1
|
van Kammen C, van Hove H, Kapsokalyvas D, Greupink R, Schiffelers R, Lely T, Terstappen F. Targeted lipid nanoparticles to prevent trans-placental passage in the ex vivo human placental cotyledon perfusion model. Drug Deliv Transl Res 2025; 15:1985-1993. [PMID: 39402393 PMCID: PMC12037421 DOI: 10.1007/s13346-024-01715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 04/29/2025]
Abstract
Medication use during pregnancy poses risks to both the mother and the fetus. These risks include an elevated potential for fetotoxicity due to placental drug transport. Nanomedicines offer a promising solution by potentially preventing trans-placental passage. Targeted nanomedicines could enhance safety and efficacy in treating maternal or placental pathophysiology. Our study investigates placental transfer kinetics of targeted lipid nanoparticles (LNPs) in an ex vivo human placenta cotyledon perfusion model. We collected human placentas for dual-side ex vivo placental perfusions. Targeted LNPs with a fluorescence tag were introduced into the maternal circuit of each placenta. To establish if there was trans-placental passage of LNPs to the fetal circuit, we collected samples from maternal and fetal circuits throughout the six hours of the perfusion. We determined the fluorescence signal using a multi-mode microplate reader and Multiphoton microscopy to localize the LNPs in the placenta tissue. Data from perfused placenta tissue showed no significant transfer of the fluorescently labeled LNPs across the placental barrier to the fetal circuit. Localization of targeted LNPs in tissue samples is mainly observed in the maternal blood space of the placenta. Our results suggest that targeted LNPs present a promising strategic approach to prevent trans-placental passage to the fetus. Our future perspectives involve investigating the efficacy of targeted LNPs as well as loading targeted LNPs with nucleic acid-based therapeutics to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Caren van Kammen
- Department of Nanomedicine, LAB CDL Research, UMC Utrecht, Utrecht, The Netherlands.
| | - Hedwig van Hove
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud UMC, Nijmegen, The Netherlands
| | - Dimitrios Kapsokalyvas
- Department of Genetics and Cell Biology, Maastricht University, Maastricht, The Netherlands
- Interdisciplinary Centre for Clinical Research IZKF, University Hospital RWTH Aachen, Aachen, Germany
| | - Rick Greupink
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud UMC, Nijmegen, The Netherlands
| | - Raymond Schiffelers
- Department of Nanomedicine, LAB CDL Research, UMC Utrecht, Utrecht, The Netherlands
| | - Titia Lely
- Department of Obstetrics, Wilhemina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Obstetrics, Wilhemina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
- Department of Neonatology, Wilhemina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Davenport BN, Wilson RL, Williams AA, Jones HN. Placental nanoparticle-mediated IGF1 gene therapy corrects fetal growth restriction in a guinea pig model. Gene Ther 2025; 32:255-265. [PMID: 39627510 PMCID: PMC12105984 DOI: 10.1038/s41434-024-00508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor (IGF1) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using a guinea pig maternal nutrient restriction model (70% food intake) of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR + IGF1 animals compared to sham treated controls on an ad libitum diet, increased fetal blood glucose and decreased fetal blood cortisol levels compared to sham treated MNR, and showed no negative maternal side-effects. Overall, we show a therapy capable of positively impacting the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at mid pregnancy in the guinea pig and in two different mouse model and three different human in vitro/ex vivo models, demonstrate the plausibility of this therapy for future human translation. Our overall goal is to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Alyssa A Williams
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Jones HN, Wilson RL. A human cytotrophoblast-villous endothelium-fetal organ multi-cell model and the impact on gene and protein expression in placenta cytotrophoblast, fetal hepatocytes and fetal kidney epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646643. [PMID: 40236240 PMCID: PMC11996472 DOI: 10.1101/2025.04.01.646643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Appropriate fetal growth during pregnancy requires multi-directional communication from the maternal, placental and fetal systems. Disruption in any of these signaling arms can have deleterious consequences for fetal growth and initiate developmental adaptations within fetal tissues and organs that are associated with both short- and long-term morbidities. In this proof-of-concept translational, human cell model study we aimed to identify the impacts of altered trophoblast stress response mechanisms and human insulin-like 1 growth factor ( hIGF1 ) nanoparticle gene therapy on gene and protein expression in fetal liver hepatocytes and fetal kidney epithelial cells. We utilized human cell lines: BeWo choriocarcinoma cells (trophoblast), Human Placental Micro-Vascular Endothelial Cells, and WRL68 (hepatocytes) or HEK293T/17 (kidney epithelium), in a co-culture model designed to mimic cytotrophoblast-villous endothelium-fetal organ communication. Trophoblast stress response mechanisms were increased by culturing BeWo cells in growth media without FBS. Stressed BeWo cells were also treated with a hIGF1 nanoparticle gene therapy known to mitigate cellular stress mechanisms. Stressed BeWo cells had increased expression of cellular stress mechanisms but not when IGF1 was over-expressed with a transient hIGF1 nanoparticle gene therapy. Stressed and Stressed+ hIGF1 BeWo cells had increased expression of gluconeogenesis and glycolysis rate-limiting enzymes. Gene and protein expression in fetal liver and kidney cells was not impacted by increased trophoblast stress or hIGF1 nanoparticle gene therapy. In conclusion, our data demonstrated that cytotrophoblast under stress turn on mechanisms involved in glucose production. Whether this is reflected in vivo remains uninvestigated but may represent a placental compensation mechanism in complicated pregnancies.
Collapse
|
4
|
Wilson RL, Davenport BN, Jones HN. Mid-Pregnancy Placental Transcriptome in a Model of Placental Insufficiency with and without Novel Intervention. Reprod Sci 2025; 32:435-443. [PMID: 39707140 PMCID: PMC11917528 DOI: 10.1007/s43032-024-01769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor (hIGF1) to the placenta as a potential treatment for placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to sham-treated Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. Physiol Genomics 2025; 57:8-15. [PMID: 39374081 PMCID: PMC11918312 DOI: 10.1152/physiolgenomics.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (hIGF1) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on to restore or maintain appropriate placenta function.NEW & NOTEWORTHY Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a hIGF1 nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.
