1
|
Yılmaz Tuncel N, Polat Kaya H, Andaç AE, Korkmaz F, Tuncel NB. A Comprehensive Review of Antinutrients in Plant-Based Foods and Their Key Ingredients. NUTR BULL 2025. [PMID: 39895386 DOI: 10.1111/nbu.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
In recent years, the growing popularity of vegan and vegetarian diets, along with the rising demand for plant-based foods, has led researchers to concentrate on examining the presence and effects of antinutrients. While there are existing literature reviews focusing on antinutritional compounds, particularly on their reduction, this review aims to provide a comprehensive description of antinutrients for producers, food scientists, professionals, legislators and consumers, emphasising the complexity of the subject and the necessity for diverse approaches while identifying aspects that still require further research. Antinutrients, including protease inhibitors, amylase inhibitors, phytic acid, lectins, saponins, tannins, cyanogenic glycosides, oxalic acid, polyphenols, goitrogens and pyrimidine glycosides, are described, encompassing various aspects such as their structural characteristics, analytical detection methods, distribution, physiological impacts and strategies for mitigation or elimination. Specifically, our review concentrates on assessing the presence of antinutrients in plant-based food products and the primary ingredients, categorised into five distinct groups, cereals, pseudocereals, pulses, seeds and nuts, which are commonly used in their production. Among these categories, legumes are identified as the richest source of anti-nutritional compounds, followed by cereal grains. However, certain pseudocereals, seeds and nuts also demonstrate high levels of specific antinutrients. While antinutrients are generally regarded as harmful to nutrient absorption, recent studies have revealed some potential health benefits associated with them. Therefore, further in vivo research is essential to elucidate the behaviour of antinutritional compounds within the human body. Additionally, there is a significant lack of formal regulations and guidelines regarding antinutrients, and food products currently do not feature labelling related to these compounds.
Collapse
Affiliation(s)
- Neşe Yılmaz Tuncel
- Department of Food Technology, Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Havva Polat Kaya
- Department of Food Technology, Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ali Emre Andaç
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Fatma Korkmaz
- Department of Food Engineering, Balıkesir University Faculty of Engineering, Balıkesir, Türkiye
| | - Necati Barış Tuncel
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Hernández de la Torre M, Covaleda-Cortés G, Montesinos L, Covaleda D, Ortiz JC, Piñol J, Bautista JM, Castillo JP, Reverter D, Avilés FX. Analysis of Protein Inhibitors of Trypsin in Quinoa, Amaranth and Lupine Seeds. Selection and Deep Structure-Function Characterization of the Amaranthus caudatus Species. Int J Mol Sci 2025; 26:1150. [PMID: 39940919 PMCID: PMC11817793 DOI: 10.3390/ijms26031150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Protease inhibitors are biomolecules with growing biotechnological and biomedical relevance, including those derived from plants. This study investigated strong trypsin inhibitors in quinoa, amaranth, and lupine seeds, plant grains traditionally used in Andean South America. Amaranth seeds displayed the highest trypsin inhibitory activity, despite having the lowest content of aqueous soluble and thermostable protein material. This activity, directly identified by enzymatic assay, HPLC, intensity-fading mass spectrometry (IF-MS), and MS/MS, was attributed to a single protein of 7889.1 Da, identified as identical in Amaranthus caudatus and A. hybridus, with a Ki of 1.2 nM for the canonical bovine trypsin. This form of the inhibitor, which is highly homogeneous and scalable, was selected, purified, and structurally-functionally characterized due to the high nutritional quality of amaranth seeds as well as its promising agriculture-biotech-biomed applicability. The protein was crystallized in complex with bovine trypsin, and its 3D crystal structure resolved at 2.85 Å, revealing a substrate-like transition state interaction. This verified its classification within the potato I inhibitor family. It also evidenced that the single disulfide bond of the inhibitor constrains its binding loop, which is a key feature. Cell culture assays showed that the inhibitor did not affect the growth of distinct plant microbial pathogen models, including diverse bacteria, fungi, and parasite models, such as Mycoplasma genitalium and Plasmodium falciparum. These findings disfavour the notion that the inhibitor plays an antimicrobial role, favouring its potential as an agricultural insect deterrent and prompting a redirection of its functional research.
Collapse
Affiliation(s)
| | - Giovanni Covaleda-Cortés
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, 17004 Girona, Spain;
| | - Daniela Covaleda
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
- Institut de Biotecnologia i Biomedicina, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Juan C. Ortiz
- Institut de Biotecnologia i Biomedicina, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - J. Patricio Castillo
- Departamento de Ciencias Nucleares, Escuela Politécnica Nacional, Quito 170143, Ecuador;
| | - David Reverter
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (D.C.); (J.P.); (D.R.)
| |
Collapse
|
3
|
Kam MYY. Hidden hunger: from a plant biologist's perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39868583 DOI: 10.1002/jsfa.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
In recent years, changes in dietary patterns from an omnivore diet to a moderate-to-restrictive diet that includes more plant food are becoming popular for various reasons and the associated health benefits. Despite the increased consumption of plant food as recommended by these seemingly healthy diets, micronutrient deficiency is still prevalent particularly among the health-conscious populations. The aim of this review is to help guide interventions by understanding micronutrient deficiency trends from a dietary habit and plant physiology context. In this review, the author discusses how modern agricultural practices coupled with climate change, and with particular emphasis on the extreme dietary habits that lack variation and excessive consumption, may contribute to an increased ingestion of antinutrients which in turn potentially exacerbate vitamin and mineral deficiencies. While plants possess a wide range of secondary metabolites that exert beneficial health effects, some of these compounds are also antinutrients that interfere with the digestion and absorption of nutrients and micronutrients. Furthermore, the article also raises questions concerning the fate of antinutrient traits in future crops that were to be redesigned with improved stress tolerance, and the impacts it may have on human nutrition and the environment. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Melissa Yit Yee Kam
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Future Food Research Cluster, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
4
|
Ramos Chevreuil L, Pessoa VA, da Silva GL, Dos Santos Gouvea PR, do Nascimento Soares LB, Sales-Campos C. Recovery of Proteases and Protease Inhibitors from Ganoderma spp. Cultivated in Amazonian Lignocellulose Wastes. Curr Protein Pept Sci 2025; 26:76-88. [PMID: 38919002 DOI: 10.2174/0113892037297181240605112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ganoderma spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (G. lingzhi) and an Amazonian isolate (Ganoderma sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study. METHODS Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RESULTS Tris-HCl provided higher protein extraction from Ganoderma sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for G. lingzhi cultivated in açaí. Water extracts of Ganoderma sp., in general, exhibited higher trypsin and papain inhibitor activities compared to G. lingzhi. Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDSPAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor. CONCLUSION Water extract from Amazonian Ganoderma sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of G. lingzhi from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.
