1
|
Mascuñano B, Coto-Elena J, Guerrero-Sánchez VM, Paniagua C, Blanco-Portales R, Caballero JL, Trapero-Casas JL, Jiménez-Díaz RM, Pliego-Alfaro F, Mercado JA, Muñoz-Blanco J, Molina-Hidalgo FJ. Transcriptome analysis of wild olive (Olea Europaea L. subsp. europaea var. sylvestris) clone AC18 provides insight into the role of lignin as a constitutive defense mechanism underlying resistance to Verticillium wilt. BMC PLANT BIOLOGY 2025; 25:292. [PMID: 40045216 PMCID: PMC11884133 DOI: 10.1186/s12870-025-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
Host resistance is the most effective and practical control method for the management of Verticillium wilt in olive caused by Verticillium dahliae, which remains as one of the major current threats to this crop. Regrettably, most olive cultivars of agronomic and commercial interest are susceptible to V. dahliae. We previously demonstrated that wild olive (Olea europaea L. subsp. europaea var. sylvestris) clone AC18 harbours resistance to the highly virulent defoliating (D) V. dahliae pathotype, which may be valuable as rootstock and for breeding new, resistant olive cultivars. Mechanisms underlying disease resistance may be of constitutive or induced nature. In this work we aim to unravel constitutive defences that may be involved in AC18 resistance, by comparing the transcriptome from uninfected stems, of AC18 with that of the highly susceptible wild olive clone AC15, GO-term enrichment analysis revealed terms related to systemic acquired resistance, plant cell wall biogenesis and assembly, and phenylpropanoid and lignin metabolism. qRT-PCR analysis of phenylpropanoid and lignin metabolism-related genes showed differences in their expression between the two wild olive clones. Phenolic content of stem cell walls was higher in the resistant AC18. The total lignin content was similar in resistant and susceptible clones, but they differed in monolignol composition. Results from this work identifies putative key genes in wild olive that could aid in breeding olive cultivars resistant, to D. V. dahliae. The research highlights the constitutive defence mechanisms that are effective in protecting against pathogens and our findings may contribute to the deciphering the molecular basis of VW resistance in olive and the conservation and utilization of wild olive genetic resources to tackle future agricultural challenges towards.
Collapse
Affiliation(s)
- Beatriz Mascuñano
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - Jerónimo Coto-Elena
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Víctor M Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
- Vascular Pathophysiology Area, Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Candelas Paniagua
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain
| | - José L Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Rafael M Jiménez-Díaz
- Agronomy Department, University of Córdoba, Edificio C4 Celestino Mutis. Campus de Rabanales, Córdoba, E-14014, Spain
| | - Fernando Pliego-Alfaro
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - José A Mercado
- Departamento de Botánica y Fisiología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, 29071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, Córdoba, E-14014, Spain.
| |
Collapse
|
2
|
Chen X, Cai W, Xia J, Wang J, Yuan H, Wang Q, Pang F, Zhao M, Qiao Y. Integration of ATAC-Seq and RNA-Seq Reveals the Role of FaTIP1 in Red Light-Induced Fruit Ripening in Strawberry. Int J Mol Sci 2025; 26:511. [PMID: 39859225 PMCID: PMC11765184 DOI: 10.3390/ijms26020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Light is an important environmental factor affecting the ripening and quality of strawberry fruit. Previous studies have shown that red light treatment can promote strawberry ripening. Gene expression is closely associated with chromatin openness, and changes in chromatin accessibility are crucial for the binding of transcription factors to downstream regulatory sequences. However, the changes in chromatin accessibility in response to different light treatments in octoploid strawberry plants are still unclear. In this study, the landscape of chromatin accessibility of octoploid strawberry under red (R) and yellow-green (YG) light conditions was analyzed by the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Through bioinformatics and Venn diagram analyses, a total of 1456 and 1854 group-specific genes (GSGs) were screened in the R and YG groups, respectively. By using RNA sequencing (RNA-seq), 440 differentially expressed genes (DEGs) were identified. Among these genes, 194 were upregulated under red light treatment. Through joint analysis of ATAC-seq and RNA-seq data, three red group-specific genes with increased expression were identified, namely, FaTIP1, FaQKY and FaLBD1. Through gene expression and transient transformation analyses of strawberry fruit, we further demonstrated that FaTIP1 can respond to red light induction and promote the ripening process of strawberry fruit. Our results provide a reference for the study of chromatin accessibility in octoploid strawberry and reveal new factors involved in the fruit's response to red light and the regulation of the ripening process of strawberry fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yushan Qiao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Jiangsu Province Engineering Research Center of Modern Strawberry Industry/Zhongshan Biological Breeding Laboratory, 50 Zhonglin Road, Nanjing 210014, China; (X.C.)