Collapse
Affiliation(s)
- Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
6
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Sun F, Peers de Nieuwburgh M, Hubinont C, Debiève F, Colson A. Gene therapy in preeclampsia: the dawn of a new era. Hypertens Pregnancy 2024; 43:2358761. [PMID: 38817101 DOI: 10.1080/10641955.2024.2358761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Preeclampsia is a severe complication of pregnancy, affecting an estimated 4 million women annually. It is one of the leading causes of maternal and fetal mortality worldwide, and it has life-long consequences. The maternal multisystemic symptoms are driven by poor placentation, which causes syncytiotrophoblastic stress and the release of factors into the maternal bloodstream. Amongst them, the soluble fms-like tyrosine kinase-1 (sFLT-1) triggers extensive endothelial dysfunction by acting as a decoy receptor for the vascular endothelial growth factor (VEGF) and the placental growth factor (PGF). Current interventions aim to mitigate hypertension and seizures, but the only definite treatment remains induced delivery. Thus, there is a pressing need for novel therapies to remedy this situation. Notably, CBP-4888, a siRNA drug delivered subcutaneously to knock down sFLT1 expression in the placenta, has recently obtained Fast Track approval from the Food and Drug Administration (FDA) and is undergoing a phase 1 clinical trial. Such advance highlights a growing interest and significant potential in gene therapy to manage preeclampsia. This review summarizes the advances and prospects of gene therapy in treating placental dysfunction and illustrates crucial challenges and considerations for these emerging treatments.
Collapse
Affiliation(s)
- Fengxuan Sun
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maureen Peers de Nieuwburgh
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Neonatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Corinne Hubinont
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Frédéric Debiève
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Department of Reproduction Physiopathology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Department of Pharmacotherapy and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Wilson RL, Schmidt JK, Davenport BN, Ren E, Keding LT, Shaw SA, Schotzko ML, Antony KM, Simmons HA, Golos TG, Jones HN. Placental gene therapy in nonhuman primates: a pilot study of maternal, placental, and fetal response to non-viral, polymeric nanoparticle delivery of IGF1. Mol Hum Reprod 2024; 30:gaae038. [PMID: 39499161 PMCID: PMC11562130 DOI: 10.1093/molehr/gaae038] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Currently, there are no placenta-targeted treatments to alter the in utero environment for administration to pregnant women who receive a diagnosis of fetal growth restriction (FGR). Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like growth factor 1 (IGF1) transgene to correct placental insufficiency in small animal models of FGR. Our goals were to extend these studies to a proof-of-concept study in the pregnant macaque, establish feasibility of nanoparticle-mediated gene therapy delivery to trophoblasts, and investigate the acute maternal, placental, and fetal responses to treatment. Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles (GFP- or IGF1-expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h (GFP; n = 1), 48 h (IGF1; n = 3) or 10 days (IGF1; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4), and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using Western blot and qPCR. Fluorescent microscopy and in situ hybridization confirmed placental uptake and transient transgene expression in villous syncytiotrophoblast. No off-target expression was observed in either maternal or fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4, and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 days after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent overactivity in the normal pregnancy environment. The lack of adverse maternal reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis, indicates no deleterious impact of treatment during the acute phase of study.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| | - Emily Ren
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Sarah A Shaw
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Kathleen M Antony
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Research in Perinatal Outcomes, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Geisler HC, Safford HC, Mitchell MJ. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300852. [PMID: 37191231 PMCID: PMC10651803 DOI: 10.1002/smll.202300852] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.
Collapse
Affiliation(s)
- Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
10
|
Davenport B, Wilson R, Williams A, Jones H. Placental Nanoparticle-mediated IGF1 Gene Therapy Corrects Fetal Growth Restriction in a Guinea Pig Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.587765. [PMID: 38645174 PMCID: PMC11030242 DOI: 10.1101/2024.04.05.587765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Fetal growth restriction (FGR) caused by placental insufficiency is a major contributor to neonatal morbidity and mortality. There is currently no in utero treatment for placental insufficiency or FGR. The placenta serves as the vital communication, supply, exchange, and defense organ for the developing fetus and offers an excellent opportunity for therapeutic interventions. Here we show efficacy of repeated treatments of trophoblast-specific human insulin-like 1 growth factor (IGF1) gene therapy delivered in a non-viral, polymer nanoparticle to the placenta for the treatment of FGR. Using a guinea pig maternal nutrient restriction model (70% food intake) of FGR, nanoparticle-mediated IGF1 treatment was delivered to the placenta via ultrasound guidance across the second half of pregnancy, after establishment of FGR. This treatment resulted in correction of fetal weight in MNR + IGF1 animals compared to sham treated controls on an ad libitum diet, increased fetal blood glucose and decreased fetal blood cortisol levels compared to sham treated MNR, and showed no negative maternal side-effects. Overall, we show a therapy capable of positively impacting the entire pregnancy environment: maternal, placental, and fetal. This combined with our previous studies using this therapy at mid pregnancy in the guinea pig and in two different mouse model and three different human in vitro/ex vivo models, demonstrate the plausibility of this therapy for future human translation. Our overall goal is to improve health outcomes of neonates and decrease numerous morbidities associated with the developmental origins of disease.
Collapse
|
11
|
Schmidt JK, Wilson RL, Davenport BN, Hacker TA, Fitz C, Simmons HA, Schotzko ML, Golos TG, Jones HN. Nanoparticle-mediated delivery of placental gene therapy via uterine artery catheterization in a pregnant rhesus macaque. Placenta 2024:S0143-4004(24)00656-8. [PMID: 39362807 PMCID: PMC11947900 DOI: 10.1016/j.placenta.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 (hIGF1). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model.
