1
|
Filyushin MA, Seredin TM, Shchennikova AV, Kochieva EZ. Vitamin C content and profile of ascorbate metabolism gene expression in green leaves and bleached parts of the pseudostem of leek (Allium porrum L.) F1 hybrids. Vavilovskii Zhurnal Genet Selektsii 2025; 29:200-209. [PMID: 40297297 PMCID: PMC12036564 DOI: 10.18699/vjgb-25-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 04/30/2025] Open
Abstract
Leek (Allium porrum L.) is an economically important vegetable crop of the family Amaryllidaceae with a wide range of medicinal and nutritional properties, in part due to the accumulation of vitamin C (L-ascorbic acid, ascorbate). Ascorbate is an organic water-soluble compound, which performs many functions in plant cell metabolism, including as one of an effective antioxidant in plant cell responses to biotic and abiotic stress factors. Ascorbate metabolism includes biosynthesis (mainly the L-galactose pathway) and recycling (reduction of oxidized forms to ascorbate). The gene networks that determine ascorbate metabolism in leek plants are poorly understood. In this work, crosses of leek varieties/lines were carried out. Accessions of F1 hybrids were characterized for seed germination rate, ascorbate content and expression of ascorbate biosynthesis (PGI, PMI, PMM, VTC1b, GME1, GME2, VTC2, GPP, GalDH, GalLDH) and recycling (APX1, APX2, MDHAR1, MDHAR4, MDHAR5, DHAR2, GR) genes in seedlings, as well as green leaves and bleached stem parts of the adult plant. A search for correlations between the level of expression of ascorbate metabolism genes and the amount of vitamin C in leeks was also carried out. It was shown that the studied hybrids are characterized by high (89-100 %) seed germination, with the exception of the hybrid from the 74 × Alligator cross (55 %). An increased level of expression of the VTC2, MDHAR1, MDHAR4 and/ or MDHAR5 genes was detected in the seedlings and green leaves of nine F1 hybrids, which allowed us to consider these samples promising in terms of possible stress resistance. Four hybrids that were characterized by the lowest (33 × 30, 74 × Alligator) and highest (81 × 95, 36 × 38) ascorbate content in seedlings were selected for a further detailed analysis of adult plants for the content of soluble sugars and ascorbate, gene expression and morphological characteristics (length, thickness and weight of the false stem). It was confirmed that green leaves of the 36 × 38 and 81 × 95 hybrids contain significantly more ascorbate than the 33 × 30 and 74 × Alligator hybrids. In all four hybrids, the ascorbate content was significantly lower in the bleached stems than in the green leaves. Accessions 36 × 38 and 81 × 95 were also characterized by the highest amount of soluble sugars in the bleached part of the false stem used for food. In addition, the false stem formed by the 81 × 95 hybrid was larger and heavier than the stems of the other three hybrids. A direct dependence of ascorbate content on the transcript level of ascorbate recycling genes (APX2, MDHAR1, MDHAR4) in green leaves was revealed, which can be used in the breeding of stress-resistant leek hybrids with a high content of vitamin C.
Collapse
Affiliation(s)
- M A Filyushin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - T M Seredin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - A V Shchennikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Wei L, Zhao J, Zhong Y, Wu X, Wei S, Liu Y. The roles of protein S-nitrosylation in regulating the growth and development of plants: A review. Int J Biol Macromol 2025; 307:142204. [PMID: 40107544 DOI: 10.1016/j.ijbiomac.2025.142204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The free radical nitric oxide (NO) is an important redox-related signaling molecule modulating wide range of biological processes in all living plants. The transfer of NO bioactivity could be executed chiefly through a prototypic, redox-based post-translational modification, S-nitrosylation that covalently adds NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol. Protein S-nitrosylation is recently emerged as an evolutionarily conserved and important mechanism regulating multiple aspects of plant growth and development. Here, we review the recent progress of S-nitrosylated proteins in the modulation of various plant development processes, including seed germination and aging, root development, seedling growth, flowering and fruit ripening and postharvest fruit quality. More importantly, the detailed function mechanism of proteins S-nitrosylation and key challenges in this field are also highlighted.