Collapse
Affiliation(s)
- Larissa Ramos Chevreuil
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
| | - Vitor Alves Pessoa
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Giovanna Lima da Silva
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Paula Romenya Dos Santos Gouvea
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
| | - Larissa Batista do Nascimento Soares
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Bionorte Network, State University of Amazonas, Av. Carvalho Leal, 69065-001, Amazonas, Brazil
| | - Ceci Sales-Campos
- Edible Fungi Cultivation Laboratory, National Institute for Amazonian Research, Av. André Araújo, 69067-375, Amazonas, Brazil
- Postgraduate Program in Biotechnology, Federal University of Amazonas, Av. General Rodrigo Octavio, 69067-005, Amazonas, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Bionorte Network, State University of Amazonas, Av. Carvalho Leal, 69065-001, Amazonas, Brazil
| |
Collapse
|
5
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
6
|
Deetanya P, Limsardsanakij K, Sabat G, Pattaradilokrat S, Chaisuekul C, Wangkanont K. Kunitz-type trypsin inhibitor from durian (Durio zibethinus) employs a distinct loop for trypsin inhibition. Protein Sci 2024; 33:e5230. [PMID: 39565068 PMCID: PMC11577449 DOI: 10.1002/pro.5230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Kunitz-type trypsin inhibitors are ubiquitous in plants. They have been proposed to be a part of a defense mechanism against herbivores. Trypsin inhibitors also have potential applications in the biotechnology industry, such as in mammalian cell culture. We discovered that durian (Durio zibethinus) seed contains Kunitz-type trypsin inhibitors as identified by N-terminal sequencing and mass spectrometry. Eleven new trypsin inhibitors were cloned. The D. zibethinus trypsin inhibitors (DzTIs) that are likely expressed in the seed were produced as recombinant proteins and tested for trypsin inhibitory activity. Their inhibitory activity and crystal structures are similar to the soybean trypsin inhibitor. Surprisingly, a crystal structure of the complex between DzTI-4, the DzTI with the lowest inhibitory constant, and bovine trypsin revealed that DzTI-4 utilized a novel tryptophan-containing β1-β2 loop to bind trypsin. Site-direct mutagenesis confirmed the inhibitory role of this loop. DzTI-4 was not toxic to the HEK293 cells and could be used in place of the soybean trypsin inhibitor for culturing the cells under serum-free conditions. DzTI-4 was not toxic to mealworms. However, a mixture of DzTIs extracted from durian seed prevented weight gain in mealworms, suggesting that multiple trypsin inhibitors are required to achieve the antinutritional effect. This study highlights the biochemical diversity of the inhibitory mechanism of Kunitz-type trypsin inhibitors and provides clues for further application of these inhibitors.
Collapse
Affiliation(s)
- Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | | | - Grzegorz Sabat
- Mass Spectrometry Core Facility, Biotechnology CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Chatchawan Chaisuekul
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
7
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
8
|
Pereira APR, Jacobowski AC, Sardi JCO, Almeida CV, Almeida LHO, Silva MM, Macedo MLR. Antimicrobial and antibiofilm activities of Inga cylindrica trypsin inhibitor. BRAZ J BIOL 2024; 84:e283106. [PMID: 39292139 DOI: 10.1590/1519-6984.283106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/19/2024] Open
Abstract
Inga cylindrica, a tropical fruit tree of the Fabaceae family (subfamily Mimosoideae), is native to South America. The seeds from this family are an essential source of trypsin inhibitors, which display promising bioactivity for increasing host defense against pathogens. The aim of the present study was to characterize the antimicrobial and antibiofilm activities of the trypsin inhibitor extracted from I. cylindrica seeds, ICTI. ICTI demonstrated antifungal activity with a minimum inhibitory concentration (MIC) of 32.11 μmol.L-1, and a minimum fungicidal concentration (MFC) of 32.1 μmol.L-1, against Cryptococcus gattii, Candida albicans, Candida glabrata and Candida guilliermondii. Combining ICTI with Amphotericin B had a significant synergistic effect, reducing the concentration of the antibiotic by 75% for C. albicans and 94% for C. gatti. The significant increase (16 x) in activity observed with ergosterol (1.01 mol.L-1) for C. albicans and C. gatti, and the lack of activity against bacterial strains, suggests that ICTI interferes with the integrity of the fungal cell membrane. Treatment with ICTI at 10 x MIC resulted in a 51% reduction in biofilm formation and a 56% decrease in mature biofilm colonies for C. albicans. Finally, ICTI displayed no toxicity in the in vivo Galleria mellonella model. Given its antifungal and antibiofilm properties, ICTI could be a promising candidate for the development of new antimicrobial drug prototypes.