| |
Collapse
|
3
|
Lin X, Wei Q, Zeng L, Zhan M, Li F, Chen J, Ma Q. Osmolytes and CsAQP expression jointly influence water physiology in the peel and pulp of orange ( Citrus sinensis (L.) Osbeck) fruit during postharvest water loss. FRONTIERS IN PLANT SCIENCE 2024; 15:1475574. [PMID: 39507356 PMCID: PMC11539049 DOI: 10.3389/fpls.2024.1475574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Water loss is a serious issue affecting the quality of postharvest horticultural products. Aquaporins (AQPs) regulate the transport of water across biological membranes, along the gradient of water potential, and may play a role in water loss. In this study, matured orange fruits (Citrus sinensis) stored at ambinent temperature (RH 85-95%) for 105 d showed that the weight loss persistently increased, and its rate peaked at 45-60 d and 90-105 d. Both water content and potential were higher in the pulp than in the peel. Water content rose before 60 d, and peel water potential fell with an increased gradient after 60 d. Comparing with peel, osmolytes such as soluble sugar, sucrose, glucose, fructose, and organic acids showed higher accumulation, and their levels were the lowest around 60 d. In contrast, soluble protein and inorganic minerals showed low levels of accumulation in the pulp. In total, 31 CsAQP genes were expressed in the fruit, and most of them were down-regulated in the peel but up-regulated in the pulp during storage. These genes were subsequently classified into four clusters based on their expression patterns. Genes in Cluster I - including CsNIP1;1/2;1/2;2/2;3/3;1/4;1/6;1, CsTIP1;3/2;2/2;3/5;1/6;1, CsXIP1;1/1;2, CsSIP1;2, and CsPIP1;2 - were persistently up-regulated in the pulp for the 105 d of storage, especially at day 60, when some genes showed 103-fold higher expression. Pearson's correlation and principal component analysis further revealed a significant positive correlation among weight loss rate, water content, and water potential gradient (R2 = 0.85). Indexes positively correlated with osmolyte content and Cluster I gene expression in pulp samples suggest that increased CsAQP gene expression in pulp is linked to faster water loss in oranges, particularly at 60 days postharvest.
Collapse
Affiliation(s)
- Xiong Lin
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- Citrus Science and Technology Backyard of Jinxian Country, Jiangxi Lufeng Ecological Agriculture Development Co., LTD, Nanchang, China
| | - Qingjiang Wei
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- Citrus Science and Technology Backyard of Jinxian Country, Jiangxi Lufeng Ecological Agriculture Development Co., LTD, Nanchang, China
| | - Lingcai Zeng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- Citrus Science and Technology Backyard of Jinxian Country, Jiangxi Lufeng Ecological Agriculture Development Co., LTD, Nanchang, China
| | - Minxuan Zhan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Feng Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- Citrus Science and Technology Backyard of Jinxian Country, Jiangxi Lufeng Ecological Agriculture Development Co., LTD, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Qiaoli Ma
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, China
- Citrus Science and Technology Backyard of Jinxian Country, Jiangxi Lufeng Ecological Agriculture Development Co., LTD, Nanchang, China
| |
Collapse
|
4
|
Zeng Q, Jia H, Ma Y, Xu L, Ming R, Yue J. Genome-Wide Identification and Expression Pattern Profiling of the Aquaporin Gene Family in Papaya ( Carica papaya L.). Int J Mol Sci 2023; 24:17276. [PMID: 38139107 PMCID: PMC10744249 DOI: 10.3390/ijms242417276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.
Collapse
Affiliation(s)
- Qiuxia Zeng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangwei Xu
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| |
Collapse
|
5
|
Martínez-Rivas FJ, Blanco-Portales R, Serratosa MP, Ric-Varas P, Guerrero-Sánchez V, Medina-Puche L, Moyano L, Mercado JA, Alseekh S, Caballero JL, Fernie AR, Muñoz-Blanco J, Molina-Hidalgo FJ. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:683-698. [PMID: 36840368 DOI: 10.1111/tpj.16166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.
Collapse
Affiliation(s)
- Félix J Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - María P Serratosa
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Pablo Ric-Varas
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Víctor Guerrero-Sánchez
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Lourdes Moyano
- Department of Agricultural Chemistry, University of Cordoba, Edificio Marie Curie, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José A Mercado
- Department of Plant Biology, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, University of Málaga, Campus de Teatinos, E-29071, Málaga, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv, 4000, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| |
Collapse
|
6
|
Francisca RC, Alejandra MLM, Bárbara A, Herrera R. PIPs from Fragaria vesca: A structural analysis of native and mutated protein. J Mol Graph Model 2022; 117:108310. [PMID: 36063744 DOI: 10.1016/j.jmgm.2022.108310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023]
Abstract
Aquaporins are an ancient family of membrane channel proteins present in all eukaryotes and most prokaryotes, and apart from water, allow the transport of neutral solutes and organic compounds through the pore. These proteins are essential role differentially expressed during ripening in Fragaria vesca fruits. Fv PIP2-1a is intensively expressed in fruits, inclusive several other proteins member are differentially expressed in fruit but also in other plant tissues. Phylogenetic analysis shows that Fv PIP2-1a grouped with other Fragaria proteins and far apart from other F. vesca PIP proteins. A structural model for Fv PIP2-1a protein was built by comparative modelling methodology, which was validated and refined by molecular dynamics simulation. Fv PIP2-1a structure consists of 6 transmembrane regions and two NPA domains. The mobilization of water was analyzed by molecular docking simulations in wildtype and two mutants. Interestingly, the mutant FvPIP2-1a_H214G allowed the prediction of an increment in the flux of water molecules. On contrary, structural analysis predicted that H214E mutation blocked passage of water associated to constriction of the pore.