Collapse
Affiliation(s)
- Lijuan Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junyi Zhao
- School of Marxism, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Zhong
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiuqiao Wu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Hubei key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Saleem S, Mushtaq NU, Tahir I, Seth CS, Rehman RU. Positive influence of selenium on the modulation of ascorbate-glutathione cycle in salt stressed Setaria italica L. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154448. [PMID: 39954308 DOI: 10.1016/j.jplph.2025.154448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Soil salinity is a significant abiotic factor affecting crop yield and global distribution, hence selecting salt-tolerant crop species is crucial for food security. Foxtail millet is a resilient crop suitable for hilly, salinity, and drought-prone areas due to its ability to withstand environmental stressors. In this study, foxtail millet was subjected to high NaCl concentrations (150 mM and 200 mM) and selenium (1 μM, 5 μM, and 10 μM) as a stress mitigator. Increased salinity in foxtail plants hampered the growth with decreased pigment levels, increased H₂O₂ levels (153.6%), lipid peroxidation (32.1%), and electrolyte leakage (155.5%). The application of 1 μM Se positively influenced the root-to-shoot ratio (R) (59.2%), photosynthetic pigments, phenolic content (25.1%), flavonoid content (7%) and hence the antioxidant potential of the salt stressed plants there by decreasing the H₂O₂ levels (26.8%) and suggesting a greater ability to scavenge radicals. Both NaCl and Se induced the AsA-GSH pathway. Se supplementation significantly improved AsA-GSH pathway components such as AsA/DHA (40.8%) and GSH/GSSG ratios (39.6%) in salt-stressed foxtail millet, reducing oxidative stress and efficiently neutralizing H₂O₂. Gene expression validation confirmed that SiAPX, SiDHAR, SiMDHAR, and SiGR showed significant upregulation with 1 μM Se application in salt-stressed foxtail millet plants. However, higher Se concentrations (5 μM and 10 μM) led to a reduced fresh weight along with R, increased the MDA and H₂O₂ levels, and did not positively contribute to osmolyte accumulation or improve the AsA/DHA and GSH/GSSG ratios. Elevated Se levels also led to a decreased antioxidant potential. Among the enzymes of the AsA-GSH cycle, higher Se concentrations negatively affected APX, DHAR, MDHAR, and GR activities, indicating stress aggravation rather than mitigation at elevated doses.
Collapse
Affiliation(s)
- Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | | | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
4
|
Mishra S, Sharma A, Srivastava AK. Ascorbic acid: a metabolite switch for designing stress-smart crops. Crit Rev Biotechnol 2024; 44:1350-1366. [PMID: 38163756 DOI: 10.1080/07388551.2023.2286428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing "stress-smart" crops in future.
Collapse
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ankush Sharma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
Gao X, Ma J, Wang G, Huang S, Wu X, Hu L, Yu J. The S-nitrosylation of monodehydroascorbate reductase positively regulated the low temperature tolerance of mini Chinese cabbage. Int J Biol Macromol 2024; 281:136047. [PMID: 39357708 DOI: 10.1016/j.ijbiomac.2024.136047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
One of the main environmental stresses that considerably reduced vegetable yields are low temperature stress. Brassinosteroids (BRs) is essential for controlling a number of physiological functions. Protein S-nitrosylation is thought to be a crucial process in plants that use NO to carry out their biological functions. The exact process by which the mini Chinese cabbage responded to low temperature stress through BR-mediated S-nitrosylation modification of the monodehydroascorbate reductase (MDHAR) is still unknown. BR significantly increased the S-nitrosoylation level and antioxidant capacity at low temperature. One noteworthy development was the in vitroS-nitrosylation of the MDHAR protein. The overexpressed lines exhibited considerably high nitric oxide (NO) and S-nitrosothiol (SNO) contents at low temperature compared to the WT lines. Treatment of the WT and OE-BrMDHAR lines with BR at low temperature increased the antioxidant capacity. According to the biotin signaling, BR considerably enhanced the silenced lines total S-nitrosylation level in vivo at low temperature. Furthermore, BrMDHAR, BrAAO, and BrAPX gene transcript levels were dramatically up-regulated by BR, which in turn reduced the H2O2 content in the silenced lines. These findings demonstrated that the S-nitrosylation of MDHAR was essential to the improvement of BR on low-temperature tolerance in the mini Chinese cabbage.