Collapse
Affiliation(s)
- A P R Pereira
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| | - A C Jacobowski
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| | - J C O Sardi
- Universidade de Guarulhos, Divisão de Pesquisa Odontológica, Guarulhos, SP, Brasil
| | - C V Almeida
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| | - L H O Almeida
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| | - M M Silva
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| | - M L R Macedo
- Universidade Federal de Mato Grosso do Sul, Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Campo Grande, Brasil
| |
Collapse
|
9
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
10
|
Arsov A, Tsigoriyna L, Batovska D, Armenova N, Mu W, Zhang W, Petrov K, Petrova P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024; 13:2408. [PMID: 39123599 PMCID: PMC11311503 DOI: 10.3390/foods13152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.
Collapse
Affiliation(s)
- Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Daniela Batovska
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (W.M.); (W.Z.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (L.T.); (D.B.); (N.A.); (K.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
11
|
Zhang H, Qiao Q, Zhao Y, Zhang L, Shi J, Wang N, Li Z, Shan S. Expression and Purification of Recombinant Bowman-Birk Trypsin Inhibitor from Foxtail Millet Bran and Its Anticolorectal Cancer Effect In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10439-10450. [PMID: 38676695 DOI: 10.1021/acs.jafc.3c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-β-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yaru Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nifei Wang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Parisi MG, Ozón B, Vera González SM, García-Pardo J, Obregón WD. Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review. Pharmaceutics 2024; 16:582. [PMID: 38794245 PMCID: PMC11125377 DOI: 10.3390/pharmaceutics16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant's defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents.
Collapse
Affiliation(s)
- Mónica G. Parisi
- Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu) and Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján B6700, Buenos Aires, Argentina;
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Sofía M. Vera González
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| | - Javier García-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900, Buenos Aires, Argentina; (B.O.); (S.M.V.G.)
| |
Collapse
|
13
|
Teixeira EMGF, Kalume DE, Ferreira PF, Alves TA, Fontão APGA, Sampaio ALF, de Oliveira DR, Morgado-Díaz JA, Silva-López RE. A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth. Protein J 2024; 43:333-350. [PMID: 38347326 DOI: 10.1007/s10930-023-10175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 05/01/2024]
Abstract
A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.
Collapse
Affiliation(s)
- Erika Maria Gomes Ferreira Teixeira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Dario Eluam Kalume
- Interdisciplinary Laboratory of Medical Research, IOC-Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Patrícia Fernandes Ferreira
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Thayane Aparecida Alves
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil
| | - Ana Paula G A Fontão
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - André Luís Franco Sampaio
- Departament of Pharmacology, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, CEP 21045-900, Brazil
| | - Danilo Ribeiro de Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - José Andrés Morgado-Díaz
- Cellular and Molecular Oncobiology Program, National Institute of Cancer (INCa), Rio de Janeiro, Brazil
| | - Raquel Elisa Silva-López
- Departament of Natural Products, Institute of Pharmaceuticals Technology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Rio de Janeiro, 21045-900, Brazil.
| |
Collapse
|
14
|
Jegadheeshwari S, Velayutham M, Gunasekaran K, Kesavan M. DbGTi: Thermostable trypsin inhibitor from Dioscorea bulbifera L. ground tubers: assessment of antioxidant and antibacterial properties and cytotoxicity evaluation using zebrafish model. Int J Biol Macromol 2024; 263:130244. [PMID: 38387638 DOI: 10.1016/j.ijbiomac.2024.130244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises β sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 μM/min, Km = 1.1805 × 102 μM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.
Collapse
Affiliation(s)
- S Jegadheeshwari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology, Integrative Physiology, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, India
| | - K Gunasekaran
- Department of Crystallography and Biophysics, University of Madras, Chennai, India
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
15
|
Jemel I, Krayem N, Ben Bacha A, Alonazi M, Horchani H, Ghamgui H. Novel Stable Protease Inhibitor from Phoenix dactylifera(L.) Flowers with Antimicrobial and Antitumoral Activities. ACS OMEGA 2024; 9:13332-13341. [PMID: 38524442 PMCID: PMC10956122 DOI: 10.1021/acsomega.3c10287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A novel protease inhibitor isolated from date palm Phoenix dactylifera(L.) flowers (PIDF) was purified and characterized. A heat and acidic treatment step followed by ethanol precipitation and reverse-phase high-performance chromatography was applied to purify this natural protease inhibitor to homogeneity with a single band of about 19 kDa. The stability study depicted that PIDF was fully stable at 40 °C and retained 65% of its initial activity after heating at 50 °C for 24 h. Its thermal stability at 70 °C was markedly enhanced by adding calcium, bovine serum albumin, and sorbitol as well as by metal divalent cations, especially Mg2+ and Hg2+. This protease inhibitor showed high inhibitory activity against therapeutic proteases, including pepsin, trypsin, chymotrypsin, and collagenase, and acted as a potent inhibitor of some commercial microbial proteases from Aspergillus oryzae, Bacillus. sp, and Bacillus licheniformis. Moreover, a potent antibacterial spectrum against Gram (+) and Gram (-) bacterial strains and an efficient antifungal effect were observed. Its cytotoxicity toward human colorectal cancer cell LoVo and HCT-116 lines suggested that PIDF could serve as a new therapeutic target inhibiting human colorectal cancer.