Collapse
Affiliation(s)
- Rodríguez-Cabello Francisca
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Moya-León M Alejandra
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Arévalo Bárbara
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Raúl Herrera
- Functional Genomics, Biochemistry and Plant Physiology Group, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.
| |
Collapse
|
7
|
Martínez-Rivas FJ, Blanco-Portales R, Moyano E, Alseekh S, Caballero JL, Schwab W, Fernie AR, Muñoz-Blanco J, Molina-Hidalgo FJ. Strawberry fruit FanCXE1 carboxylesterase is involved in the catabolism of volatile esters during the ripening process. HORTICULTURE RESEARCH 2022; 9:uhac095. [PMID: 35795396 PMCID: PMC9249579 DOI: 10.1093/hr/uhac095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 05/27/2023]
Abstract
Volatile compounds produced during ripening of strawberry are key determinants of fruit quality and consumer preference. Strawberry volatiles are largely esters which are synthesized by alcohol acyltransferases (AATs) and degraded by carboxylesterases (CXEs). Although CXE activity can have a marked influence on volatile contents in ripe strawberry fruits, CXE function and regulation in them are poorly known. Here, we report the biochemical and functional characterization of the fruit receptacle-specific and ripening-related carboxylesterase FanCXE1. The expression of the corresponding gene was found to be antagonistically regulated by auxins and abscisic acid, key hormones that regulate fruit growth and ripening in strawberry. In vitro, FanCXE1 was able to hydrolyze artificial ester substrates similar to those produced by ripe strawberry fruits. Transient suppression of the FanCXE1 gene by RNAi resulted in an increase of important volatile esters such as methyl hexanoate, methyl butanoate and ethyl hexanoate as well as a decrease of the alcohols hexenol and linanool. The results of this work enhance our understanding of the molecular basis for volatile syntheses and facilitate production of better flavored strawberry fruits by introduction of the relevant alleles into common cultivars.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014 Córdoba. Spain
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014 Córdoba. Spain
| | - Enriqueta Moyano
- Department of Biochemistry and Molecular Biology, University of Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014 Córdoba. Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jose Luis Caballero
- Department of Biochemistry and Molecular Biology, University of Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014 Córdoba. Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Alisdair R Fernie
- Department of Biochemistry and Molecular Biology, University of Córdoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014 Córdoba. Spain
| | | | | |
Collapse
|
8
|
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. PLANT PHYSIOLOGY 2022; 188:2146-2165. [PMID: 35043961 PMCID: PMC8968321 DOI: 10.1093/plphys/kiac014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The biosynthetic pathway of volatile phenylpropanoids, including 4-allyl-2-methoxyphenol (eugenol), has been investigated in petunia (Petunia hybrida). However, the regulatory network for eugenol accumulation in strawberry (Fragaria × ananassa Duch.) fruit remains unclear. Here, an R2R3-type MYB transcription factor (TF; FaMYB63) was isolated from strawberry by yeast one-hybrid (Y1H) screening using the promoter of the FaEGS1 (eugenol synthase 1 [EGS 1]) gene, which encodes the enzyme responsible for the last step in eugenol biosynthesis. FaMYB63 is phylogenetically distinct from other R2R3-MYB TFs, including FaEOBІІ (EMISSION OF BENZENOID II [EOBII]), which also participates in regulating eugenol biosynthesis in strawberry receptacles. Reverse transcription quantitative PCR (RT-qPCR) assays showed that the expression of FaMYB63 was tissue-specific and consistent with eugenol content through strawberry fruit development, was repressed by abscisic acid, and was activated by auxins (indole-3-acetic acid). Overexpression and RNA interference-mediated silencing of FaMYB63 resulted in marked changes in the transcript levels of the biosynthetic genes FaEGS1, FaEGS2, and FaCAD1 (cinnamyl alcohol dehydrogenase 1 [CAD1]) and, thereby, the accumulation of eugenol. Electrophoretic mobility shift, Y1H, GUS activity, and dual-luciferase activity assays demonstrated that the transcript levels of FaEOBІІ and FaMYB10 were regulated by FaMYB63, but not the other way around. Together, these results demonstrate that FaMYB63 directly activates FaEGS1, FaEGS2, FaCAD1, FaEOBІІ, and FaMYB10 to induce eugenol biosynthesis during strawberry fruit development. These findings deepen the understanding of the regulatory network that influences eugenol metabolism in an edible fruit crop.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhifei Pan
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Linzhong Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Xue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | | | | |
Collapse
|
9
|