Collapse
Affiliation(s)
- Xueqin Gao
- Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jizhong Ma
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | | | - Shuchao Huang
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xuetong Wu
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Linli Hu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Zeng S, Sun X, Zhai J, Li X, Pedro GC, Nian H, Li K, Xu H. SlTrxh functions downstream of SlMYB86 and positively regulates nitrate stress tolerance via S-nitrosation in tomato seedling. HORTICULTURE RESEARCH 2024; 11:uhae184. [PMID: 39247888 PMCID: PMC11374535 DOI: 10.1093/hr/uhae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Nitric oxide (NO) is a redox-dependent signaling molecule that plays a crucial role in regulating a wide range of biological processes in plants. It functions by post-translationally modifying proteins, primarily through S-nitrosation. Thioredoxin (Trx), a small and ubiquitous protein with multifunctional properties, plays a pivotal role in the antioxidant defense system. However, the regulatory mechanism governing the response of tomato Trxh (SlTrxh) to excessive nitrate stress remains unknown. In this study, overexpression or silencing of SlTrxh in tomato led to increased or decreased nitrate stress tolerance, respectively. The overexpression of SlTrxh resulted in a reduction in levels of reactive oxygen species (ROS) and an increase in S-nitrosothiol (SNO) contents; conversely, silencing SlTrxh exhibited the opposite trend. The level of S-nitrosated SlTrxh was increased and decreased in SlTrxh overexpression and RNAi plants after nitrate treatment, respectively. SlTrxh was found to be susceptible to S-nitrosation both in vivo and in vitro, with Cysteine 54 potentially being the key site for S-nitrosation. Protein interaction assays revealed that SlTrxh physically interacts with SlGrx9, and this interaction is strengthened by S-nitrosation. Moreover, a combination of yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and transient expression assays confirmed the direct binding of SlMYB86 to the SlTrxh promoter, thereby enhancing its expression. SlMYB86 is located in the nucleus and SlMYB86 overexpressed and knockout tomato lines showed enhanced and decreased nitrate stress tolerance, respectively. Our findings indicate that SlTrxh functions downstream of SlMYB86 and highlight the potential significance of S-nitrosation of SlTrxh in modulating its function under nitrate stress.
Collapse
Affiliation(s)
- Senlin Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Xudong Sun
- Yunnan Key Laboratory of Crop Wild Relatives, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiali Zhai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Xixian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | | | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, China
| |
Collapse
|
7
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
8
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Basu S, Kumar G. Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants. PLANT CELL REPORTS 2024; 43:193. [PMID: 39008125 DOI: 10.1007/s00299-024-03275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
10
|
Hu Y, Zhao H, Xue L, Nie N, Zhang H, Zhao N, He S, Liu Q, Gao S, Zhai H. IbMYC2 Contributes to Salt and Drought Stress Tolerance via Modulating Anthocyanin Accumulation and ROS-Scavenging System in Sweet Potato. Int J Mol Sci 2024; 25:2096. [PMID: 38396773 PMCID: PMC10889443 DOI: 10.3390/ijms25042096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Y.H.); (H.Z.); (L.X.); (N.N.); (H.Z.); (N.Z.); (S.H.); (Q.L.)
| |
Collapse
|
11
|
Wang T, Hou X, Wei L, Deng Y, Zhao Z, Liang C, Liao W. Protein S-nitrosylation under abiotic stress: Role and mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108329. [PMID: 38184883 DOI: 10.1016/j.plaphy.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.
