1
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 PMCID: PMC11725163 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
2
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Scarpella E. Leaf Vein Patterning. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:377-398. [PMID: 38382907 DOI: 10.1146/annurev-arplant-062923-030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Leaves form veins whose patterns vary from a single vein running the length of the leaf to networks of staggering complexity where huge numbers of veins connect to other veins at both ends. For the longest time, vein formation was thought to be controlled only by the polar, cell-to-cell transport of the plant hormone auxin; recent evidence suggests that is not so. Instead, it turns out that vein patterning features are best accounted for by a combination of polar auxin transport, facilitated auxin diffusion through plasmodesma intercellular channels, and auxin signal transduction-though the latter's precise contribution remains unclear. Equally unclear remain the sites of auxin production during leaf development, on which that vein patterning mechanism ought to depend. Finally, whether that vein patterning mechanism can account for the variety of vein arrangements found in nature remains unknown. Addressing those questions will be the exciting challenge of future research.
Collapse
Affiliation(s)
- Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
4
|
Karunarathne SI, Spokevicius AV, Bossinger G, Golz JF. Trees need closure too: Wound-induced secondary vascular tissue regeneration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111950. [PMID: 38070652 DOI: 10.1016/j.plantsci.2023.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Trees play a pivotal role in terrestrial ecosystems as well as being an important natural resource. These attributes are primarily associated with the capacity of trees to continuously produce woody tissue from the vascular cambium, a ring of stem cells located just beneath the bark. Long-lived trees are exposed to a myriad of biological and environmental stresses that may result in wounding, leading to a loss of bark and the underlying vascular cambium. This affects both wood formation and the quality of timber arising from the tree. In addition, the exposed wound site is a potential entry point for pathogens that cause disease. In response to wounding, trees have the capacity to regenerate lost or damaged tissues at this site. Investigating gene expression changes associated with different stages of wound healing reveals complex and dynamic changes in the activity of transcription factors, signalling pathways and hormone responses. In this review we summarise these data and discuss how they relate to our current understanding of vascular cambium formation and xylem differentiation during secondary growth. Based on this analysis, a model for wound healing that provides the conceptual foundations for future studies aimed at understanding this intriguing process is proposed.
Collapse
Affiliation(s)
- Sachinthani I Karunarathne
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antanas V Spokevicius
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gerd Bossinger
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Golz
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
5
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
6
|
Scarpella E. Axes and polarities in leaf vein formation. PLANT PHYSIOLOGY 2023; 193:112-124. [PMID: 37261944 DOI: 10.1093/plphys/kiad321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
For multicellular organisms to develop, cells must grow, divide, and differentiate along preferential or exclusive orientations or directions. Moreover, those orientations, or axes, and directions, or polarities, must be coordinated between cells within and between tissues. Therefore, how axes and polarities are coordinated between cells is a key question in biology. In animals, such coordination mainly depends on cell migration and direct interaction between proteins protruding from the plasma membrane. Both cell movements and direct cell-cell interactions are prevented in plants by cell walls that surround plant cells and keep them apart and in place. Therefore, plants have evolved unique mechanisms to coordinate their cell axes and polarities. Here I will discuss evidence suggesting that understanding how leaf veins form may uncover those unique mechanisms. Indeed, unlike previously thought, the cell-to-cell polar transport of the plant hormone auxin along developing veins cannot account for many features of vein patterning. Instead, those features can be accounted for by models of vein patterning that combine polar auxin transport with auxin diffusion through plasmodesmata along the axis of developing veins. Though it remains unclear whether such a combination of polar transport and axial diffusion of auxin can account for the formation of the variety of vein patterns found in plant leaves, evidence suggests that such a combined mechanism may control plant developmental processes beyond vein patterning.
Collapse
Affiliation(s)
- Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
7
|
Wang Y, Yan X, Xu M, Qi W, Shi C, Li X, Ma J, Tian D, Shou J, Wu H, Pan J, Li B, Wang C. Transmembrane kinase 1-mediated auxin signal regulates membrane-associated clathrin in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:82-99. [PMID: 36114789 DOI: 10.1111/jipb.13366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.
Collapse
Affiliation(s)
- Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiyang Qi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chunjie Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohong Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dan Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianxin Shou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
8
|
von der Mark C, Cruz TMD, Blanco‐Touriñan N, Rodriguez‐Villalon A. Bipartite phosphoinositide-dependent modulation of auxin signaling during xylem differentiation in Arabidopsis thaliana roots. THE NEW PHYTOLOGIST 2022; 236:1734-1747. [PMID: 36039703 PMCID: PMC9826227 DOI: 10.1111/nph.18448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Efficient root-to-shoot delivery of water and nutrients in plants relies on the correct differentiation of xylem cells into hollow elements. While auxin is integral to the formation of xylem cells, it remains poorly characterized how each subcellular pool of this hormone regulates this process. Combining genetic and cell biological approaches, we investigated the bipartite activity of nucleoplasmic vs plasma membrane-associated phosphatidylinositol 4-phosphate kinases PIP5K1 and its homolog PIP5K2 in Arabidopsis thaliana roots and uncovered a novel mechanism by which phosphoinositides integrate distinct aspects of the auxin signaling cascade and, in turn, regulate the onset of xylem differentiation. The appearance of undifferentiated cells in protoxylem strands of pip5k1 pip5k2 is phenomimicked in auxin transport and perception mutants and can be partially restored by the nuclear residence of PIP5K1. By contrast, exclusion of PIP5K1 from the nucleus hinders the auxin-mediated induction of the xylem master regulator VASCULAR RELATED NAC DOMAIN (VND) 7. A xylem-specific increase of auxin levels abolishes pip5k1 pip5k2 vascular defects, indicating that the establishment of auxin maxima is required to activate VND7-mediated xylem differentiation. Our results describe a new mechanism by which distinct subcellular pools of phosphoinositides integrate auxin transport and perception to initiate xylem differentiation in a spatiotemporal manner.