Zhang M, Zhu Y, Yang H, Li X, Xu R, Zhu F, Cheng Y. CsNIP5;1 acts as a multifunctional regulator to confer water loss tolerance in citrus fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111150. [PMID: 35151435 DOI: 10.1016/j.plantsci.2021.111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plant aquaporins facilitate the transport of water across the inner membranes and play an important role in the response to water loss stress. A citrus NOD26-like intrinsic protein, CsNIP5;1, has been investigated to participate in the regulation of water permeability. In the present study, the expression profile indicated that CsNIP5;1 showed high transcription abundance in conducting tissues. Function analysis revealed that CsNIP5;1 reduced water loss of Arabidopsis rosette leaf, as well as promoted the seed germination under hyperosmotic stress. Besides, overexpression of CsNIP5;1 contributed to the alleviation of water loss in citrus fruit and citrus callus during storage. Further metabolomic profiling and RNA-seq analysis of transgenic citrus callus revealed that CsNIP5;1 may modulate the water loss by inducing the accumulation of osmotic adjustment substances and repressing the expression of other AQPs. Moreover, CsWRKY4 and CsWRKY28 were found to directly bind to the promoter and acted as opposite regulators of CsNIP5;1 during the postharvest period. These findings provide new insights into the regulatory mechanism of aquaporins in response to the water loss stress of citrus fruit during postharvest storage.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yanfei Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
10
|
Li BJ, Grierson D, Shi Y, Chen KS. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. HORTICULTURE RESEARCH 2022; 9:uhac089. [PMID: 35795383 PMCID: PMC9252103 DOI: 10.1093/hr/uhac089] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Corresponding authors. E-mail: ;
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Corresponding authors. E-mail: ;
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
11
|
Zhang M, Yang H, Zhu F, Xu R, Cheng Y. Transcript profiles analysis of citrus aquaporins in response to fruit water loss during storage. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:819-830. [PMID: 33797834 DOI: 10.1111/plb.13269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 05/02/2023]
Abstract
Water loss is an essential factor that affects the maintenance of quality of citrus fruit during postharvest handling and storage. Aquaporins (AQPs) play an important role in the transport of water across membranes. However, the expression profiling of AQPs is incomplete for citrus fruits during storage. In this study, a post-harvest storage experiment was performed using sweet orange fruits to determine changes in water loss and fruit quality. Also, genome-wide expression analysis of CsAQP genes was carried out in fruit of different citrus varieties during storage. Low humidity storage conditions accelerated the postharvest water loss and texture decline and increased the TSS content in the fruit. A total of 39 non-redundant CsAQP genes were identified. A comprehensive analysis of these genes demonstrated that all AQPs had conserved filter motifs in the different citrus varieties examined. Moreover, multiple expression analysis revealed AQPs had complex expression profiles upon water loss in citrus fruit, being time-specific in tight-skin varieties (orange and pomelo varieties), tissue-specific between peel and pulp, and variety-specific between loose-skin (mandarin varieties) and tight-skin varieties (such as sweet orange and pummelo). These results indicated that the relative humidity in storage environment affected the postharvest water loss and quality of citrus fruit. Besides, the alternation in AQPs expression may partially account for the different water loss ratio in citrus varieties and the transfer of water between the peel and the pulp of citrus fruit during storage.
Collapse
Affiliation(s)
- M Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - H Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - F Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - R Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Y Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Zhang M, Liu R, Liu H, Yang H, Li X, Wang P, Zhu F, Xu R, Xue S, Cheng Y. Citrus NIP5;1 aquaporin regulates cell membrane water permeability and alters PIPs plasma membrane localization. PLANT MOLECULAR BIOLOGY 2021; 106:449-462. [PMID: 34173150 DOI: 10.1007/s11103-021-01164-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
The ER or donut-like structures localized aquaporin NIP5;1, which interacts with PIPs and alters their localization from plasma membrane to donut-like structures, regulates water permeability. NOD26-like intrinsic proteins (NIPs) play important roles in nutrient uptake and response to various stresses. However, there have been few studies of their functions in water transportation in citrus. Here, we demonstrate the functions of a novel citrus NIP aquaporin (CsNIP5;1) via multiple physiological and biochemical experiments. CsNIP5;1 showed high water permeability when expressed in Xenopus laevis oocytes and yeast. However, subcellular localization assays showed that this protein was localized in the endoplasmic reticulum (ER) or donut-like structures in citrus callus and tobacco leaf. Meanwhile, overexpression of CsNIP5;1 led to a reduction in the water permeability of citrus callus. Protein-protein interaction experiments and subcellular localization assays further revealed that CsNIP5;1 physically interacted with PIPs (CsPIP1;1 and AtPIP2;1), which altered their subcellular localization from the plasma membrane to donut-like structures. Together, CsNIP5;1 was identified as a good water channel when expressed in oocytes and yeast. Meanwhile, CsNIP5;1 participated in the regulation of water permeability of citrus callus, which may be associated with CsNIP5;1-induced re-localization of water channels PIPs. In summary, these results provide new insights into the regulatory mechanism of AQPs-mediated water diffusion.