Collapse
Affiliation(s)
- Tong Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Chen Liang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Wei L, Liao W, Zhong Y, Tian Y, Wei S, Liu Y. NO-mediated protein S-nitrosylation under salt stress: Role and mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111927. [PMID: 37984610 DOI: 10.1016/j.plantsci.2023.111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Salt stress is one of the major environmental stressors that remarkably hinders the processes of plant growth and development, thereby limiting crop productivity. An understanding of the molecular mechanisms underlying plant responses against salinity stimulus will help guide the rational design of crop plants to counter these challenges. Nitric oxide (NO) is a redox-related signaling molecule regulating diverse biological processes in plant. Accumulating evidences indicated NO exert its biological functions through posttranslational modification of proteins, notably via S-nitrosylation. During the past decade, the roles of S-nitrosylation as a regulator of plant and S-nitrosylated candidates have also been established and detected. Emerging evidence indicated that protein S-nitrosylation is ubiquitously involved in the regulation of plant response to salt stress. However, little is known about this pivotal molecular amendment in the regulation of salt stress response. Here, we describe current understanding on the regulatory mechanisms of protein S-nitrosylation in response to salt stress in plants and highlight key challenges in this field.
Collapse
Affiliation(s)
- Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Yue Zhong
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ye Tian
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shouhui Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
13
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
14
|
Zhai J, Liang Y, Zeng S, Yan J, Li K, Xu H. Overexpression of tomato glutathione reductase (SlGR) in transgenic tobacco enhances salt tolerance involving the S-nitrosylation of GR. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:497-506. [PMID: 36764265 DOI: 10.1016/j.plaphy.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/20/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
S-nitrosylation, a post-translational modification (PTM) dependent on nitric oxide, is essential for plant development and environmental responsiveness. However, the function of S-nitrosylation of glutathione reductase (GR) in tomato (SlGR) under NaCl stress is yet uncertain. In this study, sodium nitroprusside (SNP), an exogenous NO donor, alleviated the growth inhibition of tomato under NaCl treatment, particularly at 100 μM. Following NaCl treatment, the transcripts, enzyme activity, and S-nitrosylated level of GR were increased. In vitro, the SlGR protein was able to be S-nitrosylated by S-nitrosoglutathione (GSNO), significantly increasing the activity of GR. SlGR overexpression transgenic tobacco plants exhibited enhanced germination rate, fresh weight, and increased root length in comparison to wild-type (WT) seedlings. The accumulation of reactive oxygen species (ROS) was lower, whereas the expression and activities of GR, ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT); the ratio of ascorbic acid/dehydroascorbic acid (AsA/DHA), reduced glutathione/oxidized glutathione (GSH/GSSG), total soluble sugar and proline contents; and the expression of stress-related genes were higher in SlGR overexpression transgenic plants in comparison to the WT plants following NaCl treatment. The accumulation of NO and S-nitrosylated levels of GR in transgenic plants was higher in comparison to WT plants following NaCl treatment. These results indicated that S-nitrosylation of GR played a significant role in salt tolerance by regulating the oxidative state.