Collapse
Affiliation(s)
- Ikram Jemel
- Laboratory
of Plant Biotechnology Applied to Crop Improvement, Faculty of Science
of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Najeh Krayem
- Laboratory
of Biochemistry and Enzymatic Engineering of Lipases, ENIS, University of Sfax, Soukra Road, BP1171, Sfax 3038, Tunisia
| | - Abir Ben Bacha
- Biochemistry
Department, College of Sciences, King Saud
University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Mona Alonazi
- Biochemistry
Department, College of Sciences, King Saud
University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Habib Horchani
- Environment
and Biotechnology Research Group, Science Department, College of Rivière-Du-Loup, Rivère-Du-Loup, Québec G5R1E2, Canada
| | - Hanène Ghamgui
- Laboratory
of Biochemistry and Enzymatic Engineering of Lipases, ENIS, University of Sfax, Soukra Road, BP1171, Sfax 3038, Tunisia
| |
Collapse
|
16
|
da Silva Gebara R, da Silva MS, Calixto SD, Simão TLBV, Zeraik AE, Lassounskaia E, Muzitano MF, Petretski JH, Gomes VM, de Oliveira Carvalho A. Antifungal, Antimycobacterial, Protease and α‒Amylase Inhibitory Activities of a Novel Serine Bifunctional Protease Inhibitor from Adenanthera pavonina L. Seeds. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10194-z. [PMID: 38117407 DOI: 10.1007/s12602-023-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.
Collapse
Affiliation(s)
- Rodrigo da Silva Gebara
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Macaé, 27933-378, RJ, Brazil
| | - Jorge Hudson Petretski
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|
17
|
Rangra S, Chakraborty R, Hasija Y, Aggarwal KK. A cystatin C similar protein from Musa acuminata that inhibits cathepsin B involved in rheumatoid arthritis using in silico approach and in vitro cathepsin B inhibition by protein extract. J Biomol Struct Dyn 2023; 41:10985-10998. [PMID: 37097972 DOI: 10.1080/07391102.2023.2203234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/10/2022] [Indexed: 04/26/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune disease that affects the synovial lining of the joints, causes synovitis and culminates to joint destruction. Cathepsin B is responsible for digesting unwanted proteins in extracellular matrix but its hyper expression could implicate in pathological diseases like RA. Available treatments for RA are classified into non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and steroids, but the severe side effects associated with these drugs is one of concerns and cannot be ignored. Thus, any alternative therapy with minimum or no side effects would be a cornerstone. In our in silico studies a cystatin C similar protein (CCSP) has been identified from Musa acuminata that could effectively inhibit the cathepsin B activity. In silico and molecular dynamics studies showed that the identified CCSP and cathepsin B complex has binding energy -66.89 kcal/mol as compared to cystatin C - cathepsin B complex with binding energy of -23.38 kcal/mol. These results indicate that CCSP from Musa acuminata has better affinity towards cathepsin B as compared to its natural inhibitor cystatin C. Hence, CCSP may be suggested as an alternative therapeutic in combating RA by inhibiting its one of the key proteases cathepsin B. Further, in vitro experiments with fractionated protein extracts from Musa sp. peel inhibited cathepsin B to 98.30% at 300 µg protein concentration and its IC50 was found to be 45.92 µg indicating the presence of cathepsin B inhibitor(s) in protein extract of peel which was further confirmed by reverse zymography.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sabita Rangra
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
18
|
Gomes GDS, Espósito PC, Baracat-Pereira MC. Carboxypeptidase inhibitors from Solanaceae as a new subclass of pathogenesis related peptide aiming biotechnological targets for plant defense. Front Mol Biosci 2023; 10:1259026. [PMID: 38033385 PMCID: PMC10687636 DOI: 10.3389/fmolb.2023.1259026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Plant protease inhibitors play a crucial role in inhibiting proteases produced by phytopathogens and exhibiting inhibitory effects on nematodes, fungi, and insects, making them promising candidates for crop protection. Specifically, carboxypeptidase inhibitors, a subset of proteinase inhibitors, have been extensively studied in potato and tomato of Solanaceae plant family. However, further research is needed to fully understand the functions and biotechnological potential of those inhibitors in plants. This work aimed to in silico characterize carboxypeptidase inhibitors from Solanaceae as potential antimicrobial and defense agents focused on biotechnological targets. Methods: The methodology employed involved search in UniProt, PDB, KNOTTIN, NCBI, and MEROPS databases for solanaceous carboxypeptidase inhibitors, phylogenetic relationships and conservation patterns analyzes using MEGA-X software and Clustal Omega/MView tools, physicochemical properties and antimicrobial potential prediction using ProtParam, ToxinPred, iAMPred, and APD3 tools, and structural features prediction using PSIPRED. Results and discussion: A systematic literature search was conducted to identify relevant studies on Solanaceae carboxypeptidase inhibitors and their activities against pathogens. The selected studies were reviewed and the main findings compiled. The characterization of Solanaceae carboxypeptidase inhibitors proposed for the first time the global sequence consensus motif CXXXCXXXXDCXXXXXCXXC, shedding light on carboxypeptidase inhibitors distribution, sequence variability, and conservation patterns. Phylogenetic analysis showed evolutionary relationships within the Solanaceae family, particularly in Capsicum, Nicotiana, and Solanum genera. Physicochemical characteristics of those peptides indicated their similarity to antimicrobial peptides. Predicted secondary structures exhibited variations, suggesting a broad spectrum of action, and studies had been demonstrated their activities against various pathogens. Conclusion: Carboxypeptidase inhibitors are being proposed here as a new subclass of PR-6 pathogenesis-related proteins, which will aid in a focused understanding of their functional roles in plant defense mechanisms. These findings confirm the Solanaceae carboxypeptidase inhibitors potential as defense agents and highlight opportunities for their biotechnological applications in pathogen control.
Collapse
Affiliation(s)
| | | | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
19
|
de Souza AÁ, Lima AM, Dede Oliveira BezerraSousa D, Nogueira FC, do Sacramento Neto JC, Dias LP, Araújo NMS, Nagano CS, Júnior HVN, da Silva CR, do Amaral Valente Sá LG, de Andrade Neto JB, Barroso FDD, de Moraes MEA, de Oliveira HD. Chia (Salvia hispanica L.) Seeds Contain a Highly Stable Trypsin Inhibitor with Potential for Bacterial Management Alone or in Drug Combination Therapy with Oxacillin. Probiotics Antimicrob Proteins 2023; 15:1221-1233. [PMID: 35995908 DOI: 10.1007/s12602-022-09979-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.