Collapse
Affiliation(s)
- Claudia von der Mark
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Tiago M. D. Cruz
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | - Noel Blanco‐Touriñan
- Department of BiologySwiss Federal Institute of Technology (ETH) ZurichCH‐8092ZurichSwitzerland
| | | |
Collapse
|
9
|
Numata T, Sugita K, Ahamed Rahman A, Rahman A. Actin isovariant ACT7 controls root meristem development in Arabidopsis through modulating auxin and ethylene responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6255-6271. [PMID: 35749807 DOI: 10.1093/jxb/erac280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The meristem is the most functionally dynamic part in a plant. The shaping of the meristem requires constant cell division and elongation, which are influenced by hormones and the cytoskeletal component, actin. Although the roles of hormones in modulating meristem development have been extensively studied, the role of actin in this process is still elusive. Using the single and double mutants of the vegetative class actin, we demonstrate that actin isovariant ACT7 plays an important role in root meristem development. In the absence of ACT7, but not ACT8 and ACT2, depolymerization of actin was observed. Consistently, the act7 mutant showed reduced cell division, cell elongation, and meristem length. Intracellular distribution and trafficking of auxin transport proteins in the actin mutants revealed that ACT7 specifically functions in the root meristem to facilitate the trafficking of auxin efflux carriers PIN1 and PIN2, and consequently the transport of auxin. Compared with act7, the act7act8 double mutant exhibited slightly enhanced phenotypic response and altered intracellular trafficking. The altered distribution of auxin in act7 and act7act8 affects the response of the roots to ethylene, but not to cytokinin. Collectively, our results suggest that ACT7-dependent auxin-ethylene response plays a key role in controlling Arabidopsis root meristem development.
Collapse
Affiliation(s)
- Takahiro Numata
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Kenji Sugita
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Arifa Ahamed Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Abidur Rahman
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, Monzer A, Rodriguez L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann WA, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 2022; 609:575-581. [PMID: 36071161 DOI: 10.1038/s41586-022-05187-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/03/2022] [Indexed: 12/22/2022]
Abstract
The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - Michelle Gallei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Zuzana Gelová
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Ewa Mazur
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Inge Verstraeten
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Minxia Zou
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lukáš Fiedler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Caterina Giannini
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Mónika Hrtyan
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | | - Marek Randuch
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Koji Takahashi
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Shutang Tan
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Anastasia Teplova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Hana Rakusová
- Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
12
|
Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack MK, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2308-2319. [PMID: 35085386 PMCID: PMC7612644 DOI: 10.1093/jxb/erac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Collapse
Affiliation(s)
- Ren Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jian Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alaeddine Safi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Moritz K. Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
13
|
Hajný J, Tan S, Friml J. Auxin canalization: From speculative models toward molecular players. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102174. [PMID: 35123880 DOI: 10.1016/j.pbi.2022.102174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development.
Collapse
Affiliation(s)
- Jakub Hajný
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria; Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Shutang Tan
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
14
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
15
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
16
|
Glanc M, Van Gelderen K, Hoermayer L, Tan S, Naramoto S, Zhang X, Domjan D, Včelařová L, Hauschild R, Johnson A, de Koning E, van Dop M, Rademacher E, Janson S, Wei X, Molnár G, Fendrych M, De Rybel B, Offringa R, Friml J. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Curr Biol 2021; 31:1918-1930.e5. [PMID: 33705718 PMCID: PMC8112251 DOI: 10.1016/j.cub.2021.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. MAB4/MEL proteins are recruited to the plasma membrane by PINs PINs, MAB4/MELs, and AGC kinases directly interact in a multiprotein complex PIN phosphorylation and MAB4/MEL recruitment form a positive feedback loop MAB4/MELs and AGC kinases maintain PIN polarity by limiting PIN lateral diffusion
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kasper Van Gelderen
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas Hoermayer
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - David Domjan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Ludmila Včelařová
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Edward de Koning
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Maritza van Dop
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Eike Rademacher
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Stef Janson
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Xiaoyu Wei
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, (BOKU), 1190 Vienna, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
17
|
Johnson A, Gnyliukh N, Kaufmann WA, Narasimhan M, Vert G, Bednarek SY, Friml J. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci 2020; 133:jcs248062. [PMID: 32616560 DOI: 10.1242/jcs.248062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nataliia Gnyliukh
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | | | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
18
|
Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, Medveďová Z, Li Y, Wang Y, Prát T, Vasileva M, Reinöhl V, Procházka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 2020; 11:3508. [PMID: 32665554 PMCID: PMC7360611 DOI: 10.1038/s41467-020-17252-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ewa Mazur
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), 62500, Brno, Czech Republic
| | - Jozef Balla
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Petr Kalousek
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Zuzana Medveďová
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tomáš Prát
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Mina Vasileva
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Vilém Reinöhl
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Stanislav Procházka
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Rostislav Halouzka
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria.
| |
Collapse
|
19
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|