Collapse
Affiliation(s)
- Jenna K Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca L Wilson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Baylea N Davenport
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy A Hacker
- Model Organisms Research Core, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Casey Fitz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen N Jones
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Research in Perinatal Outcomes, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Ali M, Ahmed M, Memon M, Chandio F, Shaikh Q, Parveen A, Phull AR. Preeclampsia: A comprehensive review. Clin Chim Acta 2024; 563:119922. [PMID: 39142550 DOI: 10.1016/j.cca.2024.119922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Preeclampsia (PE) is a life-threatening disease of pregnancy and a prominent cause of neonatal and maternal mortality and morbidity. PE affects approximately 5-10% of pregnancies worldwide, posing significant risks to perinatal and maternal health. It is characterized by a variety of interconnected pathological cascades contributing to the stimulation of intravascular inflammation, oxidative stress (OS), endothelial cell activation, and syncytiotrophoblast stress that converge on a common pathway, ultimately resulting in disease progression. The present study was designed and executed to review the existing scientific literature, specifically focusing on the etiology (gestational diabetes mellitus and maternal obesity, insulin resistance, metabolic syndrome, maternal infection, periodontal disease, altered microbiome, and genetics), clinical presentations (hypertension, blood disorders, proteinuria, hepatic dysfunction, renal dysfunction, pulmonary edema, cardiac dysfunction, fetal growth restrictions, and eclampsia), therapeutic clinical biomarkers (creatinine, albuminuria, and cystatin C) along with their associations and mechanisms in PE. In addition, this study provides insights into the potential of nanomedicines for targeting these mechanisms for PE management and treatment. Inflammation, OS, proteinuria, and an altered microbiome are prominent biomarkers associated with progression and PE-related pathogenesis. Understanding the molecular mechanisms, exploring suitable markers, targeted interventions, comprehensive screening, and holistic strategies are critical to decreasing the incidence of PE and promoting maternal-fetal well-being. The present study comprehensively reviewed the etiology, clinical presentations, therapeutic biomarkers, and preventive potential of nanomedicines in the treatment and management of PE.
Collapse
Affiliation(s)
- Majida Ali
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Jaffer Khan Jamali Road, H-8/4, Islamabad, Pakistan
| | - Mehwish Memon
- Department of Biochemistry, Ibn e Sina University, Mirpur Khas, Pakistan
| | - Fozia Chandio
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Quratulain Shaikh
- Department of Gynecology and Obstetrics, Shaikh Zaid Women Hospital Larkana, Shaheed Mohtarma Benazir Bhutto Medical University (SMBB) Larkana, Pakistan
| | - Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, South Korea.
| | - Abdul-Rehman Phull
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Sindh, Pakistan.
| |
Collapse
|
13
|
Cui J, Yang Z, Ma R, He W, Tao H, Li Y, Zhao Y. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep 2024; 20:1501-1511. [PMID: 38814409 PMCID: PMC11319408 DOI: 10.1007/s12015-024-10739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.
Collapse
Affiliation(s)
- Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ya'nan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
14
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
15
|
Wilson RL, Davenport BN, Jones HN. Mid-pregnancy placental transcriptome in a model of placental insufficiency with and without novel intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597621. [PMID: 38895312 PMCID: PMC11185618 DOI: 10.1101/2024.06.05.597621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Fetal growth restriction (FGR) affects between 5-10% of all live births. Placental insufficiency is a leading cause of FGR, resulting in reduced nutrient and oxygen delivery to the fetus. Currently, there are no effective in utero treatment options for FGR, or placental insufficiency. We have developed a gene therapy to deliver, via a non-viral nanoparticle, human insulin-like 1 growth factor ( hIGF1 ) to the placenta as potential treatment of placenta insufficiency and FGR. Using a guinea pig maternal nutrient restriction (MNR) model of FGR, we aimed to understand the transcriptional changes within the placenta associated with placental insufficiency that occur prior to/at initiation of FGR, and the impact of short-term hIGF1 nanoparticle treatment. Using RNAsequencing, we analyzed protein coding genes of three experimental groups: Control and MNR dams receiving a sham treatment, and MNR dams receiving hIGF1 nanoparticle treatment. Pathway enrichment analysis comparing differentially expressed genelists in sham-treated MNR placentas to Control revealed upregulation of pathways associated with degradation and repair of genetic information and downregulation of pathways associated with transmembrane transport. When compared to sham-treated MNR placentas, MNR + hIGF1 placentas demonstrated changes to genelists associated with transmembrane transporter activity including ion, vitamin and solute carrier transport. Overall, this study identifies the key signaling and metabolic changes occurring in the placenta contributing to placental insufficiency prior to/at initiation of FGR, and increases our understanding of the pathways that our nanoparticle-mediated gene therapy intervention regulates. Statements and Declarations Competing Interests: Authors declare no conflicts of interest.
Collapse
|
16
|
Jones HN, Davenport BN, Wilson RL. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597595. [PMID: 38895421 PMCID: PMC11185673 DOI: 10.1101/2024.06.05.597595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor ( hIGF1 ) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.
Collapse
|
17
|
Schmidt JK, Wilson RL, Davenport BN, Hacker TA, Fitz C, Simmons HA, Schotzko ML, Golos TG, Jones HN. Nanoparticle-mediated delivery of placental gene therapy via uterine artery catheterization in a pregnant rhesus macaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588902. [PMID: 38645086 PMCID: PMC11030404 DOI: 10.1101/2024.04.10.588902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 ( hIGF1 ). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model. Highlights Novel method to deliver therapeutics to maternal-fetal interfaceDelivery of nanoparticles to the placenta via maternal catheterization.