Collapse
Affiliation(s)
- Adson Ávila de Souza
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Adrianne Maia Lima
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Daniele Dede Oliveira BezerraSousa
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Francisca Cristiane Nogueira
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - José Carlos do Sacramento Neto
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Lucas Pinheiro Dias
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Nadine Monteiro Salgueiro Araújo
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil
| | - Celso Shiniti Nagano
- Department of Fisher Engineering, Center of Agricultural Sciences, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60455-970, Brazil
| | - Hélio Vitoriano Nobre Júnior
- Drug Research and Development Center, Federal University of Ceará, Campus do Porangabussu, Fortaleza, CE, 60430-270, Brazil
| | - Cecília Rocha da Silva
- Drug Research and Development Center, Federal University of Ceará, Campus do Porangabussu, Fortaleza, CE, 60430-270, Brazil
| | | | - João Batista de Andrade Neto
- Drug Research and Development Center, Federal University of Ceará, Campus do Porangabussu, Fortaleza, CE, 60430-270, Brazil
| | - Fátima Daiana Dias Barroso
- Drug Research and Development Center, Federal University of Ceará, Campus do Porangabussu, Fortaleza, CE, 60430-270, Brazil
| | | | - Hermógenes David de Oliveira
- Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
20
|
Liu Y, Bian Y, Bai Y, Yu S, Tian Y, Li J, Li S, Li T. Potato protease inhibitors, a functional food material with antioxidant and anticancer potential. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
21
|
Kocyigit E, Kocaadam-Bozkurt B, Bozkurt O, Ağagündüz D, Capasso R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins (Basel) 2023; 15:356. [PMID: 37368657 PMCID: PMC10303728 DOI: 10.3390/toxins15060356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolve to synthesize various natural metabolites to protect themselves against threats, such as insects, predators, microorganisms, and environmental conditions (such as temperature, pH, humidity, salt, and drought). Plant-derived toxic proteins are often secondary metabolites generated by plants. These proteins, including ribosome-inactivating proteins, lectins, protease inhibitors, α-amylase inhibitors, canatoxin-like proteins and ureases, arcelins, antimicrobial peptides, and pore-forming toxins, are found in different plant parts, such as the roots, tubers, stems, fruits, buds, and foliage. Several investigations have been conducted to explore the potential applications of these plant proteins by analyzing their toxic effects and modes of action. In biomedical applications, such as crop protection, drug development, cancer therapy, and genetic engineering, toxic plant proteins have been utilized as potentially useful instruments due to their biological activities. However, these noxious metabolites can be detrimental to human health and cause problems when consumed in high amounts. This review focuses on different plant toxic proteins, their biological activities, and their mechanisms of action. Furthermore, possible usage and removal strategies for these proteins are discussed.
Collapse
Affiliation(s)
- Emine Kocyigit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Turkey;
| | - Betul Kocaadam-Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Osman Bozkurt
- Department of Nutrition and Dietetics, Erzurum Technical University, Yakutiye, 25100 Erzurum, Turkey; (B.K.-B.); (O.B.)
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Faculty of Health Sciences, Emek, 06490 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
22
|
Cotabarren J, Ozón B, Claver S, Geier F, Rossotti M, Garcia-Pardo J, Obregón WD. A Multifunctional Trypsin Protease Inhibitor from Yellow Bell Pepper Seeds: Uncovering Its Dual Antifungal and Hypoglycemic Properties. Pharmaceutics 2023; 15:pharmaceutics15030781. [PMID: 36986642 PMCID: PMC10054557 DOI: 10.3390/pharmaceutics15030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Fungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper (Capsicum annuum L.) seeds. The inhibitor not only showed potent and specific activity against the pathogenic fungus Candida albicans, but was also found to be non-toxic against human cells. Furthermore, this inhibitor is unique in that it also inhibits α-1,4-glucosidase, positioning it as one of the first plant-derived protease inhibitors with dual biological activity. This exciting discovery opens new avenues for the development of this inhibitor as a promising antifungal agent and highlights the potential of plant-derived protease inhibitors as a rich source for the discovery of novel multifunctional bioactive molecules.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Florencia Geier
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Martina Rossotti
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Javier Garcia-Pardo
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| |
Collapse
|
23
|
Yang J, Tong C, Qi J, Liao X, Li X, Zhang X, Zhou M, Wang L, Ma C, Xi X, Chen T, Gao Y, Wu D. Engineering and Structural Insights of a Novel BBI-like Protease Inhibitor Livisin from the Frog Skin Secretion. Toxins (Basel) 2022; 14:toxins14040273. [PMID: 35448882 PMCID: PMC9030697 DOI: 10.3390/toxins14040273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/03/2022] Open
Abstract
The Bowman–Birk protease inhibitor (BBI) family is a prototype group found mainly in plants, particularly grasses and legumes, which have been subjected to decades of study. Recently, the discovery of attenuated peptides containing the canonical Bowman–Birk protease inhibitory motif has been detected in the skin secretions of amphibians, mainly from Ranidae family members. The roles of these peptides in amphibian defense have been proposed to work cooperatively with antimicrobial peptides and reduce peptide degradation. A novel trypsin inhibitory peptide, named livisin, was found in the skin secretion of the green cascade frog, Odorrana livida. The cDNA encoding the precursor of livisin was cloned, and the predicted mature peptide was characterized. The mature peptide was found to act as a potent inhibitor against several serine proteases. A comparative activity study among the native peptide and its engineered analogs was performed, and the influence of the P1 and P2′ positions, as well as the C-terminal amidation on the structure–activity relationship for livisin, was illustrated. The findings demonstrated that livisin might serve as a potential drug discovery/development tool.