Collapse
Affiliation(s)
- Mingfei Zhang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruilian Liu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Li
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ping Wang
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feng Zhu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rangwei Xu
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Centre for Citrus Preservation, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
13
|
Montecchiarini ML, Silva-Sanzana C, Valderramo L, Alemano S, Gollán A, Rivadeneira MF, Bello F, Vázquez D, Blanco-Herrera F, Podestá FE, Tripodi KEJ. Biochemical differences in the skin of two blueberries (Vaccinium corymbosum) varieties with contrasting firmness: Implication of ions, metabolites and cell wall related proteins in two developmental stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:483-495. [PMID: 33756354 DOI: 10.1016/j.plaphy.2021.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The pursuit of firmer and better-quality blueberries is a continuous task that aims at a more profitable production. To this end it is essential to understand the biological processes linked to fruit firmness, which may diverge among tissues. By contrasting varieties with opposing firmness, we were able to elucidate events that, taking place at immature stage, lay the foundation to produce a firmer ripe fruit. A deep analysis of blueberry skin was carried out, involving diverse comparative approaches including proteomics and metabolomics coupled to immunolocalization assays. In'O'Neal' (low firmness) enhanced levels of aquaporins, expansins and pectin esterases at the green stage were found to be critical in distinguishing it from 'Emerald' (high firmness). The latter featured higher levels of ABA, low methyl esterified pectins in tricellular junctions and high levels of catechin at this stage. Meanwhile, in 'Emerald' 's ripe fruit epicarp, several mechanisms of cell wall reinforcement such as calcium and probably boron bridges, appear to be more prominent than in 'O'Neal'. This study highlights the importance of cell wall reorganization and structure, abundance of specific metabolites, water status, and hormonal signalling in connection to fruit firmness. These findings result particularly valuable in order to improve the fertilization procedures or in the search of molecular markers related with firmness.
Collapse
Affiliation(s)
- M L Montecchiarini
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - C Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - L Valderramo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - S Alemano
- Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - A Gollán
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - M F Rivadeneira
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - F Bello
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - D Vázquez
- Estación Experimental Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Colonia Yeruá, Entre Ríos, Argentina
| | - F Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - F E Podestá
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - K E J Tripodi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.
| |
Collapse
|
14
|
Vallarino JG, Merchante C, Sánchez‐Sevilla JF, de Luis Balaguer MA, Pott DM, Ariza MT, Casañal A, Posé D, Vioque A, Amaya I, Willmitzer L, Solano R, Sozzani R, Fernie AR, Botella MA, Giovannoni JJ, Valpuesta V, Osorio S. Characterizing the involvement of FaMADS9 in the regulation of strawberry fruit receptacle development. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:929-943. [PMID: 31533196 PMCID: PMC7061862 DOI: 10.1111/pbi.13257] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 05/08/2023]
Abstract
FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.
Collapse
Affiliation(s)
- José G. Vallarino
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Catharina Merchante
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - José F. Sánchez‐Sevilla
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
- Genómica y BiotecnologíaCentro de MálagaInstituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA)MálagaSpain
| | - María Angels de Luis Balaguer
- Plant and Microbial Biology DepartmentNorth Carolina State UniversityRaleighNCUSA
- Present address:
Precision Biosciences, Inc.DurhamNCUSA
| | - Delphine M. Pott
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - María T. Ariza
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Ana Casañal
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - David Posé
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Amalia Vioque
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Iraida Amaya
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
- Genómica y BiotecnologíaCentro de MálagaInstituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA)MálagaSpain
| | - Lothar Willmitzer
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Roberto Solano
- Departmento de Genética Molecular de PlantasCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CNB‐CSIC)MadridSpain
| | - Rosangela Sozzani
- Plant and Microbial Biology DepartmentNorth Carolina State UniversityRaleighNCUSA
- Biomathematics ProgramNorth Carolina State UniversityRaleighNCUSA
| | - Alisdair R. Fernie
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and USDA‐ARSRobert W. Holley CenterCornell University CampusIthacaNYUSA
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica. Campus de TeatinosInstituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’Universidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
- Unidad Asociada IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| |
Collapse
|
15
|
Xue J, Huang Z, Wang S, Xue Y, Ren X, Zeng X, Zhang X. Dry storage improves the vase quality of cut peony by increasing water uptake efficiency through aquaporins regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:63-69. [PMID: 31945668 DOI: 10.1016/j.plaphy.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 05/13/2023]
Abstract
Proper storage prolongs peony market supply. Here, we determined the changes in fresh weight and expression of four aquaporin genes under dry storage (DS) and wet storage (WS). It has showed that after harvesting, the fresh weight change was accompanied with flower opening. After both short- and long-term of storage, the water uptake efficiency in DS group was greater during the first few vase days, providing a direct material basis of DS improved vase quality. The gene expression results showed that PlPIP1;3 and PlTIP2;1 were mainly expressed in petals, whereas PlNIP1;2-like and PlSIP2;1 were mainly expressed in the green tissues. In addition, the expression of PlTIP2;1 in the petals was consistent with the flower opening process, indicating that it may play a major role in facilitating water uptake. During cold storage, the expression of PlPIP1;3 and PlTIP2;1 was higher or more rapidly induced in the DS group, and thus we deduced that they play important roles in improving the vase quality of DS. Furthermore, the expression of PlNIP1;2-like in the early stage of the DS group was more stable than in WS, which may also be partially responsible for the vase quality improvement. In contrast, PlSIP2;1 may not be involved, since no significant change was observed between the DS and WS group. In short, the expression of PlPIP1;3 and PlTIP2;1 in the DS group during storage may improve water uptake efficiency during the vase period and then improving the vase quality of cut peony.