Collapse
|
18
|
Wilson RL, Kropp Schmidt J, Davenport BN, Ren E, Keding LT, Shaw SA, Schotzko ML, Antony KM, Simmons HA, Golos TG, Jones HN. Maternal, placental and fetal response to a non-viral, polymeric nanoparticle gene therapy in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545278. [PMID: 38168281 PMCID: PMC10760006 DOI: 10.1101/2023.06.16.545278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Currently, there are no placenta-targeted treatments to alter the in utero environment. Water-soluble polymers have a distinguished record of clinical relevance outside of pregnancy. We have demonstrated the effective delivery of polymer-based nanoparticles containing a non-viral human insulin-like 1 growth factor ( IGF1 ) transgene to correct placental insufficiency in small animal models of fetal growth restriction (FGR). Our goal was to extend these studies to the pregnant nonhuman primate (NHP) and assess maternal, placental and fetal responses to nanoparticle-mediated IGF1 treatment. Methods Pregnant macaques underwent ultrasound-guided intraplacental injections of nanoparticles ( GFP- or IGF1- expressing plasmid under the control of the trophoblast-specific PLAC1 promoter complexed with a HPMA-DMEAMA co-polymer) at approximately gestational day 100 (term = 165 days). Fetectomy was performed 24 h ( GFP ; n =1), 48 h ( IGF1 ; n = 3) or 10 days ( IGF1 ; n = 3) after nanoparticle delivery. Routine pathological assessment was performed on biopsied maternal tissues, and placental and fetal tissues. Maternal blood was analyzed for complete blood count (CBC), immunomodulatory proteins and growth factors, progesterone (P4) and estradiol (E2). Placental ERK/AKT/mTOR signaling was assessed using western blot and qPCR. Findings Fluorescent microscopy and in situ hybridization confirmed placental uptake and transgene expression in villous syncytiotrophoblast. No off-target expression was observed in maternal and fetal tissues. Histopathological assessment of the placenta recorded observations not necessarily related to the IGF1 nanoparticle treatment. In maternal blood, CBCs, P4 and E2 remained within the normal range for pregnant macaques across the treatment period. Changes to placental ERK and AKT signaling at 48 h and 10 d after IGF1 nanoparticle treatment indicated an upregulation in placental homeostatic mechanisms to prevent over activity in the normal pregnancy environment. Interpretation Maternal toxicity profile analysis and lack of adverse reaction to nanoparticle-mediated IGF1 treatment, combined with changes in placental signaling to maintain homeostasis indicates no deleterious impact of treatment. Funding National Institutes of Health, and Wisconsin National Primate Research Center.
Collapse
|
19
|
Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv 2023; 30:2184315. [PMID: 36883905 PMCID: PMC10003143 DOI: 10.1080/10717544.2023.2184315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.
Collapse
Affiliation(s)
- Miao Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yu Xin
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yunchun Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dongli Sun
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
20
|
van Kammen CM, van Woudenberg SJ, Schiffelers R, Terstappen F, Lely AT. Nanomedicines: An approach to treat placental insufficiency and the current challenges. J Control Release 2023; 360:57-68. [PMID: 37330012 DOI: 10.1016/j.jconrel.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/16/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Preeclampsia and fetal growth restriction are common pregnancy complications that significantly impact perinatal health and offspring development later in life. The origin of these complex syndromes overlap in placental insufficiency. Progress in developing treatments for maternal, placental or fetal health is mainly limited by the risk of maternal and fetal toxicity. Nanomedicines are a promising approach to safely treat pregnancy complications since they can regulate drug interaction with the placenta to enhance efficacy of the treatment while minimizing exposure of the fetus. METHODS This narrative review discusses the current developments and challenges of nanomedicines during pregnancy with a focus on preclinical models of placenta insufficiency syndromes. Firstly, we outline the safety requirements and potential therapeutic maternal and placental targets. Secondly, we review the prenatal therapeutic effects of the nanomedicines that have been tested in experimental models of placental insufficiency syndromes. RESULTS The majority of liposomes and polymeric drug delivery system show promising results regarding the prevention of trans-placental passage nanomedicines in uncomplicated and complicated pregnancies. The others two studied classes, quantum dots and silicon nanoparticles, have been investigated to a limited extent in placental insufficiency syndromes. Characteristics of the nanoparticles such as charge, size, and timing of administration have been shown to influence the trans-placental passage. The few available preclinical therapeutic studies on placental insufficiency syndromes predominantly show beneficial effects of nanomedicines on both maternal and fetal health, but demonstrate contradicting results on placental health. Interpretation of results in this field is complicated by the fact that results are influenced by the choice of animal species and model, gestational age, placental maturity and integrity, and nanoparticle administration route. CONCLUSION Nanomedicines form a promising therapeutic approach during (complicated) pregnancies mainly by reducing fetal toxicity and regulating drug interaction with the placenta. Different nanomedicines have been proven to effectively prevent trans-placental passage of encapsulated agents. This can be expected to dramatically reduce risks for fetal adverse effects. Furthermore, a number of these nanomedicines positively impacted maternal and fetal health in animal models for placental insufficiency. Demonstrating that effective drug concentrations can be reached in the target tissue. While these first animal studies are encouraging, more research is needed to better understand the influence of the pathophysiology of this multi-factorial disease before implementation in clinical practice can be considered. Therefore, extensive evaluation of safety and efficacy of these targeted nanoparticles is needed within multiple animal, in vitro, and/or ex vivo models. This may be complemented by diagnostic tools to assess the disease status to identify the best time to initiate treatment. Together these investigations should contribute to building confidence in the safety of nanomedicines for treating mother and child, as safety has, understandably, the highest priority in this sensitive patient groups.