Collapse
Affiliation(s)
- Jiali Zhai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Yuanlin Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Senlin Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan, 650224, PR China.
| |
Collapse
|
15
|
Gambhir P, Singh V, Raghuvanshi U, Parida AP, Pareek A, Roychowdhury A, Sopory SK, Kumar R, Sharma AK. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:518-548. [PMID: 36377315 DOI: 10.1111/pce.14493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Sudhir K Sopory
- Department of Plant Molecular Biology, Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Wang C, Wei L, Zhang J, Hu D, Gao R, Liu Y, Feng L, Gong W, Liao W. Nitric Oxide Enhances Salt Tolerance in Tomato Seedlings by Regulating Endogenous S-nitrosylation Levels. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:275-293. [PMID: 0 DOI: 10.1007/s00344-021-10546-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
|
17
|
Wei L, Zhang J, Wei S, Wang C, Deng Y, Hu D, Liu H, Gong W, Pan Y, Liao W. Nitric oxide alleviates salt stress through protein S-nitrosylation and transcriptional regulation in tomato seedlings. PLANTA 2022; 256:101. [PMID: 36271196 DOI: 10.1007/s00425-022-04015-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
NO enhances the resistance of tomato seedlings to salt stress through protein S-nitrosylation and transcriptional regulation, which involves the regulation of MAPK signaling and carbohydrate metabolism. Nitric oxide (NO) regulates various physiological and biochemical processes and stress responses in plants. We found that S-nitrosoglutathione (GSNO) treatment significantly promoted the growth of tomato seedling under NaCl stress, indicating that NO plays a positive role in salt stress resistance. Moreover, GSNO pretreatment resulted in an increase of endogenous NO level, S-nitrosothiol (SNO) content, S-nitrosoglutathione reductase (GSNOR) activity and GSNOR expression under salt stress, implicating that S-nitrosylation might be involved in NO-alleviating salt stress. To further explore whether S-nitrosylation is a key molecular mechanism of NO-alleviating salt stress, the biotin-switch technique and liquid chromatography/mass spectrometry/mass spectrometry (LC-MS/MS) were conducted. A total of 1054 putative S-nitrosylated proteins have been identified, which were mainly enriched in chloroplast, cytoplasm and mitochondrion. Among them, 15 and 22 S-nitrosylated proteins were involved in mitogen-activated protein kinase (MAPK) signal transduction and carbohydrate metabolism, respectively. In MAPK signaling, various S-nitrosylated proteins, SAM1, SAM3, SAM, PP2C and SnRK, were down-regulated and MAPK, MAPKK and MAPKK5 were up-regulated at the transcriptional level by GSNO treatment under salt stress compared to NaCl treatment alone. The GSNO pretreatment could reduce ethylene production and ABA content under NaCl stress. In addition, the activities of enzyme identified in carbohydrate metabolism, their expression at the transcriptional level and the metabolite content were up-regulated by GSNO supplication under salt stress, resulting in the activation of glycolysis and tricarboxylic acid cycle (TCA) cycles. Thus, these results demonstrated that NO might beneficially regulate MAPK signaling at transcriptional levels and activate carbohydrate metabolism at the post-translational and transcriptional level, protecting seedlings from energy deficiency and salinity, thereby alleviating salt stress-induced damage in tomato seedlings. It provides initial insights into the regulatory mechanisms of NO in response to salt stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Wenting Gong
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Ying Pan
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
18
|
Anisimova OK, Shchennikova AV, Kochieva EZ, Filyushin MA. Identification of Monodehydroascorbate Reductase (MDHAR) Genes in Garlic (Allium sativum L.) and Their Role in the Response to Fusarium proliferatum Infection. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
The Role of Nitric Oxide in Plant Responses to Salt Stress. Int J Mol Sci 2022; 23:ijms23116167. [PMID: 35682856 PMCID: PMC9181674 DOI: 10.3390/ijms23116167] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The gas nitric oxide (NO) plays an important role in several biological processes in plants, including growth, development, and biotic/abiotic stress responses. Salinity has received increasing attention from scientists as an abiotic stressor that can seriously harm plant growth and crop yields. Under saline conditions, plants produce NO, which can alleviate salt-induced damage. Here, we summarize NO synthesis during salt stress and describe how NO is involved in alleviating salt stress effects through different strategies, including interactions with various other signaling molecules and plant hormones. Finally, future directions for research on the role of NO in plant salt tolerance are discussed. This summary will serve as a reference for researchers studying NO in plants.