Collapse
Affiliation(s)
- Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zhen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Zaozhuang Vocational College, 2169 Qilanshan Zhonglu, Zaozhuang, Shandong, 277800, China
| | - Shunli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiuxia Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xiuli Zeng
- Institute of Vegetables, Tibet Academy of Agricultural and animal husbandry Sciences, Lhasa, Tibet, 850002, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
16
|
Bai Q, Huang Y, Shen Y. The Physiological and Molecular Mechanism of Abscisic Acid in Regulation of Fleshy Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:619953. [PMID: 33505417 PMCID: PMC7829184 DOI: 10.3389/fpls.2020.619953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 05/18/2023]
Abstract
The ripening of fleshy fruits is coupled with the degradation of both chlorophyll and cell walls, as well as changes in the metabolism of phenylpropanoids, flavonoids, starch/sucrose, and carotenoids. These processes are controlled by phytohormones and other factors, including abscisic acid (ABA), ethylene, auxin, polyamines, sugar, and reactive oxygen species. The ripening of climacteric fruits is controlled by ethylene and non-climacteric fruit ripening is regulated mainly by ABA. Also, ABA and ethylene may interact in both types of fruit ripening. ABA concentrations in fleshy fruits are regulated in response to developmental and environmental cues and are controlled by the relative rates of ABA biosynthesis and catabolism, the former mainly via 9-cis-epoxycarotenoid dioxygenases (NCEDs) and β-glucosidases and the latter via ABA 8'-hydroxylases (CYP707As) and β-glycosyltransferases. In strawberry fruit ripening, ABA is perceived via at least two receptors, Pyrabactin resistance (PYR)/PYR-like (PYL) and putative abscisic acid receptor (ABAR), which are linked separately to the conserved signaling pathway ABA-FaPYR1-FaABIl-FaSnRK2 and the novel signaling pathway ABA-FaABAR-FaRIPK1-FaABI4. Downstream signaling components include important transcription factors, such as AREB (ABA responsive element binding protein)/ABF (ABRE binding factors ABA responsive factor), ethylene response factor (ERF), and V-myb Myeloblastosis viral oncogene homolog (MYB), as well as ripening-related genes. Finally, a comprehensive model of ABA linked to ethylene, sugar, polyamines, auxin and reactive oxygen species in the regulation of strawberry fruit ripening is proposed. Next, new integrated mechanisms, including two ABA signaling pathways, ABA and ethylene signaling pathways, and ABA/ethylene to other phytohormones are interesting and important research topics in ripening, especially in non-climacteric fruits.