Collapse
Affiliation(s)
- C M van Kammen
- University Medical Center Utrecht, Department CDL research, Nano medicine, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
| | - S J van Woudenberg
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - R Schiffelers
- University Medical Center Utrecht, Department CDL research, Nano medicine, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - F Terstappen
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - A T Lely
- University Medical Center Utrecht, Wilhelmina Children's Hospital, Department of Woman and Baby, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
21
|
Ebrahimian H, Akhtari M, Akhlaghi M, Farhadi E, Jamshidi A, Alishiri GH, Mahmoudi M, Tavallaie M. Altered expression of apoptosis-related genes in rheumatoid arthritis peripheral blood mononuclear cell and related miRNA regulation. Immun Inflamm Dis 2023; 11:e914. [PMID: 37506143 PMCID: PMC10336681 DOI: 10.1002/iid3.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/29/2023] [Indexed: 07/30/2023] Open
Abstract
AIM Impaired apoptosis and proliferation resulted in autoreactive lymphocyte development and inflammation in Rheumatoid arthritis (RA). TP53, BAX, FOXO1, and RB1 are related genes in cell survival, proliferation, and inflammation which could be important in RA development and disease severity. Here we investigated their expression in peripheral blood mononuclear cells (PBMCs) from RA patients in comparison to healthy controls. METHODS Fifty healthy controls and 50 RA patients were selected. The quantitative real-time polymerase chain reaction was used to assess the gene expression level in PBMCs. RESULTS The mRNA expression of TP53 (FC = 0.65, p = .000), BAX (FC = 0.76, p = .008), FOXO1 (FC = 0.59, p = .000) and RB1 (FC = 0.50, p = .000) were significantly reduced in RA PBMCs. TP53 expression was negatively correlated with miR-16-5p (p = .032) and FOXO1 expression was negatively correlated with miR-335-5p (p = .005) and miR-34a-5p (p = .014). A positive correlation was seen between TP53 expression and its downstream gene, BAX (p = .001). FOXO1 expression was also negatively correlated with disease activity, DAS28 (p = .021). CONCLUSION All selected genes have downregulated expression in RA PBMCs which could be correlated with RA pathogenesis by regulating apoptosis, cell survival, inflammatory mediator production, and proliferation. Due to the correlation of miR-16-5p, miR-34a-5p, and miR-335-5p with TP53 and FOXO1 expression in RA PBMCs, they could be used as future therapeutic targets.
Collapse
Affiliation(s)
- Hamidreza Ebrahimian
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center (TPCRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | | | - Elham Farhadi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Ahmadreza Jamshidi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
| | - Gholam Hossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Department of Rheumatology, Faculty of MedicineBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdi Mahmoudi
- Rheumatology Research CenterTehran University of Medical SciencesTehranIran
- Inflammation Research CenterTehran University of Medical SciencesTehranIran
| | - Mahmood Tavallaie
- Human Genetic Research CenterBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Wilson RL, Stephens KK, Jones HN. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J Dev Orig Health Dis 2023; 14:325-332. [PMID: 36794386 PMCID: PMC10947591 DOI: 10.1017/s2040174423000016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fetal growth restriction (FGR) is associated with increased risk of developing non-communicable diseases. We have a placenta-specific nanoparticle gene therapy protocol that increases placental expression of human insulin-like growth factor 1 (hIGF1), for the treatment of FGR in utero. We aimed to characterize the effects of FGR on hepatic gluconeogenesis pathways during early stages of FGR establishment, and determine whether placental nanoparticle-mediated hIGF1 therapy treatment could resolve differences in the FGR fetus. Female Hartley guinea pigs (dams) were fed either a Control or Maternal Nutrient Restriction (MNR) diet using established protocols. At GD30-33, dams underwent ultrasound guided, transcutaneous, intraplacental injection of hIGF1 nanoparticle or PBS (sham) and were sacrificed 5 days post-injection. Fetal liver tissue was fixed and snap frozen for morphology and gene expression analysis. In female and male fetuses, liver weight as a percentage of body weight was reduced by MNR, and not changed with hIGF1 nanoparticle treatment. In female fetal livers, expression of hypoxia inducible factor 1 (Hif1α) and tumor necrosis factor (Tnfα) were increased in MNR compared to Control, but reduced in MNR + hIGF1 compared to MNR. In male fetal liver, MNR increased expression of Igf1 and decreased expression of Igf2 compared to Control. Igf1 and Igf2 expression was restored to Control levels in the MNR + hIGF1 group. This data provides further insight into the sex-specific mechanistic adaptations seen in FGR fetuses and demonstrates that disruption to fetal developmental mechanisms may be returned to normal by treatment of the placenta.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Kendal K Stephens
- Department of Obstetrics and Gynecology, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida 32610, USA
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
23
|
Hord TK, Tanner AR, Kennedy VC, Lynch CS, Winger QA, Rozance PJ, Anthony RV. Impact of Chorionic Somatomammotropin In Vivo RNA Interference Phenotype on Uteroplacental Expression of the IGF Axis. Life (Basel) 2023; 13:1261. [PMID: 37374044 PMCID: PMC10302269 DOI: 10.3390/life13061261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies.
Collapse
Affiliation(s)
- Taylor K. Hord
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul J. Rozance
- Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Davenport BN, Jones HN, Wilson RL. Placental treatment with insulin-like growth factor 1 via nanoparticle differentially impacts vascular remodeling factors in guinea pig sub-placenta/decidua. Front Physiol 2023; 13:1055234. [PMID: 36685211 PMCID: PMC9845775 DOI: 10.3389/fphys.2022.1055234] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, fetal growth restriction (FGR) is only detectable in later gestation, despite pathophysiological establishment likely earlier in pregnancy. Additionally, there are no effective in utero treatment options for FGR. We have developed a nanoparticle to deliver human insulin-like 1 growth factor (hIGF-1) in a trophoblast-specific manner which results in increased expression of hIGF-1. IGF-1 signaling in the placenta regulates multiple developmental processes including trophoblast invasion and maternal vascular remodeling, both of which can be diminished in the FGR placenta. We aimed to determine the effects of short-term hIGF-1 nanoparticle treatment on sub-placenta/decidua trophoblast signaling mechanisms in FGR and under normal growth conditions. Using the guinea pig maternal nutrient restriction (MNR) model of FGR, ultrasound-guided, intra-placenta injections of hIGF-1 nanoparticle were performed at gestational day 30-33, and dams sacrificed 5 days later. Sub-placenta/decidua tissue was separated from placenta for further analyses. Western blot was used to analyze protein expression of ERK/AKT/mTOR signaling proteins (phospho-Erk (pERK), phospho-Akt (pAKT), raptor, rictor and deptor). qPCR was used to analyze gene expression of vascular/remodeling factors [vascular endothelial growth factor (Vegf), placenta growth factor (Pgf), platelet-derived growth factor (Pdgf)) and tight junction/adhesion proteins (claudin 5 (Cldn5), p-glycoprotein (Abcb1), occludin (Ocln) and tight junction protein 1 (Zo1)]. MNR reduced expression of pERK, PdgfB and Cldn5, and increased expression of Ocln and Zo1 in the sub-placenta/decidua. In MNR + hIGF1 nanoparticle sub-placenta/decidua, expression of PdgfB, Ocln and Zo1 was normalized, whilst pAkt, VegfB, Vegf receptor 1 and PdgfB receptor were increased compared to MNR. In contrast, hIGF-1 nanoparticle treatment of normal placentas reduced expression of pERK, raptor and increased expression of the mTOR inhibitor deptor. This was associated with reduced expression of VegfA, Plgf, and PdgfB. Here we have shown that the impact of hIGF-1 nanoparticle treatment is dependent on pregnancy environment. Under MNR/FGR, hIGF-1 nanoparticle treatment triggers increased expression of growth factors and normalization of EMT factors. However, under normal conditions, the response of the placenta is to decrease AKT/mTOR signaling and growth factor expression to achieve homeostasis.