Collapse
Affiliation(s)
- Jie Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (J.Y.); (C.T.); (X.L.)
| | - Chengliang Tong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (J.Y.); (C.T.); (X.L.)
| | - Junmei Qi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.Q.); (X.L.); (X.Z.)
| | - Xiaoying Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (J.Y.); (C.T.); (X.L.)
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.Q.); (X.L.); (X.Z.)
| | - Xiaokun Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.Q.); (X.L.); (X.Z.)
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.Q.); (X.L.); (X.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.Z.); (L.W.); (C.M.); (X.X.); (T.C.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.Z.); (L.W.); (C.M.); (X.X.); (T.C.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.Z.); (L.W.); (C.M.); (X.X.); (T.C.)
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.Z.); (L.W.); (C.M.); (X.X.); (T.C.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.Z.); (L.W.); (C.M.); (X.X.); (T.C.)
| | - Yitian Gao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.Q.); (X.L.); (X.Z.)
- Correspondence: (Y.G.); (D.W.)
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China; (J.Y.); (C.T.); (X.L.)
- Correspondence: (Y.G.); (D.W.)
| |
Collapse
|
24
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
25
|
Feng W, Shi H, Xu W, Song P. Heterologous expression and physicochemical characteristics identification of Kunitz protease inhibitor in Brassica napus. 3 Biotech 2022; 12:81. [PMID: 35251883 PMCID: PMC8882505 DOI: 10.1007/s13205-022-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022] Open
Abstract
A Kunitz protease inhibitor gene (RTI; rti) was cloned from rapeseed and expressed in a Pichia pastoris expression system for the first time. After isolation and purification, the physical and chemical characteristics of the inhibitor were analyzed. The results showed that the induced expression level of the recombinant RTI reached 628 mg/L, and the specific activity of the inhibitor reached 69.6 TIU/mg protein at the shake flask fermentation level; the recombinant RTI retained more than 70% inhibitory activity between 30 and 90 °C and more than 80% inhibitory activity between pH 2.0-11.0. The metal ions Cu2+ and CO2+ and the organic reagents methanol, ethanol, acetone, and chloroform inhibit its activity. The recombinant RTI interacts with trypsin in a noncompetitive manner and has a strong and specific inhibitory effect on trypsin, a typical Kunitz trypsin inhibitor from plants. Combined with its good physical and chemical properties, recombinant RTI has the potential to be developed into an insect resistance protein.
Collapse
Affiliation(s)
- Wei Feng
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Haiying Shi
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Xu
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Peng Song
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
26
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Sultana MS, Millwood RJ, Mazarei M, Stewart CN. Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. PLANT CELL REPORTS 2022; 41:293-305. [PMID: 34674016 DOI: 10.1007/s00299-021-02800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.
Collapse
Affiliation(s)
| | | | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
28
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
29
|
Shan S, Yin R, Shi J, Zhang L, Liu F, Qiao Q, Li Z. Bowman-Birk Major Type Trypsin Inhibitor Derived from Foxtail Millet Bran Attenuate Atherosclerosis via Remodeling Gut Microbiota in ApoE-/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:507-519. [PMID: 34989223 DOI: 10.1021/acs.jafc.1c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Foxtail millet proteins and their hydrolysates have the potential to prevent atherosclerosis (AS). In our present study, a novel Bowman-Birk type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) with an anti-AS effect was obtained by in vitro gastrointestinal bionic digestion. Further, the anti-AS activity of FMB-BBTI was verified by the classic apoE-/- mice model, characterized by the decreases of the inflammatory cytokines (TNF-α and IL-1β) and atherosclerotic plaque. Importantly, FMB-BBTI remodeled the structure of gut microbiota in apoE-/- mice, including the increase of Firmicutes at the phylum level, and the abundance alteration of five genera at the genus level, especially significant enrichment of Lactobacillus. Collectively, FMB-BBTI markedly restrains the AS progress, suggesting that the remodeling of gut microbiota induced by FMB-BBTI may be the critical factor for its anti-AS activity. This study indicates that FMB-BBTI may serve as a vital functional component contributing to the anti-AS potential of foxtail millet bran.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ruopeng Yin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
30
|
Cotabarren J, Ozón B, Claver S, Garcia-Pardo J, Obregón WD. Purification and Identification of Novel Antioxidant Peptides Isolated from Geoffroea decorticans Seeds with Anticoagulant Activity. Pharmaceutics 2021; 13:1153. [PMID: 34452114 PMCID: PMC8399481 DOI: 10.3390/pharmaceutics13081153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Geoffroea decorticans is a xerophilous deciduous tree present in most arid forests of southern South America, which is commonly used in traditional medicine. The seeds of this tree have been previously investigated for their singular chemical composition, but their protein content has been poorly investigated. Herein, we report the isolation, purification, and characterization of a set of thermostable peptides derived from Geoffroea decorticans seeds (GdAPs) with strong antioxidant and anticoagulant activities. The most potent antioxidant peptides showed a half maximal inhibitory concentration (IC50) of 35.5 ± 0.3 µg/mL determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH). They also caused a dose-dependent prolongation of the aPTT clotting time with an IC50 value of ~82 µg/mL. Interestingly, MALDI-TOF/MS analysis showed the presence of three major peptides with low molecular weights of 2257.199 Da, 2717.165 Da, and 5422.002 Da. The derived amino-acid sequence of GdAPs revealed their unique structural features, exhibiting homology with various proteins present in the genome of Arachis hypogaea. All in all, our data suggest a direct applicability of GdAPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Buenos Aires B1900, Argentina; (B.O.); (S.C.)