Collapse
Affiliation(s)
- Qian Bai
- College of Horticulture, China Agricultural University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yun Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Yun Huang,
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- *Correspondence: Yuanyue Shen,
| |
Collapse
|
17
|
Medina-Puche L, Martínez-Rivas FJ, Molina-Hidalgo FJ, Mercado JA, Moyano E, Rodríguez-Franco A, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. An atypical HLH transcriptional regulator plays a novel and important role in strawberry ripened receptacle. BMC PLANT BIOLOGY 2019; 19:586. [PMID: 31881835 PMCID: PMC6933692 DOI: 10.1186/s12870-019-2092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/21/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND In soft fruits, the differential expression of many genes during development and ripening is responsible for changing their organoleptic properties. In strawberry fruit, although some genes involved in the metabolic regulation of the ripening process have been functionally characterized, some of the most studied genes correspond to transcription factors. High throughput transcriptomics analyses performed in strawberry red receptacle (Fragaria x ananassa) allowed us to identify a ripening-related gene that codes an atypical HLH (FaPRE1) with high sequence homology with the PACLOBUTRAZOL RESISTANCE (PRE) genes. PRE genes are atypical bHLH proteins characterized by the lack of a DNA-binding domain and whose function has been linked to the regulation of cell elongation processes. RESULTS FaPRE1 sequence analysis indicates that this gene belongs to the subfamily of atypical bHLHs that also includes ILI-1 from rice, SlPRE2 from tomato and AtPRE1 from Arabidopsis, which are involved in transcriptional regulatory processes as repressors, through the blockage by heterodimerization of bHLH transcription factors. FaPRE1 presented a transcriptional model characteristic of a ripening-related gene with receptacle-specific expression, being repressed by auxins and activated by abscisic acid (ABA). However, its expression was not affected by gibberellic acid (GA3). On the other hand, the transitory silencing of FaPRE1 transcription by agroinfiltration in receptacle produced the down-regulation of a group of genes related to the ripening process while inducing the transcription of genes involved in receptacle growth and development. CONCLUSIONS In summary, this work presents for the first time experimental data that support an important novel function for the atypical HLH FaPRE1 during the strawberry fruit ripening. We hypothesize that FaPRE1 modulates antagonistically the transcription of genes related to both receptacle growth and ripening. Thus, FaPRE1 would repress the expression of receptacle growth promoting genes in the ripened receptacle, while it would activate the expression of those genes related to the receptacle ripening process.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
- Present Address: Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Félix J. Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
- Present Address: VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - José A. Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
18
|
Liu H, Yang L, Xin M, Ma F, Liu J. Gene-Wide Analysis of Aquaporin Gene Family in Malus domestica and Heterologous Expression of the Gene MpPIP2;1 Confers Drought and Salinity Tolerance in Arabidposis thaliana. Int J Mol Sci 2019; 20:ijms20153710. [PMID: 31362376 PMCID: PMC6696234 DOI: 10.3390/ijms20153710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
The aquaporins (AQPs) are a family of integral membrane proteins involved in the transcellular membrane transport of water and other small molecules. A scan of the apple (Malus domestica) genome revealed the presence of 42 genes encoding putative AQPs. Based on a phylogenetic analysis of the deduced peptide sequences of the AQPs generated by Arabidopsis thaliana, poplar (Populus trichocarpa), and rubber (Hevea brasiliensis), the apple AQPs were each assigned membership of the five established AQP subfamilies, namely the PIPs (eleven members), the TIPs (thirteen members), the NIPs (eleven members), the SIPs (five members), and the XIPs (two members). The apple AQPs included asparagine-proline-alanine (NPA) motifs, an aromatic/arginine (ar/R) selectivity filter, and the Froger’s positions. The heterologous expression of MpPIP2;1 in A. thaliana was shown to enhance the level of tolerance exhibited against both drought and salinity.
Collapse
Affiliation(s)
- Haili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Leilei Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jingying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
19
|
Genetic diversity of strawberry germplasm using metabolomic biomarkers. Sci Rep 2018; 8:14386. [PMID: 30258188 PMCID: PMC6158285 DOI: 10.1038/s41598-018-32212-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
High-throughput metabolomics technologies can provide the quantification of metabolites levels across various biological processes in different tissues, organs and species, allowing the identification of genes underpinning these complex traits. Information about changes of metabolites during strawberry development and ripening processes is key to aiding the development of new approaches to improve fruit attributes. We used network-based methods and multivariate statistical approaches to characterize and investigate variation in the primary and secondary metabolism of seven domesticated and seven wild strawberry fruit accessions at three different fruit development and ripening stages. Our results demonstrated that Fragaria sub-species can be identified solely based on the gathered metabolic profiles. We also showed that domesticated accessions displayed highly similar metabolic changes due to shared domestication history. Differences between domesticated and wild accessions were detected at the level of metabolite associations which served to rank metabolites whose regulation was mostly altered in the process of domestication. The discovery of comprehensive metabolic variation among strawberry accessions offers opportunities to probe into the genetic basis of variation, providing insights into the pathways to relate metabolic variation with important traits.