Collapse
Affiliation(s)
- Baylea N. Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
25
|
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev 2022; 89:540-553. [PMID: 36094907 PMCID: PMC10947605 DOI: 10.1002/mrd.23644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.
Collapse
Affiliation(s)
- Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
26
|
Size-dependent placental retention effect of liposomes in ICR pregnant mice: Potential superiority in placenta-derived disease therapy. Int J Pharm 2022; 625:122121. [PMID: 35987320 DOI: 10.1016/j.ijpharm.2022.122121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022]
Abstract
The great challenge in developing safe medications for placenta-derived diseases is to reduce or eliminate fetal drug exposure while still providing the necessary therapeutic effect. Rapid advances in nanotechnology have brought opportunities for the therapy of placenta-derived disease through accumulating the drug in the placenta while reducing its placental penetration. Among various nanocarriers, liposomes are regarded as an ideal type of carrier for placental drug delivery due to their biosafety and biodegradability. However, their placental retention effect with different particle sizes has not been studied. This research aimed to explore a suitable size of liposomes for placenta drug delivery. Cy 5 dye was chosen as a model molecule for tracing the distribution of three different-sized liposomes (∼80 nm, 200 nm, and 500 nm) in ICR pregnant mice. The stability, cytotoxicity, and cellular uptake study of Cy 5-loaded liposomes were performed. The in vivo fluorescence studies on ICR pregnant mice suggested that the particle size of liposomes was positively correlated with the degree of liposome aggregation in the placenta. The ratio of fluorescence in the placenta and fetus section (P/F value) was proposed to evaluate the placental retention effect of different-sized liposomes. The results showed that the liposomes with 500 nm had the highest P/F value and thus exhibited the strongest placental retention effect and the weakest placental penetration ability. Moreover, liquid chromatography-mass spectrometry analysis confirmed the reliability of the fluorescence section analysis in exploring the placental retention effect of nanovehicles. In general, this study introduced a simple and intuitive method to evaluate the placental retention effect of nanoplatforms and defined a suitable size of liposomes for placenta-derived disease drug delivery.
Collapse
|
27
|
Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022; 125:4-9. [PMID: 35414477 PMCID: PMC10947607 DOI: 10.1016/j.placenta.2022.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States.
| |
Collapse
|
28
|
Jiang H, Li L, Zhu D, Zhou X, Yu Y, Zhou Q, Sun L. A Review of Nanotechnology for Treating Dysfunctional Placenta. Front Bioeng Biotechnol 2022; 10:845779. [PMID: 35402416 PMCID: PMC8987505 DOI: 10.3389/fbioe.2022.845779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta plays a significant role during pregnancy. Placental dysfunction contributes to major obstetric complications, such as fetal growth restriction and preeclampsia. Currently, there is no effective treatment for placental dysfunction in the perinatal period, and prophylaxis is often delivered too late, at which point the disease manifestation cannot be prevented. However, with recent integration of nanoscience and medicine to perform elaborate experiments on the human placenta, it is expected that novel and efficient nanotherapies will be developed to resolve the challenge of managing placental dysfunction. The advent of nanomedicine has enabled the safe and targeted delivery of drugs using nanoparticles. These smart nanoparticles can load the necessary therapeutic substances that specifically target the placenta, such as drugs, targeting molecules, and ligands. Packaging multifunctional molecules into specific delivery systems with high targeting ability, diagnosis, and treatment has emerged as a novel theragnostic (both therapeutic and diagnostic) approach. In this review, the authors discuss recent advances in nanotechnology for placental dysfunction treatment. In particular, the authors highlight potential candidate nanoparticle-loaded molecules that target the placenta to improve utero-placental blood flow, and reduce reactive oxygen species and oxidative stress. The authors intend to provide basic insight and understanding of placental dysfunction, potential delivery targets, and recent research on placenta-targeted nanoparticle delivery systems for the potential treatment of placental dysfunction. The authors hope that this review will sensitize the reader for continued exploration of novel nanomedicines.
Collapse
Affiliation(s)
- Huabo Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyao Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yongsheng Yu, ; Qian Zhou, ; Luming Sun,
| |
Collapse
|
29
|
Pepe GJ, Albrecht ED. Novel Technologies for Target Delivery of Therapeutics to the Placenta during Pregnancy: A Review. Genes (Basel) 2021; 12:1255. [PMID: 34440429 PMCID: PMC8392549 DOI: 10.3390/genes12081255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine spiral artery remodeling is essential for placental perfusion and fetal growth and, when impaired, results in placental ischemia and pregnancy complications, e.g., fetal growth restriction, preeclampsia, premature birth. Despite the high incidence of adverse pregnancies, current treatment options are limited. Accordingly, research has shifted to the development of gene therapy technologies that provide targeted delivery of "payloads" to the placenta while limiting maternal and fetal exposure. This review describes the current strategies, including placental targeting peptide-bound liposomes, nanoparticle or adenovirus constructs decorated with specific peptide sequences and placental gene promoters delivered via maternal IV injection, directly into the placenta or the uterine artery, as well as noninvasive site-selective targeting of regulating genes conjugated with microbubbles via contrast-enhanced ultrasound. The review also provides a perspective on the effectiveness of these technologies in various animal models and their practicability and potential use for targeted placental delivery of therapeutics and genes in adverse human pregnancies affected by placental dysfunction.