| |
Collapse
|
31
|
Silva-Júnior NR, Cabrera YM, Barbosa SL, Barros RDA, Barros E, Vital CE, Ramos HJO, Oliveira MGA. Intestinal proteases profiling from Anticarsia gemmatalis and their binding to inhibitors. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21792. [PMID: 33948994 DOI: 10.1002/arch.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Although the importance of intestinal hydrolases is recognized, there is little information on the intestinal proteome of lepidopterans such as Anticarsia gemmatalis. Thus, we carried out the proteomic analysis of the A. gemmatalis intestine to characterize the proteases by LC/MS. We examined the interactions of proteins identified with protease inhibitors (PI) using molecular docking. We found 54 expressed antigens for intestinal protease, suggesting multiple important isoforms. The hydrolytic arsenal featured allows for a more comprehensive understanding of insect feeding. The docking analysis showed that the soybean PI (SKTI) could bind efficiently with the trypsin sequences and, therefore, insect resistance does not seem to involve changing the sequences of the PI binding site. In addition, a SERPIN was identified and the interaction analysis showed the inhibitor binding site is in contact with the catalytic site of trypsin, possibly acting as a regulator. In addition, this SERPIN and the identified PI sequences can be targets for the control of proteolytic activity in the caterpillar intestine and serve as a support for the rational design of a molecule with greater stability, less prone to cleavage by proteases and viable for the control of insect pests such as A. gemmatalis.
Collapse
Affiliation(s)
- Neilier R Silva-Júnior
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Yaremis M Cabrera
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Samuel L Barbosa
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Rafael de A Barros
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Camilo E Vital
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
- Núcleo de Análise de Biomoléculas, NuBioMol, Centro de Ciências Biológicas e da Saúde - CCB, Universidade Federal de Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - Maria Goreti A Oliveira
- Department of Biochemistry and Molecular Biology, Laboratory of Enzymology and Biochemistry of Proteins and Peptides, Universidade Federal de Viçosa, UFV, BIOAGRO/INCT-IPP, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
32
|
de Siqueira Patriota LL, do Nascimento Santos DKD, da Silva Barros BR, de Souza Aguiar LM, Silva YA, Dos Santos ACLA, Gama E Silva M, Barroso Coelho LCB, Paiva PMG, Pontual EV, de Melo CML, Mendes RL, Napoleáo TH. Evaluation of the In Vivo Acute Toxicity and In Vitro Hemolytic and Immunomodulatory Activities of the Moringa oleifera Flower Trypsin Inhibitor (MoFTI). Protein Pept Lett 2021; 28:665-674. [PMID: 33191881 DOI: 10.2174/0929866527999201113105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Protease inhibitors have been isolated from plants and present several biological activities, including immunomodulatory action. OBJECTIVE This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. METHODS The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15-240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). RESULTS MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15-30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as Δψm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. CONCLUSION These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.
Collapse
Affiliation(s)
| | | | | | | | - Yasmym Araújo Silva
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | | | - Mariana Gama E Silva
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | | | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | - Thiago Henrique Napoleáo
- Departamento de Bioquimica, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
33
|
Purification and Characterization of a Novel Thermostable Papain Inhibitor from Moringa oleifera with Antimicrobial and Anticoagulant Properties. Pharmaceutics 2021; 13:pharmaceutics13040512. [PMID: 33917878 PMCID: PMC8068210 DOI: 10.3390/pharmaceutics13040512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cystatins (or phytocystatins) comprise a large superfamily of natural bioactive small proteins that typically act as protein inhibitors of papain-like cysteine proteases. In this report, we present the purification and characterization of the first phytocystatin isolated from Moringa oleifera (MoPI). MoPI has a molecular mass of 19 kDa and showed an extraordinary physicochemical stability against acidic pHs and high temperatures. Our findings also revealed that MoPI is one of the most potent cysteine protease inhibitors reported to date, with Ki and IC50 values of 2.1 nM and 5.7 nM, respectively. More interestingly, MoPI presents a strong antimicrobial activity against human pathogens such as Enterococcus faecalis and Staphylococcus aureus. In addition, MoPI also showed important anticoagulant activity, which is an unprecedented property for this family of protease inhibitors. These results highlight the pharmaceutical potential of this plant and its derived bioactive molecules.
Collapse
|
34
|
Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Aguieiras MCL, Resende LM, Souza TAM, Nagano CS, Chaves RP, Taveira GB, Carvalho AO, Rodrigues R, Gomes VM, Mello ÉO. Potent Anti-Candida Fraction Isolated from Capsicum chinense Fruits Contains an Antimicrobial Peptide That is Similar to Plant Defensin and is Able to Inhibit the Activity of Different α-Amylase Enzymes. Probiotics Antimicrob Proteins 2021; 13:862-872. [PMID: 33454869 DOI: 10.1007/s12602-020-09739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 μg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.
Collapse
Affiliation(s)
- Mariana C L Aguieiras
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Larissa M Resende
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Thaynã A M Souza
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Celso S Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Renata P Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Gabriel B Taveira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - André O Carvalho
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento E Genética Vegetal, Centro de Ciências E Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| | - Érica O Mello
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
36
|
Patriota LLDS, Ramos DDBM, Dos Santos ACLA, Silva YA, Gama E Silva M, Torres DJL, Procópio TF, de Oliveira AM, Coelho LCBB, Pontual EV, da Silva DCN, Paiva PMG, de Lorena VMB, Mendes RL, Napoleão TH. Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem Toxicol 2020; 145:111691. [PMID: 32810586 DOI: 10.1016/j.fct.2020.111691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The plant Moringa oleifera is used as food and medicine. M. oleifera flowers are source of protein, fiber, and antioxidants, and are used to treat inflammation and tumors. This work evaluated the antitumor activity of the M. oleifera flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Swiss female mice were inoculated with sarcoma 180 cells. Seven days later, the animals were treated intraperitoneally for 1 week with daily doses of PBS (control) or MoFTI (15 or 30 mg/kg). For toxicity assessment, water and food consumption, body and organ weights, histological alterations, and blood hematological and biochemical parameters were measured. Treatment with MoFTI caused pronounced reduction (90.1%-97.9%) in tumor weight. The tumors of treated animals had a reduced number of secondary vessels and lower gauge of the primary vessels compared to the control. No significant changes were observed in water and food consumption or in body and organ weights. Histopathological analysis did not indicate damage to the liver, kidneys, and spleen. In conclusion, MoFTI showed antitumor potential, with no clear evidence of toxicity.
