noncoding molecules that can negatively regulate gene expression, and miRNA regulatory networks play an important role in diverse pathological processes. Many studies have confirmed deregulated miRNA in pregnant patients with PE, and the function and mechanism of these differentially expressed miRNA are gradually being revealed. In this review, we summarize the current research about miRNA involved in PE, including placenta-specific miRNA, their predictive value, and their function in the development of PE. This review will provide fundamental evidence of miRNA in PE, and further studies are necessary to explore the roles of miRNA in the early diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Yan Lv
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Cheng Lu
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiaohong Ji
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhijing Miao
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mingming Lv
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
46
|
Wen Z, Chen Y, Long Y, Yu J, Li M. Tumor necrosis factor-alpha suppresses the invasion of HTR-8/SVneo trophoblast cells through microRNA-145-5p-mediated downregulation of Cyr61. Life Sci 2018; 209:132-139. [PMID: 30081007 DOI: 10.1016/j.lfs.2018.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Deficiency in trophoblast invasion is causally linked to the pathogenesis of preeclampsia. Tumor necrosis factor-alpha (TNF-α) shows the ability to suppress the invasiveness of trophoblasts, while cysteine-rich 61 (Cyr61) exerts an opposite function in trophoblast invasion. This study was designed to check the hypothesis that cysteine-rich 61 (Cyr61) may be involved in the anti-invasive activity of TNF-α in trophoblasts. To this end, we examined the effect of TNF-α treatment on Cyr61 expression in HTR-8/SVneo trophoblast cells and investigated the mechanism for the regulation of Cyr61 by TNF-α. Gain-of-function experiments were performed to clarify the role of Cyr61 in TNF-α-dependent suppression of trophoblast invasion. It was found that TNF-α at 1 and 10 ng/mL reduced Cyr61 protein levels by 30 and 80%, respectively, in HTR-8/SVneo cells, but did not affect the mRNA expression of Cyr61. Mechanistically, microRNA (miR)-145-5p was stimulated by TNF-α and negatively regulated the expression of Cyr61 via interaction with its 3'-untranslated region. Functionally, overexpression of miR-145-5p significantly impaired the migration and invasion of HTR-8/SVneo cells. Depletion of miR-145-5p rescued HTR-8/SVneo cells from TNF-α-mediated invasion suppression, which coincided with prevention of Cyr61 downregulation by TNF-α. In addition, overexpression of Cyr61 partially restored the invasion of HTR8/SVneo cells co-transfected with miR-145-5p mimic or exposed to TNF-α. Taken together, miR-145-5p-mediated downregulation of Cyr61 is required for the anti-invasive effect of TNF-α on trophoblasts.
Collapse
Affiliation(s)
- Zhengfang Wen
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Departments of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yue Chen
- Department of Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Long
- Department of Obstetrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Nanning, China
| | - Mujun Li
- Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
47
|
Millen KR, Buhimschi CS, Zhao G, Rood KM, Tabbah S, Buhimschi IA. Serum and Urine Thioflavin-T-Enhanced Fluorescence in Severe Preeclampsia. Hypertension 2018; 71:1185-1192. [PMID: 29686018 DOI: 10.1161/hypertensionaha.118.11034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 01/23/2023]
Abstract
Common features of amyloid-like proteotoxic aggregates are the ability to bind Congo red (congophilia) and to induce fluorescence of thioflavin-T (ThT). Based on the prior discovery that women with preeclampsia exhibit urine congophilia, we proposed that amyloid-like protein aggregates present in urine also circulate in the bloodstream and this feature is linked to disease severity and clinical phenotype. ThT fluorescence was investigated in 217 paired serum and urine samples from women with severe features of preeclampsia (n=101; median [interquartile range] gestational age [GA], 32 [29-35] weeks), mild features of preeclampsia (n=22; GA, 36 [36-37] weeks), chronic hypertension (n=15; GA, 38 [37-39] weeks), healthy pregnant controls (n=57; GA, 39 [38-39] weeks), and nonpregnant controls (n=22). Serum and urine fluorescence attributable to advanced glycation end products was measured in the same samples with correction for autofluorescence. There were no GA-related changes in ThT fluorescence, although near-term serum ThT fluorescence increased compared with nonpregnant state. Compared with healthy pregnant controls, serum and urine ThT fluorescence was increased in severe features of preeclampsia (P<0.001 for both) but not in mild features of preeclampsia or chronic hypertension. Except for chronic hypertension, advanced glycation end products-related fluorescence of serum or urine did not differ from controls. Urine congophilia had a stronger relationship with preeclampsia severity compared with either urine or serum ThT fluorescence. However, serum ThT fluorescence was independently associated with clinical features of hemolysis, elevated liver enzyme levels, and low platelet levels syndrome (P=0.003). We demonstrate that ThT fluorescence, a marker of amyloid-like aggregates, is increased in serum of women with preeclampsia and likely because of their cytotoxicity associated with hemolysis, elevated liver enzyme levels, and low platelet levels syndrome.
Collapse
Affiliation(s)
- Katherine R Millen
- From the Department of Obstetrics and Gynecology (K.R.M., C.S.B., K.M.R., S.T., I.A.B.)
| | - Catalin S Buhimschi
- From the Department of Obstetrics and Gynecology (K.R.M., C.S.B., K.M.R., S.T., I.A.B.).,and Department of Pediatrics (C.S.B., I.A.B.)
| | - Guomao Zhao
- The Ohio State University College of Medicine, Columbus; and Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., I.A.B.)
| | - Kara M Rood
- From the Department of Obstetrics and Gynecology (K.R.M., C.S.B., K.M.R., S.T., I.A.B.)
| | - Sammy Tabbah
- From the Department of Obstetrics and Gynecology (K.R.M., C.S.B., K.M.R., S.T., I.A.B.)
| | - Irina A Buhimschi
- From the Department of Obstetrics and Gynecology (K.R.M., C.S.B., K.M.R., S.T., I.A.B.) .,and Department of Pediatrics (C.S.B., I.A.B.).,The Ohio State University College of Medicine, Columbus; and Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH (G.Z., I.A.B.)
| |
Collapse
|