Collapse
Affiliation(s)
- Gerald J. Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Eugene D. Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Shojaei S, Ali MS, Suresh M, Upreti T, Mogourian V, Helewa M, Labouta HI. Dynamic placenta-on-a-chip model for fetal risk assessment of nanoparticles intended to treat pregnancy-associated diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166131. [PMID: 33766738 DOI: 10.1016/j.bbadis.2021.166131] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.
Collapse
Affiliation(s)
- Shahla Shojaei
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Moustafa S Ali
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.
| | - Madhumita Suresh
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Tushar Upreti
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Victoria Mogourian
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Michael Helewa
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Canada.
| | - Hagar I Labouta
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Biomedical Engineering, University of Manitoba, Winnipeg, Canada; Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Yin H, Li J, Tian J, Ma L, Zhang J, Zhai Q, Yao S, Zhang L. Uterine pyruvate metabolic disorder induced by silica nanoparticles act through the pentose phosphate pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125234. [PMID: 33548781 DOI: 10.1016/j.jhazmat.2021.125234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs) have drawn considerable attention due to their environmental health effects, while enhanced understanding of metabolic disorders has provided insight into related diseases. To investigate the impacts of SiNPs exposure on reproduction and reveal their pathogenic mechanisms, this study was designed and conducted from a metabolic perspective. First, fluorescein isothiocyanate (FITC)-SiNPs were chemically synthesized and applied to track SiNPs in vitro and in vivo. Next, 30 pregnant mice were intratracheally instilled with 1.25 mg of SiNPs/mouse, then sacrificed 24 h post-treatment. We found that SiNPs penetrated the trophoblast membrane, triggering apoptosis and inhibiting cell proliferation, invasion, and tube formation in a dose-dependent manner. Mechanistically, SiNPs dysregulated phosphofructokinase (Pfkl) and fructose-bisphosphatase 2 (Fbp2) and induced glucose depletion and pyruvate accumulation via the pentose phosphate pathway. Besides, the downregulation of caspase-3 suggested a causal relationship between pyruvate accumulation, pentose phosphate pathway activation, and cell apoptosis. Pfkl and Fbp2 was also dysregulated in vivo, and the uterine inflammation aggravated in a time-dependent manner. In conclusion, SiNPs triggered acute cytotoxicity and uterine inflammation by inducing glucose depletion and pyruvate overload in trophoblasts, which were mediated in part by Pfkl and Fbp2 via the pentose phosphate pathway.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Lan Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
32
|
Wilson RL, Troja W, Sumser EK, Maupin A, Lampe K, Jones HN. Insulin-like growth factor 1 signaling in the placenta requires endothelial nitric oxide synthase to support trophoblast function and normal fetal growth. Am J Physiol Regul Integr Comp Physiol 2021; 320:R653-R662. [PMID: 33621475 PMCID: PMC8163607 DOI: 10.1152/ajpregu.00250.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Currently, there is no effective treatment for placental dysfunction in utero. In a ligated mouse model of fetal growth restriction (FGR), nanoparticle-mediated human insulin-like 1 growth factor (hIGF1) gene delivery (NP-Plac1-hIGF1) increased hIGF1 expression and maintained fetal growth. However, whether it can restore fetal growth remains to be determined. Using the endothelial nitric oxide synthase knockout (eNOS-/-) mouse model, a genetic model of FGR, we found that despite inducing expression of hIGF1 in the placentas treated with NP-Plac1-hIGF1 (P = 0.0425), FGR did not resolve. This was associated with no change to the number of fetal capillaries in the placental labyrinth; an outcome which was increased with NP-Plac1-hIGF1 treatment in the ligated mouse model, despite increased expression of angiopoietin 1 (P = 0.05), and suggested IGF1 signaling in the placenta requires eNOS to modulate placenta angiogenesis. To further assess this hypothesis, BeWo choriocarcinoma cell line and human placental explant cultures were treated with NP-Plac1-hIGF1, oxidative stress was induced with hydrogen peroxide (H2O2), and NOS activity was inhibited using the inhibitor NG-monomethyl-l-arginine (l-NMMA). In both BeWo cells and explants, the protective effect of NP-Plac1-hIGF1 treatment against H2O2-induced cell death/lactate dehydrogenase release was prevented by eNOS inhibition (P = 0.003 and P < 0.0001, respectively). This was associated with an increase in mRNA expression of oxidative stress markers hypoxia inducing factor 1α (HIF1α; P < 0.0001) and ADAM10 (P = 0.0002) in the NP-Plac1-hIGF1 + H2O2 + l-NMMA-treated BeWo cells. These findings show for the first time the requirement of eNOS/NOS in IGF1 signaling in placenta cells that may have implications for placental angiogenesis and fetal growth.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Weston Troja
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Emily K Sumser
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Alec Maupin
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| |
Collapse
|
33
|
Wilson RL, Stephens KK, Lampe K, Jones HN. Sexual dimorphisms in brain gene expression in the growth-restricted guinea pig can be modulated with intra-placental therapy. Pediatr Res 2021; 89:1673-1680. [PMID: 33531677 PMCID: PMC8254736 DOI: 10.1038/s41390-021-01362-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fetal responses to adverse pregnancy environments are sex-specific. In fetal guinea pigs (GPs), we assessed morphology and messenger RNA (mRNA) expression in fetal growth-restricted (FGR) tissues at midpregnancy. METHODS Female GPs were assigned either an ad libitum diet (C) or 30% restricted diet (R) prior to pregnancy to midpregnancy. At midpregnancy, a subset of R females underwent ultrasound-guided nanoparticle (NP) injection to enhance placental function. Five days later, fetuses were sampled. Fetal brain, heart, and liver were assessed for morphology (hematoxylin and eosin), proliferation (Ki67), and vascularization (CD31), as well as expression of inflammatory markers. RESULTS R fetuses were 19% lighter with reduced organ weights and evidence of brain sparing compared to controls. No increased necrosis, proliferation, or vascularization was found between C and R nor male or female fetal organs. Sexual dimorphism in mRNA expression of Tgfβ and Ctgf was observed in R but not C fetal brains: increased expression in females. NP treatment increased fetal brain mRNA expression of Tgfβ and Ctgf in R males, abolishing the significant difference observed in untreated R fetuses. CONCLUSIONS Sex-specific differences in mRNA expression in the fetal brain with FGR could impart a potential survival bias and may be useful for the development of treatments for obstetric diseases. IMPACT Male and female fetuses respond differently to adverse pregnancy environments. Under fetal growth restriction conditions, inflammatory marker mRNA expression in the fetal brain was higher in females compared to males. Differences in gene expression between males and females may confer a selective advantage/disadvantage under adverse conditions. Better characterization of sexual dimorphism in fetal development will aid better development of treatments for obstetric diseases.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| | - Kendal K Stephens