Collapse
|
20
|
Tan X, Xu H, Khan S, Equiza MA, Lee SH, Vaziriyeganeh M, Zwiazek JJ. Plant water transport and aquaporins in oxygen-deprived environments. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:20-30. [PMID: 29779706 DOI: 10.1016/j.jplph.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Oxygen deprivation commonly affects plants exposed to flooding and soil compaction. The resulting root hypoxia has an immediate effect on plant water relations and upsets water balance. Hypoxia inhibits root water transport and triggers stomatal closure. The processes contributing to the inhibition of root hydraulic conductivity and conductance (hydraulic conductivity of the whole root system) are complex and involve changes in root morphology and the functions of aquaporins. Aquaporins (AQPs) comprise a group of membrane intrinsic proteins that are responsible for the transport of water, as well as some small neutral solutes and ions. They respond to a wide range of environmental stresses including O2 deprivation, but the underlying functional mechanisms are still elusive. The aquaporin-mediated water transport is affected by the acidification of the cytoplasm and depletion of ATP that is required for aquaporin phosphorylation and membrane functions. Cytoplasmic pH, phosphorylation, and intracellular Ca2+ concentration directly control AQP gating, all of which are related to O2 deprivation. This review addresses the structural determinants that are essential for pore conformational changes in AQPs, to highlight the underlying mechanisms triggered by O2 deprivation stress. Gene expression of AQPs is modified in hypoxic plants, which may constitute an important, yet little explored, mechanism of hypoxia tolerance. In addition to water transport, AQPs may contribute to hypoxia tolerance by transporting O2, H2O2, and lactic acid. Responses of plants to O2 deprivation, and especially those that contribute to maintenance of water transport, are highly complex and entail the signals originating in roots and shoots that lead to and follow the stomatal closure. These complex responses may involve ethylene, abscisic acid, and possibly other hormonal factors and signaling molecules in ways that remain to be elucidated.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Hao Xu
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maria A Equiza
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Seong H Lee
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Maryamsadat Vaziriyeganeh
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Bldg., Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
21
|
Moyano E, Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Ric-Varas P, Matas-Arroyo AJ, Caballero JL, Muñoz-Blanco J, Rodríguez-Franco A. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits. PLoS One 2018; 13:e0196953. [PMID: 29723301 PMCID: PMC5933797 DOI: 10.1371/journal.pone.0196953] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/23/2018] [Indexed: 12/02/2022] Open
Abstract
NAC proteins are a family of transcription factors which have a variety of important regulatory roles in plants. They present a very well conserved group of NAC subdomains in the N-terminal region and a highly variable domain at the C-terminus. Currently, knowledge concerning NAC family in the strawberry plant remains very limited. In this work, we analyzed the NAC family of Fragaria vesca, and a total of 112 NAC proteins were identified after we curated the annotations from the version 4.0.a1 genome. They were placed into the ligation groups (pseudo-chromosomes) and described its physicochemical and genetic features. A microarray transcriptomic analysis showed six of them expressed during the development and ripening of the Fragaria x ananassa fruit. Their expression patterns were studied in fruit (receptacle and achenes) in different stages of development and in vegetative tissues. Also, the expression level under different hormonal treatments (auxins, ABA) and drought stress was investigated. In addition, they were clustered with other NAC transcription factor with known function related to growth and development, senescence, fruit ripening, stress response, and secondary cell wall and vascular development. Our results indicate that these six strawberry NAC proteins could play different important regulatory roles in the process of development and ripening of the fruit, providing the basis for further functional studies and the selection for NAC candidates suitable for biotechnological applications.
Collapse
Affiliation(s)
- Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Félix J. Martínez-Rivas
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pablo Ric-Varas
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain
| | - Antonio J. Matas-Arroyo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, Málaga, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
- * E-mail:
| |
Collapse
|
22
|
Merlaen B, De Keyser E, Van Labeke MC. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development. HORTICULTURE RESEARCH 2018; 5:20. [PMID: 29619231 PMCID: PMC5880810 DOI: 10.1038/s41438-018-0019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 05/07/2023]
Abstract
The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry (Fragaria x ananassa). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa, few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.
Collapse
Affiliation(s)
- Britt Merlaen
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Ellen De Keyser
- Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Marie-Christine Van Labeke
- Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
23
|
|
24
|
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, Caballero JL, Rodríguez-Franco A, Blanco-Portales R, Muñoz-Blanco J, Moyano E. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4529-4543. [PMID: 28981772 DOI: 10.1093/jxb/erx257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Only a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals. When FaDOF2 expression was silenced in ripe strawberry receptacles, the expression of FaEOBII and FaEGS2, two key genes involved in eugenol production, were down-regulated. These fruits showed a concomitant decrease in eugenol content, which confirmed that FaDOF2 is a transcription factor that is involved in eugenol production in ripe fruit receptacles. By using the yeast two-hybrid system and bimolecular fluorescence complementation, we demonstrated that FaDOF2 interacts with FaEOBII, a previously reported regulator of eugenol production, which determines fine-tuning of the expression of key genes that are involved in eugenol production. These results provide evidence that FaDOF2 plays a subsidiary regulatory role with FaEOBII in the expression of genes encoding enzymes that control eugenol production. Taken together, our results provide new insights into the regulation of the volatile phenylpropanoid pathway in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Carlos Cañete-Gómez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | | | | | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049-Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| |
Collapse
|
25
|
Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, García-Caparrós N, Moyano-Cañete E, Caballero-Repullo JL, Muñoz-Blanco J, Rodríguez-Franco A. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct Integr Genomics 2016; 16:671-692. [PMID: 27614432 DOI: 10.1007/s10142-016-0510-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Guadalupe Cumplido-Laso
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Nicolás García-Caparrós
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Enriqueta Moyano-Cañete
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - José Luis Caballero-Repullo
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular. Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|