Collapse
Affiliation(s)
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Diego José Lira Torres
- Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Thamara Figueiredo Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
37
|
A Trypsin Inhibitor from Moringa oleifera Flowers Modulates the Immune Response In Vitro of Trypanosoma cruzi-Infected Human Cells. Antibiotics (Basel) 2020; 9:antibiotics9080515. [PMID: 32823803 PMCID: PMC7460158 DOI: 10.3390/antibiotics9080515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma cruzi causes the lethal Chagas disease, which is endemic in Latin America. Flowers of Moringa oleifera (Moringaceae) express a trypsin inhibitor (MoFTI) whose toxicity to T. cruzi trypomastigotes was previously reported. Here, we studied the effects of MoFTI on the viability of human peripheral blood mononuclear cells (PBMCs) as well as on the production of cytokines and nitric oxide (NO) by T. cruzi-infected PBMCs. Incubation with MoFTI (trypsin inhibitory activity: 62 U/mg) led to lysis of trypomastigotes (LC50 of 43.5 µg/mL) but did not affect the viability of PBMCs when tested at concentrations up to 500 µg/mL. A selectivity index > 11.48 was determined. When T. cruzi-infected PBMCs were treated with MoFTI (43.5 or 87.0 µg/mL), the release of the pro-inflammatory cytokine TNF-α and INF-γ, as well as of NO, was stimulated. The release of the anti-inflammatory cytokine IL-10 also increased. In conclusion, the toxicity to T. cruzi and the production of IL-10 by infected PBMCs treated with MoFTI suggest that this molecule may be able to control parasitemia while regulating the inflammation, preventing the progress of Chagas disease. The data reported here stimulate future investigations concerning the in vivo effects of MoFTI on immune response in Chagas disease.
Collapse
|
38
|
Mishra M. Evolutionary Aspects of the Structural Convergence and Functional Diversification of Kunitz-Domain Inhibitors. J Mol Evol 2020; 88:537-548. [PMID: 32696206 DOI: 10.1007/s00239-020-09959-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/04/2020] [Indexed: 11/28/2022]
Abstract
Kunitz-type domains are ubiquitously found in natural systems as serine protease inhibitors or animal toxins in venomous animals. Kunitz motif is a cysteine-rich peptide chain of ~ 60 amino acid residues with alpha and beta fold, stabilized by three conserved disulfide bridges. An extensive dataset of amino acid variations is found on sequence analysis of various Kunitz peptides. Kunitz peptides show diverse biological activities like inhibition of proteases of other classes and/or adopting a new function of blocking or modulating the ion channels. Based on the amino acid residues at the functional site of various Kunitz-type inhibitors, it is inferred that this 'flexibility within the structural rigidity' is responsible for multiple biological activities. Accelerated evolution of functional sites in response to the co-evolving molecular targets of the hosts of venomous animals or parasites, gene sharing, and gene duplication have been discussed as the most likely mechanisms responsible for the functional heterogeneity of Kunitz-domain inhibitors.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
39
|
Cisneros JS, Cotabarren J, Parisi MG, Vasconcelos MW, Obregón WD. Purification and characterization of a novel trypsin inhibitor from Solanum tuberosum subsp. andigenum var. overa: Study of the expression levels and preliminary evaluation of its antimicrobial activity. Int J Biol Macromol 2020; 158:S0141-8130(20)33083-X. [PMID: 32360201 DOI: 10.1016/j.ijbiomac.2020.04.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022]
Abstract
Protease inhibitors (PIs) have been traditionally recognized by their potential biomedical application in events with exacerbation of endogenous proteases activity. Plant PIs have gained interest as naturally occurring molecules, which usually show lower environmental impact residual toxicity than synthetic compounds. In this work, we isolated, cloned, expressed and purified a novel trypsin inhibitor from S. tuberosum subsp. andigenum var. overa, named oPTI. A significant over-expression of the oPTI coding gene after 48 h exposure of methyl jasmonate compared to the gene of reference. This inhibitor showed a molecular mass of 12 kDa and a Ki of 7.3 × 10-7 M. Finally, we evaluated the antimicrobial activity of oPTI against different pathogenic microorganisms. The oPTI demonstrated inhibitory effect on the growth of Acinetobacter baumannii S-1, Acinetobacter baumannii R, Acinetobacter calcoaceticus R, Acinetobacter calcoaceticus S, Bacillus stearothermophilus, Escherichia coli, Pseudomonas aeruginosa, Salmonella braenderup, Salmonella enteritidis, Salmonella typhimurium and Yersinia enterocolitica strains. This study represents the first report for the antimicrobial activity of a plant PI over a wide range of microorganisms. Our studies reinforce the importance of natural PIs as promising molecules for their potential application in the biomedical field and/or in the food industry as natural food preservatives.
Collapse
Affiliation(s)
- José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 S/N, B1900AVW La Plata, Buenos Aires, Argentina
| | - Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115s/N, B1900AVW La Plata, Buenos Aires, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700 Buenos Aires, Argentina
| | - Marta Wilton Vasconcelos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Labóratorio Associado, Escola Superior de Biotecnologia, Rua Diorgo Botelho 1357, 4169-005 Porto, Portugal
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115s/N, B1900AVW La Plata, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 2020; 148:869-879. [DOI: 10.1016/j.ijbiomac.2020.01.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|