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, 45229, USA
- Department of Obstetrics and Gynaecology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, 45229, USA
| | - Helen N Jones
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Obstetrics and Gynaecology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
34
|
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021; 43:246-264. [PMID: 33446335 PMCID: PMC11917529 DOI: 10.1016/j.clinthera.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, our understanding of the disrupted mechanisms that contribute to major obstetrical diseases, including preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, has increased exponentially. Common to many of these obstetric diseases is placental maldevelopment and dysfunction; the placenta is a significant component of the maternal-fetal interface involved in coordinating, facilitating, and regulating maternal and fetal nutrient, oxygen and waste exchange, and hormone and cytokine production. Despite the advances in our understanding of placental development and function, there are currently no treatments for placental maldevelopment and dysfunction. However, given the transient nature and accessibility from the maternal circulation, the placenta offers a unique opportunity to develop targeted therapeutics for routine obstetric practices. Furthermore, given the similar developmental paradigms between the placenta and cancer, there is an opportunity to appropriate current knowledge from advances in targeted therapeutics in cancer treatments. In this review, we highlight the similarities between early placental development and cancer and introduce a number of targeted therapies currently being explored in cancer and pregnancy. We also propose a number of new effectors currently being targeted in cancer research that have the potential to be targeted in the development of treatments for pregnancy complications. Finally, we describe a method for targeting the placenta using nonviral polymers that are capable of delivering plasmids, small interfering RNA, and other effector nucleic acids, which could ultimately improve fetal and maternal outcomes from complicated pregnancies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: State of the art and perspectives. Placenta 2020; 104:199-207. [PMID: 33418345 DOI: 10.1016/j.placenta.2020.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Increasing human exposure to nanoparticles (NPs) from various sources raises concerns for public health, especially for vulnerable risk groups like pregnant women and their developing fetuses. However, nanomedicine and the prospect of creating safe and effective NP-based formulations of drugs hold great promise to revolutionize treatment during pregnancy. With maternal and fetal health at stake, risks and opportunities of NPs in pregnancy need to be carefully investigated. Importantly, a comprehensive understanding of NP transport and effects at the placenta is urgently needed considering the central position of the placenta at the maternal-fetal interface and its many essential functions to enable successful pregnancy. The perfusion of human placental tissue provides a great opportunity to achieve predictive human relevant insights, circumventing uncertainties due to considerable differences in placental structure and function across species. Here, we have reviewed the current literature on the ex vivo human placenta perfusion of NPs. From 16 available studies, it was evident that placental uptake and transfer of NPs are highly dependent on their characteristics like size and surface modifications, which is in line with previous observations from in vitro and animal transport studies. These studies further revealed that special considerations apply for the perfusion of NPs and we identified relevant controls that should be implemented in future perfusion studies. While current studies mostly focused on placental transfer of NPs to conclude on potential fetal exposure, the ex vivo placental perfusion model has considerable potential to reveal novel insights on NP effects on placental tissue functionality and signaling that could indirectly affect maternal-fetal health.
Collapse
Affiliation(s)
- Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland; Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lea A Furer
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Michael Gruber
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
36
|
Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta 2020; 100:75-80. [PMID: 32862059 PMCID: PMC7431318 DOI: 10.1016/j.placenta.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
During the period of pregnancy, several processes and physiological adaptations occur in the body and metabolism of pregnant woman. These physiological adaptations in pregnant woman end up leading to a suppression in immune system favoring obstetric complications to the mother, fetus and placental tissue. An effective pharmacological therapy for these complications is still a challenge, since some drugs during pregnancy can have deleterious and teratogenic effects. An emerging alternative to pharmacological therapy during pregnancy is drugs encapsulated in nanoparticles (NP), recent area called nano-obstetrics. NP have the advantage of drug targeting and reduction of side effects. Then, maternal, placental or fetal uptake can be expected, depending on the characteristics of NP. Inorganic NP, crossing placental barrier effectively, but have several nanotoxicological effects. While organic NP appear to have a better targeting capacity and have few toxicological effects, but the studies are still scarce. Thus, in this review, were examined questions related to use and impact of physicochemical aspects of inorganic and organic NP during pregnancy.
Collapse
Affiliation(s)
- Kelle Velasques Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil
| | - Renata Giacomeli
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa, UNIPAMPA, Campus Uruguaiana, BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, UFSM, Av. Roraima n.1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
37
|
Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev 2020; 160:244-261. [PMID: 32956719 DOI: 10.1016/j.addr.2020.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
A major challenge to treating diseases during pregnancy is that small molecule therapeutics are transported through the placenta and incur toxicities to the developing fetus. The placenta is responsible for providing nutrients, removing waste, and protecting the fetus from toxic substances. Thus, the placenta acts as a biological barrier between the mother and fetus that can be exploited for drug delivery. Nanoparticle technologies provide the opportunity for safe drug delivery during pregnancy by controlling how therapeutics interact with the placenta. In this Review, we present nanoparticle drug delivery technologies specifically designed to exploit the placenta as a biological barrier to treat maternal, placental, or fetal diseases exclusively, while minimizing off-target toxicities. Further, we discuss opportunities, challenges, and future directions for implementing drug delivery technologies during pregnancy.
Collapse
|