Collapse
|
20
|
Zhang X, Cheng Z, Fan G, Yao W, Li W, Chen S, Jiang T. Functional analysis of PagNAC045 transcription factor that improves salt and ABA tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2022; 22:261. [PMID: 35610568 PMCID: PMC9131654 DOI: 10.1186/s12870-022-03623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Salt stress causes inhibition of plant growth and development, and always leads to an increasing threat to plant agriculture. Transcription factors regulate the expression of various genes for stress response and adaptation. It's crucial to reveal the regulatory mechanisms of transcription factors in the response to salt stress. RESULTS A salt-inducible NAC transcription factor gene PagNAC045 was isolated from Populus alba×P. glandulosa. The PagNAC045 had a high sequence similarity with NAC045 (Potri.007G099400.1) in P. trichocarpa, and they both contained the same conserved motifs 1 and 2, which constitute the highly conserved NAM domain at the N-terminus. Protein-protein interaction (PPI) prediction showed that PagNAC045 potentially interacts with many proteins involved in plant hormone signaling, DNA-binding and transcriptional regulation. The results of subcellular localization and transient expression in tobacco leaves confirmed the nuclear localization of PagNAC045. Yeast two-hybrid revealed that PagNAC045 protein exhibits transcriptional activation property and the activation domain located in its C-terminus. In addition, the 1063 bp promoter of PagNAC045 was able to drive GUS gene expression in the leaves and roots. In poplar leaves and roots, PagNAC045 expression increased significantly by salt and ABA treatments. Tobacco seedlings overexpressing PagNAC045 exhibited enhanced tolerance to NaCl and ABA compared to the wild-type (WT). Yeast one-hybrid assay demonstrated that a bHLH104-like transcription factor can bind to the promoter sequence of PagNAC045. CONCLUSION The PagNAC045 functions as positive regulator in plant responses to NaCl and ABA-mediated stresses.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, 32611, USA
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, UF, Gainesville, FL, 32610, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, UF, Gainesville, FL, 32610, USA.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
21
|
Raja V, Wani UM, Wani ZA, Jan N, Kottakota C, Reddy MK, Kaul T, John R. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress. PLANT CELL REPORTS 2022; 41:619-637. [PMID: 34383122 DOI: 10.1007/s00299-021-02764-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Stacking Glutathione-Ascorbate pathway genes (PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR) under stress inducible promoter RD29A imparts significant tolerance to drought and salinity stress in Solanum lycopersicum. Although the exposure of plants to different environmental stresses results in overproduction of reactive oxygen species (ROS), many plants have developed some unique systems to alleviate the ROS production and mitigate its deleterious effect. One of the key pathways that gets activated in plants is ascorbate glutathione (AsA-GSH) pathway. To demonstrate the effect of this pathway in tomato, we developed the AsA-GSH overexpression lines by stacking the genes of the AsA-GSH pathway genes isolated from Pennisetum glaucoma (Pg) including PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR under stress inducible promoter RD29A. The overexpression lines have an improved germination and seedling growth with concomitant elevation in the survival rate. The exposure of transgenic seedlings to varying stress regiments exhibited escalation in the antioxidant enzyme activity and lesser membrane damage as reflected by decreased electrolytic leakage and little accumulation of malondialdehyde and H2O2. Furthermore, the transgenic lines accumulated high levels of osmoprotectants with increase in the relative water content. The increased photosynthetic activity and enhanced gaseous exchange parameters further confirmed the enhanced tolerance of AsA-GSH overexpression lines. We concluded that pyramiding of AsA-GSH pathway genes is an effective strategy for developing stress resistant crops.
Collapse
Affiliation(s)
- Vaseem Raja
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Umer Majeed Wani
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Zubair Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Chandrasekhar Kottakota
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Malireddy K Reddy
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Tanushri Kaul
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 1100067, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
22
|
Hasanuzzaman M, Raihan MRH, Masud AAC, Rahman K, Nowroz F, Rahman M, Nahar K, Fujita M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int J Mol Sci 2021; 22:ijms22179326. [PMID: 34502233 PMCID: PMC8430727 DOI: 10.3390/ijms22179326] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
- Correspondence: (M.H.); (M.F.)
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Khussboo Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; (M.R.H.R.); (A.A.C.M.); (K.R.); (F.N.); (M.R.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Japan
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
23
|
Veremeichik GN, Shkryl YN, Silantieva SA, Gorpenchenko TY, Brodovskaya EV, Yatsunskaya MS, Bulgakov VP. Managing activity and Ca 2+ dependence through mutation in the Junction of the AtCPK1 coordinates the salt tolerance in transgenic tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:104-113. [PMID: 34034156 DOI: 10.1016/j.plaphy.2021.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca2+ decoders in plants. AtCPK1 is a positive regulator in the plant response to biotic and abiotic stress. Inactivation of the autoinhibitory domain of AtCPK1 in the mutated form KJM23 provides constitutive activity of the kinase. In the present study, we investigated the effect of overexpressed native and mutant KJM23 forms on salinity tolerance in Nicotiana tabacum. Overexpression of native AtCPK1 provided tobacco resistance to 120 mM NaCl during germination and 180 mM NaCl during long-term growth, while the resistance of plants increased to 240 mM NaCl during both phases of plant development when transformed with KJM23. Mutation in the junction KJM4, which disrupted Ca2+ induced activation, completely nullified the acquired salt tolerance up to levels of normal plants. Analysis by confocal microscopy showed that under high salinity conditions, overexpression of AtCPK1 and KJM23 inhibited reactive oxygen species (ROS) accumulation to levels observed in untreated plants. Quantitative real-time PCR analysis showed that overexpression of AtCPK1 and KJM23 was associated with changes in expression of genes encoding heat shock factors. In all cases, the KJM23 mutation enhanced the effect of AtCPK1, while the KJM4 mutation reduced it to the control level. We suggest that the autoinhibitory domains in CDPKs could be promising targets for manipulation in engineering salt-tolerant plants.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - Y N Shkryl
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S A Silantieva
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - T Y Gorpenchenko
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - E V Brodovskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - M S Yatsunskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - V P Bulgakov
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
24
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
25
|
Han HL, Liu J, Feng XJ, Zhang M, Lin QF, Wang T, Qi SL, Xu T, Hua XJ. SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153325. [PMID: 33271443 DOI: 10.1016/j.jplph.2020.153325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Although increasing intracellular proline under stressed condition could help the plants survive, treating plant with high level of proline under normal condition could be inhibitory to plant growth. Among other possible mechanisms, proline-induced mitochondrial reactive oxygen species (ROS) production due to electron overflow in mitochondria electron transport chain (mETC) caused by elevated proline degradation may contribute to the proline toxicity. However, direct evidences are still elusive. Here, we reported a functional characterization of SSR1, encoding a protein localized in mitochondria matrix, in maintaining the function of mETC through analyzing the proline hypersensitive phenotype of an Arabidopsis mutant ssr1-1 with a truncated SSR1 protein. Our analysis demonstrated that upon proline treatment, there were higher mitochondrial ROS, lower ATP content, reduced activity of mETC complex I and II, and reduced iron content in ssr1-1, in comparison to the wild type. Therefore, SSR1 is involved in maintaining normal capacity of mETC in transporting electrons in a way that related to iron homeostasis. Our results also supported that normal mETC activity is required for alleviating the proline toxicity.
Collapse
Affiliation(s)
- Hui Ling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Jun Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qing Fang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ting Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi, 334001, China.
| | - Shi Lian Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Tao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Xue Jun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|